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1 Introduction

A typical feature of 4D string models is the presence, at tree-level, of a plethora of massless
fields, called moduli. Typically these fields acquire mass via supersymmetry breaking effects
like non-vanishing background fluxes at semi-classical level, string loops or α′ corrections at
perturbative level and higher-derivative contributions to the low-energy effective action.

Some of these moduli are however periodic axion-like fields which enjoy a shift symmetry
that is exact at perturbative level [1, 2]. Hence they become massive only via tiny non-
perturbative effects which tend to make them naturally very light, i.e. exponentially lighter
than the gravitino mass which sets the mass scale of all the other non-axionic moduli [3, 4].
Being ultra-light, these axions are perfect candidates for dark radiation [5, 6] and quintessence
fields [7–10], and even for cold dark matter via the misalignment mechanism [11].

Another cosmological application of axion-like particles is to act as curvaton fields [12,
13]. In fact, during inflation, these ultra-light fields are expected to be much lighter than
the Hubble scale. Hence they acquire isocurvature fluctuations which can be converted into
standard adiabatic perturbations when the axions decay. If instead the axions are so light
that they are still stable, one has to make sure that they do not contribute significantly to
dark matter otherwise the amplitude of the isocurvature fluctuations would tend to be larger
that the one detected in CMB observations [14].

However, axionic isocurvature fluctuations are guaranteed to remain in the perturbative
regime only when the field space is flat. On the other hand, when the fields live on a
curved manifold, an interesting dynamics can develop. The effective mass-squared of the
isocurvature fluctuations receives additional contributions from the Christoffel symbols and
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the Ricci scalar which can cause their exponential growth [15], especially if the entropic modes
are ultra-light [16]. This effect could induce a geometrical destabilisation of the inflationary
trajectory since the growth of the isocurvature perturbations quickly brings the system in
the non-perturbative regime.1

The low-energy limit of string compactifications is a 4D supergravity theory which is
generically characterised by non-canonical kinetic terms. Hence, as pointed out in [16], due to
the generic presence of ultra-light axions and a curved field space, string inflationary models
might be plagued by geometric destabilisation problems.

In this paper, we shall first analyse a toy-model with two fields, φ1 and φ2. We shall
consider φ2 as massless and φ1 as a quintessence-like field whose potential is simply a negative
exponential. We shall show that, despite the presence of a negatively curved field space, this
system does not feature any geometrical destabilisation due to a non-zero turning rate of the
underlying bending trajectory which induces a positive contribution to the mass-squared of
the isocurvature fluctuations.

We shall then focus on a type IIB inflationary model, Fibre Inflation (FI) [19, 20], which
is characterised by the presence of two ultra-light axions and a curved field manifold. This
model is particularly promising since it is based on an effective rescaling shift symmetry [21]
and it allows for the construction of globally consistent Calabi-Yau models with inflation
and chirality [22, 23] and the study of reheating [24]. Depending on which effects generate
the inflationary potential (1-loop open string corrections [25–27] or higher derivative α′ ef-
fects [28, 29]), slightly different FI models can arise [19, 30, 31]. However all of them feature
a qualitatively similar shape of the inflationary potential characterised by a trans-Planckian
plateau which resembles Starobinsky inflation [32] and supergravity α-attractors [33, 34].
The inflaton field range is around 5 in Planck units with larger values bounded by the size
of the Kähler cone [35]. Thus primordial gravity waves are at the edge of detectability since
the tensor-to-scalar ratio turns out to be of order 0.005 . r . 0.01.

We shall first analyse FI models in the limit where the two ultra-light axions are ex-
actly massless and show that the quantum fluctuations of one of these entropic modes always
experience an exponential growth. We shall then try to avoid this geometrical destabilisa-
tion by turning on a non-zero axionic mass via non-perturbative effects. However we shall
find that, in order to obtain a positive mass-squared of the isocurvature modes, these non-
perturbative effects have to be of the same order of magnitude of the loop and higher deriva-
tive corrections which generate the inflationary potential. The inflationary model therefore
changes completely since it becomes intrinsically multi-field. Hence its dynamics should be
re-analysed and the predictions for the cosmological observables should be re-derived. We
therefore conclude that, if one requires a typical FI dynamics at leading order, there is no
way to avoid a tachyonic instability for one of the two ultra-light axions which quickly brings
the system away from the perturbative regime. Thus a full understanding of the inflationary
dynamics of FI models can be achieved only by relying on non-perturbative techniques which
can include the backreaction of dangerous isocurvature modes. We leave this crucial analysis
for future work.

This paper is organised as follows. In section 2 we briefly review the potential geomet-
rical destabilisation of inflation, stressing that heavy fields are stable while the perturbations
associated with ultra-light fields can become unstable in negatively curved field manifolds.

1This behaviour is to be distinguished from that of the recently proposed “ultra-light isocurvature sce-
nario” [17, 18] where the isocurvature modes are effectively massless (and constant on superhorizon scales)
and act as a source of curvature perturbations.
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We then focus instead on specific examples with ultra-light fields, devoting section 3 to the
study of a toy-model with a quintessence-like potential and section 4 to the more interesting
case of type IIB FI models.

2 Geometrical destabilisation

The phenomenon of geometrical destabilisation follows directly from the mass matrix of gauge
invariant scalar perturbations:

Qi ≡ δφi +
φ̇i

H
ψ , (2.1)

where φi(t, x) = φi(t) + δφi(t, x) and ψ(t, x) denotes the scalar perturbation to the metric
tensor. Let us therefore briefly review how the mass matrix arises in the context of multi-field
models of inflation.

In the 2-field models we will be dealing with, it is convenient to project the gauge
invariant perturbations Qi onto normal QN = NiQ

i and parallel QT = TiQ
i components

with respect to the background trajectory. N i are vectors perpendicular to the inflationary
trajectory, T i, having unitary 2-norm with respect to the field space metric, γij :

N iN jγij = 1 , T iN jγij = 0 , T iT jγij = 1 . (2.2)

From the second order action for the perturbations one finds the following equation of mo-
tion [36]:2

D2Qi

∂t2
+ 3H

DQi

∂t
+
k2

a2
Qi +M i

jQ
j = 0 . (2.3)

The covariant derivatives are defined as:

DQi

∂t
=
∂Qi

∂t
+ Γijkφ̇

jQk , (2.4)

and the connections follow from the field space metric γij . The mass matrix in the field basis
reads:

M i
j = V i

;j −Rikljφ̇kφ̇l −
1

a3

D

∂t

(
a3

H
φ̇iφ̇i

)
. (2.5)

It is convenient to study the perturbations in the {T,N} basis, where one finds an equation
of motion of similar form to (2.3) with the covariant derivatives defined in terms of the spin
connection (see e.g. [37, 38] for more details). Focusing on the equation of motion for a single
orthogonal perturbation, QN , one finds that the mass term takes the form:

m2
⊥, eff = V; NN + εRH2 + 3η2

⊥H
2 , (2.6)

where the projection of the covariant derivative is given by:

V; NN =
(
V,ij − ΓkijV,k

)
N iN j . (2.7)

In (2.6) the first two terms depend both on the geometry of the field space and on the scalar
potential, while η⊥ is related to the inverse of the radius of curvature of the inflationary
trajectory in field space and parametrises its non-geodesicity:

η⊥ =
ViN

i

φ̇0H
with φ̇0 =

√
γijφ̇iφ̇j . (2.8)

2In our notation i, j, . . . denote field space directions while capital indices refer to the T and N orthonormal
basis.
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The second term in (2.6) depends on the curvature of the 2-dimensional field space R, and
is the focus of this work. If negative and sufficiently large it can trigger an instability for the
isocurvature perturbations by turning their mass-squared negative [15, 39], in particular for
the case of ultra-light fields where the scalar potential contribution to the mass-squared is
negligible [16]. Before delving into the stability analysis of specific models, let us see under
which conditions the geometrical instability may arise.

2.1 Stability of heavy fields

The destabilisation originally considered in [15] concerned heavy spectator fields during in-
flation. These are degrees of freedom with a super-Hubble mass, that naively would not play
a rôle in the low energy dynamics. It was argued that for an arbitrary inflationary potential
V (φ), the heavy field χ could induce an instability in models of the form:

L√
−g

=
1

2
f2
(χ

Λ

)
∂µφ∂

µφ+
1

2
∂µχ∂

µχ− V (φ)− 1

2
M2χ2 , (2.9)

with M � H and fχχ/f > 0 for a certain range of Λ, the mass parameter setting the scale
of the field space curvature. While the zero mode of the heavy field sits at its minimum
χ̇ = χ = 0, causing η⊥ = 0, the mass-squared of the isocurvature perturbations:

m2
⊥, eff = Vχχ − 2

fχχ
f

εH2 , (2.10)

becomes negative due to the curvature term dominating m2
⊥, eff and causing the correspond-

ing perturbations to grow uncontrollably. This puzzling observation prompted further anal-
ysis [16], that pointed out that the behaviour of the system relies on the fact that V (χ) and
f(χ/Λ) have common extrema. Furthermore [16] showed that the background trajectory
leading to (2.10) is classically unstable, thereby providing the correct interpretation for the
negative mass-squared found in [15]. Notice that the stability of heavy fields is in agree-
ment with results previously found in models with non-minimal coupling [40, 41]. Moreover,
ref. [42] has recently shown that, even if the initial conditions are tuned such that χ̇ = χ = 0,
the backreaction of the isocurvature fluctuations shuts off the instability before reaching the
non-linear regime.

Besides showing that there is no instability for kinetically coupled heavy fields, [16] also
put forth the possibility that a negative field space curvature could trigger an instability for
massless spectator fields, a situation that is fairly frequent in string models of inflation and
that we will discuss in detail below.

2.2 Potential destabilisation of ultra-light fields

The most interesting part of our work will be the study of 2-field systems where φ1 is the
inflaton and φ2 an ultra-light field. In particular we will focus on cases where the ultra-light
field is an axion. Assuming that the inflaton can be canonically normalised, the field space
metric can be written as:

γij =

(
1 0

0 f2(φ1)

)
. (2.11)

This class of metrics occurs often in the closed string moduli sector, where the function f
might depend explicitly on the inflaton φ1 while the dependence on the other heavy moduli
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φh is given in terms of their vacuum expectation values: f = f(φ1, 〈φh〉). The 2-field system
is described by: 

φ̈1 + 3Hφ̇1 − f f1φ̇
2
2 + V1 = 0

φ̈2 + 3Hφ̇2 + 2
f1

f
φ̇2φ̇1 +

V2

f2
= 0

(2.12)

and:

T a =
1

φ̇0

φ̇1

φ̇2

 Na =
1

φ̇0

−f φ̇2

f−1 φ̇1

 . (2.13)

The turning rate of the trajectory reduces to:

η⊥ =
1

2εH3

(
f−1φ̇1V2 − fφ̇2V1

)
, (2.14)

where we used φ̇2
0 = 2εH2. This implies:

m2
⊥, eff =

1

φ̇2
0

[
(fφ̇2)2

(
V11 + 3

V 2
1

φ̇2
0

)
− 2φ̇1(fφ̇2)

(
V12

f
− f1

f

V2

f
+ 3

V1V2

fφ̇2
0

)

+ φ̇2
1

(
V22

f2
+
f1

f
V1 + 3

V 2
2

φ̇2
0f

2

)]
− φ̇2

0

f11

f
. (2.15)

Defining the fraction of kinetic energy carried by φ1 and φ2 as α1 ≡ φ̇1
φ̇0

and α2 ≡ fφ̇2
φ̇0

respectively, the entropic mass-squared can be written as:

m2
⊥, eff = α2

2

(
V11 + 3

V 2
1

φ̇2
0

)
− 2α1α2

(
V12

f
− f1

f

V2

f
+ 3

V1V2

fφ̇2
0

)

+α2
1

(
V22

f2
+
f1

f
V1 + 3

V 2
2

φ̇2
0f

2

)
− φ̇2

0

f11

f
. (2.16)

If φ2 is ultra-light, i.e. V2 ' 0, (2.16) reduces to:

m2
⊥, eff = α2

2

(
V11 + 3

V 2
1

φ̇2
0

)
+ α2

1

f1

f
V1 − φ̇2

0

f11

f
. (2.17)

In what follows we shall be interested in models where the curvature is constant and negative:

R = −|R| = −2
f11

f
= constant , (2.18)

which implies:

f(φ1) = A+ e
λφ1 +A− e

−λφ1 with λ =

√
|R|
2
. (2.19)

In the two special cases with respectively A+ = 0 or A− = 0, the equations of motion become:{
φ̈1 + 3Hφ̇1 ∓ λA2

± e
±2λφ1 φ̇2

2 + V1 = 0

φ̈2 + 3Hφ̇2 ± λφ̇2φ̇1 = 0
(2.20)
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while the effective mass-squared for the isocurvature perturbation simplifies to:

m2
⊥, eff = −λ2φ̇2

0 ± λα2
1V1 + α2

2

(
3V 2

1

φ̇2
0

+ V11

)
. (2.21)

In the single-field approximation where φ1 drives inflation while the background value of φ2

is essentially frozen, i.e. α2 � α1 ' 1, eq. (2.21) can be approximated as:

m2
⊥, eff ' λ

(
±V1 − λφ̇2

0

)
. (2.22)

The requirement of having a positive mass-squared for the isocurvature perturbation then
reduces to |V1| > λφ̇2

0 with V1 > 0 for A− = 0 and V1 < 0 for A+ = 0. Using φ̇2
0 = 2εH2, and

the single-field slow-roll approximations H2 ' V/3 and 2ε ' (V1/V )2, we can easily see that
for ε� 1 and λ ∼ O(1):

λφ̇2
0

|V1|
' λ

3

√
2ε < 1 . (2.23)

Hence the positivity of the effective mass-squared of the isocurvature perturbation is deter-
mined just by the sign of V1 which is the term associated with the metric connection in
eq. (2.7). Interestingly, the Fibre Inflation models which we will discuss in section 4.1 feature
two ultra-light axions, one with A+ = 0 and the other with A− = 0. Hence one of them has
necessarily to be geometrically unstable.

Since the geometrical destabilisation phenomenon is by definition model dependent, we
devote the next two sections to the analysis of specific examples. We first look into a simple
quintessence-like potential before turning to the string inspired case of Fibre Inflation.

3 Stability of quintessence-like potentials

3.1 Equations of motion

Exponential potentials can provide the energy density for driving the observed late time
accelerated expansion of the universe. Furthermore their simplicity renders them interesting
for our purposes as it allows for exact analytic results. Let us therefore focus on the following
toy-model involving a quintessence-like field φ1 and a massless field φ2 with non-canonical
kinetic terms. The metric has the same form as (2.11) with f = f0 e

−k1φ1 while the scalar
potential reads:

V = V0 e
−k2φ1 . (3.1)

From (2.17) we see that the effective mass-squared of the isocurvature perturbations is:

m2
⊥, eff = k2 V

(
α2

2k2

(
1 +

3V

φ̇2
0

)
+ α2

1k1

)
− k2

1φ̇
2
0 . (3.2)

The equations of motion are:
φ̈1 + 3Hφ̇1 + k1

(
fφ̇2

)2
− k2V = 0

φ̈2 +
(

3H − 2k1φ̇1

)
φ̇2 = 0

(3.3)
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which, after trading cosmic time for the number of efoldings N = ln a, can also be rewritten
as (the prime superscript denotes derivatives with respect to N):{

φ′′1 + (3− ε)
(
φ′1 − k2

)
+ k1

(
fφ′2

)2
= 0

φ′′2 +
(
3− ε− 2k1φ

′
1

)
φ′2 = 0 .

(3.4)

The φ2 equation can be integrated exactly yielding an explicit expression for the velocity of
the ultra-light field:

φ′2(N) = C e−3N+2k1φ1(N)+
∫N
0 ε(Ñ) dÑ , (3.5)

where C = φ′2(0) e−2k1φ1(0). Since the kinetic terms of the massless field φ2 are non-canonical,
it is more appropriate to consider the quantity:(

fφ′2
)

(N) = f0C e
−3N+k1φ1(N)+

∫N
0 ε(Ñ) dÑ , (3.6)

which enters into the inflationary ε parameter:

ε =
1

2
φ′21 +

1

2

(
fφ′2

)2
. (3.7)

Let us now study the behaviour of the system using both an analytical and a computational
approach. In the attractor regime where φ′′1 ' (fφ′2)′ ' 0, the equations of motion take
the form: {

(3− ε)
(
φ′1 − k2

)
+ k1(fφ′2)2 = 0(

3− ε− k1φ
′
1

)
(fφ′2) = 0 .

(3.8)

The system admits two different solutions depending on whether φ2 is frozen or not.

3.2 Case I: non-zero turning rate

This case is characterised by a rolling massless field with fφ′2 6= 0, ε = 3k2
(2k1+k2) and:

φ′1 =
3− ε
k1(

fφ′2
)2

= φ′21

(
k1k2

3− ε
− 1

) . (3.9)

For k1 > 0, the conditions ε < 1, k1φ
′
1 > 0 and (fφ′2)2 ≥ 0 can be satisfied only for:

k2 ≥
√
k2

1 + 6− k1 . (3.10)

It is easy to realise that under this condition the effective mass-squared of the isocurvature
mode remains always non-negative:

m2
⊥, eff

H2
=

6k1(k2
2 + 2k1k2 − 6)

2k1 + k2
≥ 0 . (3.11)

The absence of geometrical destabilisation is due to the fact that the trajectory deviates from
a simple geodesic since:

η2
⊥ =

[
(3− ε)

2ε

V1

V
(fφ′2)

]2

=
k1

2k1 + k2

m2
⊥, eff

H2
6= 0 . (3.12)

Notice that in the limiting case where k2 = −k1 +
√
k2

1 + 6, the system evolves towards the
attractor solution where fφ′2 = 0, α2 = 0, α1 = 1, m2

⊥, eff = 0 and η⊥ = 0. However, we
checked that the convergence to this point is extremely slow and the turning rate of the
trajectory remains non-negligible for a large number of e-foldings.
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f ϕ2
′ ≠ 0

f ϕ2
′ = 0

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

k1

k
2

Figure 1. Velocity of the massless isocurvature mode in the (k1, k2) parameter space.

3.3 Case II: geodesic motion

In this case fφ′2 = 0, ε = k2
2/2 and the asymptotic state reached by the system is:{

φ′1 = k2

(fφ′2)2 = 0
(3.13)

under the requirement:

k2 ≤
√
k2

1 + 6− k1 . (3.14)

Figure 1 shows the behaviour of the velocity of the massless field φ2 for different values
of the parameters k1 and k2. In this case the system evolves along a geodesic with η⊥ = 0
and the sign of the effective mass-squared of the entropic perturbation depends on the sign
of k2 since:

m2
⊥, eff

H2
=
k1k2

2

(
6− 2k1k2 − k2

2

)︸ ︷︷ ︸
≥0

. (3.15)

Hence m2
⊥, eff ≥ 0 for k2 > 0, while m2

⊥, eff ≤ 0 for k2 < 0. Notice that in this case
geometrical destabilisation can be avoided for k2 > 0 due to the positive contribution com-
ing from the metric connection. These results are completely independent on the initial
conditions.

3.4 Numerical analysis

In order to strengthen our analytical results, we also performed a numerical analysis using
several parameter sets. We considered different values of the initial kinetic energy εi(0) =
{0, 0.5, 1, 2, 3},3 and for each of these values we analysed 20 different types of initial conditions
for the field velocities:

φ′1(0)
∣∣
(ik)

=
√

2εi(0) cos

(
kπ

10

)
(
fφ′2

)
(0)
∣∣
(ik)

=
√

2εi(0) sin

(
kπ

10

) k = 0, . . . , 19 . (3.16)

3These values of ε describe initial conditions ranging from slow-roll (ε� 1) to kinetic domination (ε = 3).
For kinetic domination we actually chose ε = 2.99 in order to avoid a singularity in the equations of motion
stemming from the use of N as the time variable.
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ϵ=2.99

ϵ=2

ϵ=1

ϵ=0.5

ϵ=0

Figure 2. Evolution of α1 ≡ φ̇1/φ̇0 and α2 ≡ fφ̇2/φ̇0 (with α2
1 + α2

2 = 1) for different initial values
of ε = φ̇2

0/(2H
2). We set k2 = β(

√
k2

1 + 6 − k1) with β = 0.8 (left), β = 1 (centre), β = 1.2 (right)
and k1 = 1.

ϵ=0

ϵ=0.5

ϵ=1

ϵ=2

ϵ=2.99

Figure 3. Evolution of the physical fields {φ1(N),
∫ N

0
f(φ1(Ñ))φ′2(Ñ)dÑ} for different values of the

initial kinetic energy (setting k = 1 in the initial conditions (3.16) for the field velocities) and β = 0.8
(left), β = 1 (centre), β = 1.2 (right).

The dynamics of the system is independent on both the initial field values and the
normalisation of the scalar potential and the kinetic function. Hence we set, without loss
of generality, φ1(0) = φ2(0) = 0 and V0 = f0 = 1. We studied the 3 interesting cases with
k2 = β(

√
k2

1 + 6 − k1) and β = 0.8, 1, 1.2 for k1 = 1. Our numerical results are shown in
figures 2–4 and are in perfect agreement with our analytical analysis. In figure 2 we can
clearly see that for β ≤ 1 the system converges to a single-field behaviour with η⊥ = 0, while
for β > 1 the turning rate of the trajectory is non-zero and the asymptotic behaviour of the
system depends on the initial condition for the velocity of the massless field φ2.

Notice that the trajectories which move away from the unit circle α2
1+α2

2 = 1 correspond
to cases with special initial conditions, φ′1(0) with the same sign as V1 and φ′2(0) = 0, where
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Case II (β = 0.8)
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Figure 4. Evolution of m2
⊥, eff/H

2 (left) and η⊥ (right) for ε(0) = 2 and different initial field
velocities identified by ωk ≡ kπ/10 with κ = {0, 1, 4, 14, 18}. The 3 different cases correspond to
β = {0.8, 1, 1.2}.

φ1 initially climbs up the potential and then it slows down until it stops and changes its
direction. At this point φ′1 = φ′2 = 0, and so the coordinates α1 and α2 are ill-defined. As
soon as φ1 changes its direction, φ′1 6= 0, and so the system jumps to the opposite point in
the unit circle.

Figure 4 presents the evolution of m2
⊥, eff and η⊥, showing that the numerical solutions

correctly approach our analytic results for 3 different cases. Notice that in the limiting case
with β = 1 all curves tend asymptotically to m2

⊥, eff = η⊥ = 0, while in case I with β = 1.2,
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only the blue curve corresponding to ω = 0 features a negative mass-squared due to the
initial condition (fφ′2) (0) = 0. This is the only case which could be plagued by a geometric
destabilisation problem but it corresponds to a very non-generic choice of initial conditions
as argued in [16]. As soon as (fφ′2) (0) or ω slightly deviates from zero, figure 4 clearly shows
that the mass-squared becomes positive due to a non-vanishing η⊥.

4 Geometrical destabilisation in Fibre Inflation

4.1 Fibre Inflation in a nutshell

The simplest version of Fibre Inflation involves 3 type IIB Kähler moduli Ti = τi + iθi,
i = 1, 2, 3 where the τ ’s control volumes of 4-cycles while the θ’s are periodic axion-like fields
which enjoy a perturbative shift symmetry. The Kähler potential reads:

K = −2 ln

(
V +

ξ

2g
3/2
s

)
+Kgs , (4.1)

where V = α
(√

τ1τ2 − λ3τ
3/2
3

)
is the Calabi-Yau volume, the O(1) constant ξ controls the

leading order α′ contribution [43], while Kgs denotes 1-loop open string corrections [25–27].
The superpotential is instead given by a tree-level constant W0 and non-perturbative effects
from gaugino condensation on D7-branes or ED3-instantons [44]:

W = W0 +A3 e
−a3T3 . (4.2)

If gs loops are neglected, the Kähler potential (4.1) and the superpotential (4.2) generate a
scalar potential of the LVS form [45, 46]:

VLVS =
8a2

3A
2
3
√
τ3

3αλ3V
e−2a3τ3 +

4a3A3τ3W0 cos(a3θ3)

V2
e−a3τ3 +

3ξW 2
0

4g
3/2
s V3

, (4.3)

which leads to the existence of AdS vacua at exponentially large volume (in string units)
where V, τ3 and θ3 are stabilised at:

a3〈θ3〉 = π , a3〈τ3〉 =

(
ξ

2αλ3

)2/3 1

gs
, 〈V〉 =

3W0αλ3

4a3A3

√
〈τ3〉 ea3〈τ3〉 . (4.4)

It is easy to see that the scalar potential (4.3) features three flat directions corresponding
to τ1 and the two axions θ1 and θ2. The inclusion of subleading gs or α′ corrections to the
Kähler potential can lift τ1 but not θ1 and θ2 which are protected by a perturbative shift
symmetry. In the presence of sources of positive vacuum energy which can allow for dS vacua
(see for example [47–50]), the potential for τ1 can be flat enough to drive inflation. τ1 plays
the rôle of the inflaton since, when it is shifted away from its minimum, it is naturally much
lighter then the Hubble scale during inflation H whose value is set by the mass of τ1 close to
the minimum, H2 'W 2

0 /V10/3 (see [19] for more details).

On the other hand, the other five spectator fields are isocurvature modes which are
expected to stay around their minima during inflation. Three of them, V, τ3 and θ3, are
heavy fields with a mass larger than H, while θ1 and θ2 are ultra-light fields since they can
develop a non-zero mass only via tiny non-perturbative corrections to the superpotential (4.2).
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In order to study the possibility of having geometrical destabilisation of any of these entropic
directions, we need to focus on the field space metric which looks like:

Lkin =
∂2K

∂Ti∂T̄j
∂µTi∂

µT̄j =
γij
2

(∂µτi∂
µτj + ∂µθi∂

µθj) . (4.5)

The field space is curved, and so the kinetic terms can be diagonalised exactly only locally.
However, in LVS models, we can use the exponentially large overall volume V as an excellent
expansion parameter to obtain leading order results. Thus if we transform the real parts of
the Kähler moduli as [51]:

τ1 = e
2√
3
φ1+

√
2
3
φ2+ 1

2
φ23 , V = e

√
3
2
φ2 , τ3 =

(
3

4αλ3

)2/3

e

√
2
3
φ2φ

4/3
3 , (4.6)

the kinetic Lagrangian (4.5) for the real parts simplifies to:

L(φ)
kin =

1

2
∂µφ1∂

µφ1

(
1 +

3

4
φ2

3

)
+

1

2
∂µφ2∂

µφ2 (4.7)

+
1

2
∂µφ3∂

µφ3

(
1− 3

4
φ2

3 +
9

16
φ4

3

)
+

3
√

3

8
φ3

3 ∂µφ1∂
µφ3 .

Notice that this expression is diagonal at leading order since (4.6) implies φ2
3 ∼ O(V−1)� 1,

while subleading corrections induce a kinetic coupling between the heavy field φ3 and the
canonically normalised inflaton φ1. However we shall show below that this field is heavy
enough to prevent any geometrical destabilisation. Moreover, we point out that in the kinetic
Lagrangian (4.5) there is no mixing between real and imaginary parts of the Kähler moduli.
The kinetic terms for the axions read:

L(θ)
kin =

1

4τ2
1

∂µθ1∂
µθ1 +

α2λ3τ
3/2
3

2V2√τ1
∂µθ1∂

µθ2 +
α2τ1

2V2
∂µθ2∂

µθ2

−
3αλ3

√
τ3

4τ1V
∂µθ1∂

µθ3 −
3α2λ3

√
τ1
√
τ3

2V2
∂µθ2∂

µθ3 +
3αλ3

8V√τ3
∂µθ3∂

µθ3 , (4.8)

where τ1, V and τ3 are given by (4.6). The kinetic Lagrangian (4.8) clearly shows that
the two ultra-light axions θ1 and θ2 are kinetically coupled to the canonically normalised
inflaton φ1. It is therefore crucial to analyse the contribution to the isocurvature power
spectrum of each of these two entropic modes. We shall find below that the effective mass-
squared of one of these two ultra-light axions is negative during inflation while the other
always remains positive. This result justifies the fact that we will study the dynamics of the
system by focusing just on the 2-field subspace spanned by the inflaton φ1 and the unstable
isocurvature direction, as summarised in section 2.

We shall find that which of the two axions is unstable depends on the particular realisa-
tion of Fibre Inflation. Thus we conclude this section by providing a brief description of two
ways to generate the inflationary potential which are qualitatively similar but quantitatively
slightly different:

• Right-left inflation
Kaluza-Klein and winding 1-loop open string corrections to K [25–27] generate a po-
tential for the inflaton shifted from its minimum, i.e. φ1 = 〈φ1〉+ φ̂1, of the form [19]:

V = V0

(
3− 4 e

− φ̂1√
3 + e

− 4φ̂1√
3

)
, (4.9)
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θ3 φ2 φ3

γij

1 + 3
4φ

2
3 0

0 3αλ3
4V√τ3

 (
1 + 3

4φ
2
3 0

0 1

) 1 + 3
4φ

2
3

3
√

3
8 φ3

3

3
√

3
8 φ3

3 1− 3
4φ

2
3 + 9

16φ
4
3


R 0 0 −3/2

Table 1. Field space metric and Ricci scalar for the 2-field subspaces spanned by the inflaton φ1 and
each of the three heavy fields.

where we included an uplifting term to achieve a dS vacuum after the end of inflation
and we neglected additional subleading loop effects which would lift the flatness of the
inflationary plateau at very large field values. Notice that this is a case of right-left
inflation where φ̂1 evolves from positive and large field values to smaller ones towards
the end of inflation. Hence Vφ̂1 > 0 during inflation.

• Left-right inflation
The inflationary potential can receive non-negligible contributions not just from string
loops but also from higher derivative α′ effects which at the level of the 4-dimensional
effective field theory appear as F 4 terms [28, 29]. When these effects are combined with
Kaluza-Klein string loops, the inflationary potential looks like [30]:

V = Ṽ0

(
1− e

1√
3
φ̂1

)2

, (4.10)

where again we included an uplifting term and we ignored subdominant contributions
which would spoil the inflationary plateau for φ̂1 negative and very large in absolute
value. Contrary to the previous case, this is therefore a realisation of left-right inflation
where Vφ̂1 < 0 during inflation.

4.2 Stability of heavy fields

The leading order potential (4.3) depends just on the three fields φ2, φ3 and θ3, which
therefore turn out to be heavier that the inflaton φ1. We shall now consider the 2-field
subspaces spanned by φ1 and each of these heavy fields separately, and show that all of them
are heavy enough to ensure the absence of any geometrical destabilisation. The field space
metric and the Ricci scalar of these 2-dimensional subspaces are listed in table 1.

The simpler cases to analyse involve φ2 and θ3 since the metric is diagonal at this level
of approximation (perturbative and non-perturbative corrections to the Kähler potential will
definitely induce subdominant non-diagonal entries), and so the scalar curvature is vanishing.
Moreover, we expect the heavy fields to sit around their minima, i.e. Vφ2 = Vθ3 ' 0, and
inflation to be driven by φ1, i.e. αφ1 ' 1 while αφ2 ' αθ3 ' 0. Therefore the trajectory is
geodesic in both cases (denoting the 2 heavy fields collectively as φh):

η⊥ '
1

Hφ̇0

(
αφ1

Vφh
f
− αφhVφ1

)
' 0 . (4.11)

The effective mass-squared (2.6) therefore reduces simply to:

m2
θ3, eff '

Vθ3θ3
f2
' W 2

0

V2
� m2

φ2, eff ' Vφ2φ2 '
W 2

0

V3
� H2 ' W 2

0

V10/3
. (4.12)
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θ1 θ2

γij

1 0

0 A2
− e
− 4√

3
φ1

 1 0

0 A2
+ e

2√
3
φ1


R −8/3 −2/3

Table 2. Field space metric and Ricci scalar for the 2-field subspaces spanned by the inflaton φ1 and
each of the two ultra-light axions.

Similar considerations apply to the subspace spanned by φ1 and φ3 since the field space is
flat at leading order. However subleading corrections proportional to φ2

3 ∼ O(V−1) � 1,
induce non-vanishing Christoffel symbols and Ricci scalar:

Γφ1φ3φ3 =
9
√

3

8
φ2

3

(
1− 1

2
φ2

3 +
3

16
φ4

3

)
∼ O

(
1

V

)
, R = −3

2
. (4.13)

The effective mass-squared of the heavy field φ3 for Vφ3 ' αφ3 ' 0 and αφ1 ' 1, which imply
η⊥ ' 0, reduces to:

m2
φ3, eff ' Vφ3φ3 − Γφ1φ3φ3Vφ1 −

3

2
εH2 . (4.14)

This quantity is clearly positive regardless of the shape of the inflationary potential since:

Vφ3φ3 '
W 2

0

V2
�


Γφ1φ3φ3Vφ1 '

W 2
0

√
ε

V13/3

3

2
εH2 ' W 2

0 ε

V10/3

. (4.15)

We have therefore shown that, as expected, all heavy fields remain stable during Fibre In-
flation.

4.3 Potential destabilisation of ultra-light axions

In this section we analyse the behaviour of the two ultra-light axionic modes θ1 and θ2. The
metric of the 2-dimensional field spaces spanned by the inflaton φ1 and either θ1 or θ2 takes
the same form as (2.11) if we neglect subdominant φ3-dependent corrections. Notice that
the kinetic function f(φ1) becomes φ1-dependent after (4.6) is used to express τ1 in terms
of the canonically normalised fields φ2 and φ3 which are fixed at their minima. Given that
f(φ1) is a particular case of the more general form (2.19), the scalar curvature is constant
and negative. These geometrical quantities are summarised in table 2 where the quantities
A+ and A− depend on the background values of the heavy fields.

In the case where θ1 and θ2 are exactly massless, we find that one of them is always
unstable. In order to solve this potential issue, we investigate the possibility of stopping
the exponential growth of the corresponding isocurvature perturbations by turning on a tiny
but non-zero mass for this entropic mode. Let us therefore study these two different cases
separately.

4.3.1 Massless case

The analysis of the possible geometrical destabilisation of θ1 and θ2 can be borrowed from
section 2.2 where we already discussed the case where the spectator fields are massless and
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φ1 drives inflation in a single-field approximation. Using the result (2.22) under the con-
dition (2.23) we therefore conclude that one of the two axions is always stable while the
perturbations of the other experience a geometrical instability. In particular, it is the sign
of Vφ̂1 that determines which of the two axions is unstable. For Vφ̂1 > 0, as in the case of

right-left inflation, θ1 is unstable while θ2 is stable. On the contrary, for Vφ̂1 < 0, as in the
case of left-right inflation, θ1 is stable while θ2 becomes unstable.

These results have been obtained analytically in the single-field approximation where
αφ1 ' 1 and αθi ' 0 with i = 1, 2. However they hold more generically as we will show now
via a more general semi-analytic study and a detailed numerical analysis.

As pointed out above, the metric has the same form as (2.11) with f = f0 e
−k1φ̂1 , where

f0 = A− e
−k1〈φ1〉 and k1 = 2/

√
3 for θ1, while f0 = A+ e

−k1〈φ1〉 and k1 = −1/
√

3 for θ2. The
equations of motion which govern the evolution of the system are very similar to the ones
studied in section 3.1 for the case of a quintessence-like potential. We shall therefore use
the same results, translating them for the case of Fibre Inflation. In particular, the second
equation in (3.4) does not depend on the inflationary potential, and so it applies exactly also
to our case after identifying φ2 with either θ1 or θ2. Its solution is given by (3.6) which in
our case becomes: (

fθ′i
)

(N) =
(
fθ′i
)

(0) e−λ(N) , ∀i = 1, 2 , (4.16)

where for ε� 1 the exponent λ(N) can be approximated as:

λ(N) ' 3N − k1

(
φ̂1(N)− φ̂1(0)

)
. (4.17)

The functional dependence of the inflaton φ1 on the number of e-foldings N depends on the
particular form of the inflationary potential. Let us therefore consider separately the case of
right-left [19] and left-right inflation [30].

• Right-left inflation
For right-left inflation the scalar potential is given by (4.9) which in the inflationary
plateau region can be very well approximated as:

V ' V0

(
3− 4 e−k2φ̂1

)
, with k2 =

1√
3
. (4.18)

The number of e-foldings N in the single-field slow-roll approximation is given by:

N(φ̂1) =

∫ φ̂1(0)

φ̂1

V

Vφ̂1
dφ̂1 =

9

4

(
ek2φ̂1(0) − ek2φ̂1

)
−
√

3
(
φ̂1(0)− φ̂1

)
. (4.19)

This expression cannot be inverted exactly but we can still express the inflaton at
leading order as [24]:

φ̂1(N)− φ̂1(0) ' 1

k2
ln

(
1− 4N

9
e−k2φ̂1(0)

)
, (4.20)

where φ̂1(0) corresponds to the value of the inflaton at CMB horizon exit. It is easy
to see that 50–60 e-foldings of inflation correspond to φ̂1(0) ∼ O(6). Substituting this
result into the solution for the velocity of the ultra-light axions (4.16), we find that the
exponent (4.17) scales with the number of e-foldings as:

λ(N) = 3N − k1

k2
ln

(
1− 4N

9
e−k2φ̂1(0)

)
. (4.21)
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This quantity is always positive for both k1 = 2/
√

3 and k1 = −1/
√

3, implying that,
regardless of the initial conditions, the velocity of the ultra-light axions goes very quickly
to zero, and so the system relaxes rapidly to the simple case studied above with η⊥ = 0,
αφ1 ' 1 and αθi ' 0 with i = 1, 2.

• Left-right inflation
In the case of left-right inflation, the number of e-foldings derived from the inflationary
potential (4.10) in the slow-roll approximation is given by:

N(φ̂1) =
1

2k2

∫ φ̂1

φ̂1(0)

(
e−k2φ̂1 − 1

)
dφ̂1 =

1

2k2
2

(
e−k2φ̂1(0) − e−k2φ̂1(0)

)
− 1

k2
(φ̂1 − φ̂1(0)) .

(4.22)
Again, even if it is not possible to invert this expression exactly, we can still obtain the
following leading order approximation for the inflaton field:

φ̂1(N)− φ̂1(0) = − 1

k2
ln

(
1− 2N

3
ek2φ̂1(0)

)
, (4.23)

where φ̂1(0) < 0 since inflation proceeds from left to right starting from inflaton values
which are negative and large in absolute value. If the result (4.23) is substituted into
the expression (4.17) for the exponent of the solution (4.16) for the velocity of the
isocurvature modes, we find:

λ(N) = 3N +
k1

k2
ln

(
1− 2N

3
ek2φ̂1(0)

)
. (4.24)

It is easy to realise that this quantity is again always positive for both k1 = 2/
√

3 and
k1 = −1/

√
3. Hence also in this case, regardless of the initial conditions, the system

approaches very rapidly a geodesic trajectory with η⊥ = 0.

We have checked these conclusions by performing a full numerical solution of the equa-
tions of motion governing the evolution of the system for both right-left and left-right in-
flation. We present now the numerical results just for right-left inflation since they are
qualitatively very similar in the case of left-right inflation. Without loss of generality we con-
sidered f0 = V0 = 1, φ̂1(0) = 5.8 and θi(0) = 0 for i = 1, 2. Figure 5 shows clearly that for
different values of the initial kinetic energy and for several exponents of the kinetic function,
k1 = {−5,−2,−1, 0, 1, 2, 5}, the system always evolves towards a single-field behaviour.

Figure 6 presents instead the trajectory of the physical fields φ̂1(N) and
∫ N

0 (fθ′i)(Ñ)dÑ
for different values of k1. Finally figure 7 shows that any value of k1 leads to a geodesic
motion with η⊥ = 0 but the effective mass-squared of the isocurvature perturbations can
remain positive only for k1 < 0, implying that θ1 (with k1 = 2/

√
3) is unstable, while θ2

(with k1 = −1/
√

3) does not experience any geometrical destabilisation. Notice that the
situation is reversed in the case of left-right inflation.

4.3.2 Massive case

In section 4.3.1 we have shown that in Fibre Inflation models, when the axions are considered
as exactly massless, one of them always experiences geometrical destabilisation. However in
a full quantum model, these entropic modes are expected to receive a tiny but non-zero mass
from non-perturbative corrections to the superpotential (4.2) which break their perturbative
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k1 = -5

k1 = -2

k1 = -1

k1 = 0

k1 = 1

k1 = -2

k1 = 5

Figure 5. Evolution of the system for several values of k1 and different initial kinetic energies,
ε(0) = 1 (left), ε(0) = 2 (centre), ε(0) = 2.99 (right).
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Approx
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∫ (fθ')dN

Figure 6. Trajectories of the physical fields φ̂1(N) and
∫ N

0
f(φ1(Ñ))θ′i(Ñ)dÑ for different values

of k1 and ε(0) = 1, φ̂′1(0) =
√

2 cos (ω), (fθ′i) (0) =
√

2 sin (ω) with ω = 7π/5. The dashed line
represents the single-field analytical approximation with zero initial velocity.
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Figure 7. η⊥ (left) and m2
⊥, eff/H

2 (right) as a function of the number of e-foldings for different

values of k1, setting again ε(0) = 1, φ̂′1(0) =
√

2 cos (ω) and (fθ′i) (0) =
√

2 sin (ω) with ω = 7π/5.

shift symmetry. Let us investigate now if these non-perturbative effects can be large enough
to avoid any geometrical destabilisation problem and, at the same time, small enough to
prevent any modification of the inflationary dynamics.
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As we have seen in the analysis of the massless case, the single-field approximation with
αφ1 ' 1 and αθi ' 0 with i = 1, 2 provides a very good description of the more general
dynamics of the system. Hence the equation to analyse is (2.16) which after identifying φ2

with θi and setting αφ1 ' 1 and αθi ' 0 for i = 1, 2, takes the form:

m2
θi, eff =

(
Vθiθi
f2

+
fφ̂1
f
Vφ̂1 + 3

V 2
θi

φ̇2
0f

2

)
− φ̇2

0

fφ̂1φ̂1
f

. (4.25)

If we write the kinetic function as in (2.19) and we recall the slow-roll condition (2.23), the
effective mass-squared (4.25) for the dangerous entropic modes simplifies to:

m2
θi, eff ' −λ

∣∣∣Vφ̂1∣∣∣
[

1− 1

λf2
√

2ε

(
Vθiθi
V

+
9

2ε

V 2
θi

V 2

)]
, (4.26)

where we have used the slow-roll approximations φ̇2
0 = 2εH2 ' 2εV/3 and

√
2ε '

∣∣∣Vφ̂1∣∣∣ /V .

The potential for the entropic directions is generated by Ti-dependent non-perturbative
corrections to the superpotential (4.2):

W = W0 +A3 e
−a3T3 +Ai e

−aiTi , i = 1, 2 , (4.27)

which induce a non-zero potential for the ultra-light axions θi of the form:

V (θi) = Λi cos(aiθi) , with Λi =
4aiAiW0τi
V2

e−aiτi , i = 1, 2 . (4.28)

Hence we obtain:

V 2
θi

= a2
i Λ2

i sin2(aiθi) and Vθiθi = −a2
i Λi cos(aiθi) . (4.29)

The effective mass-squared of the isocurvature perturbations (4.26) can therefore be rewrit-
ten as:

m2
θi, eff ' −λ

∣∣∣Vφ̂1∣∣∣
[
1− a2

i

λf2
√

2ε

(
9δ2

2ε
sin2(aiθi)− δ cos(aiθi)

)]
, (4.30)

where δ is the ratio between the size of the axion potential and the inflationary potential:

δ ≡ Λi

V (φ̂1)
. (4.31)

Let us point out that, once τi with i = 1, 2 is written in terms of canonically normalised fields
using (4.6), the axion potential (4.28) clearly depends on the inflaton φ̂1 since:

Λi = Λ
(0)
i e−gi(φ̂1) , with Λ

(0)
i =

4aiAiW0〈τi〉
V2

∀i = 1, 2 , (4.32)

where:
g1(φ̂1) = −2k2φ̂1 + a1〈τ1〉 e2k2φ̂1 , g2(φ̂1) = k2φ̂1 + a2〈τ2〉 e−k2φ̂1 . (4.33)

Notice that for the case of right-left inflation, the dangerous axionic mode is θ1 and during
inflation φ̂1 evolves from positive large values to smaller one. On the other hand, in left-right
inflation, we need to focus on θ2 and at the beginning of inflation φ̂1 is negative and large
in absolute value. Thus in both cases, the axion potential experiences a double exponential

– 18 –



J
C
A
P
0
5
(
2
0
1
9
)
0
4
6

10 20 30 40
N

-0.4

-0.3

-0.2

-0.1

0.1

m
2
eff

H
2

Figure 8. The plot on the left hand side shows the evolution of the 2-field system of right-left
inflation for different initial velocities, φ̂1(0) = 5.8, a1θ1(0) = 1, initial kinetic energy ε(0) = 0.1,
A1 = W0 = 1, a1 = 2π, 〈τ1〉 = 5.43, V0 = 3.5 × 10−11 and V = 1.8 × 103. The plot on the right

hand side exhibits instead the behaviour of the effective mass-squared of θ1 for φ̂′1(0) =
√

2 cos (ω)
and (fθ′1) (0) =

√
2 sin (ω) with ω = 7π/5.

suppression, being larger close to the end of inflation and extremely suppressed in the region
around CMB horizon exit.

The fact that the axion potential is φ̂1-dependent implies that we cannot make the
mass of θi as large as we would like by tuning the underlying parameters Ai and ai since
at a certain point the potential (4.28) will become of the same order of magnitude of the
inflationary potential. This will induce O(1) corrections to the inflationary dynamics which
would destroy Fibre Inflation as we know it. Hence for consistency we need to impose δ � 1,
which implies that the two terms proportional to δ in (4.30) are subdominant.

Let us stress that, even if δ � 1, one of these two terms might actually be the dominant
contribution since f � 1 and ε � 1, but this can occur only locally around a particular
region in field space. In fact, as can be seen from (4.33), Λi has a double exponential
suppression, and so small deviations of the inflaton φ̂1 would immediately suppress these
positive contributions to m2

θi, eff . We conclude that, even in the presence of non-vanishing
scalar potential contributions, the isocurvature fluctuations associated to one of the two ultra-
light axions in Fibre Inflation experience an exponential growth, regardless of the particular
microscopic realisation of the inflationary model.

We checked the validity of these analytic results by performing a full numerical solu-
tion of the evolution of the system in the presence of non-perturbative corrections of the
form (4.27). The results for right-left inflation are shown in figure 8–9. In particular, figure 8
shows that the system quickly converges towards a geodesic trajectory and that the effective
mass-squared of θ1 is initially positive due to an appropriate choice of initial conditions but
then rapidly settles down to negative values. On the other hand, in figure 9 we see that natu-
ral choices of the underlying parameters can keep the axion potential always subleading with
respect to the inflationary potential. In this way, the inflationary dynamics is guaranteed
to reproduce the one of Fibre Inflation but one of the axionic modes experiences a potential
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Figure 9. Comparison between the standard single-field and the 2-field version of right-left inflation
for different values of the parameters A1 and a1. Notice that the axionic potential is subleading with
respect to the inflationary potential until the end of inflation only for A1 = 1 and a1 = 2π.

geometrical destabilisation. We finally point out that we obtained numerical results also for
left-right inflation and they turn out to be qualitatively very similar.

5 Conclusions

The existence of large numbers of massless scalars, the moduli, is a hallmark of string com-
pactification models. For the phenomenological viability of such models it is imperative to
generate a mass for the moduli fields, a research area that has seen significant progress over
the last 15 years and that often involves the addition of subleading corrections, both per-
turbative and non-perturbative, to the effective action. Despite the sophistication of current
constructions, one can sometimes end up with some remaining massless fields. These are the
focus of this work, in particular their rôle during inflation.

It has been noted in [16] that in negatively curved field spaces, massless scalar fields
induce an instability at the level of the isocurvature perturbations. This instability arises
precisely due to the field space curvature contribution to the effective mass-squared of these
perturbations. Whenever the mass-squared becomes negative, one is faced with an uncon-
trolled growth of the isocurvature 2-point function.

After gaining some intuition from analysing the simple case of exponential quintessence-
like potentials, we studied this instability in the context of Fibre Inflation [19, 20], a type IIB
string inflation model where the inflationary potential is generated by perturbative corrections
to the Kähler potential. In this setup there are two axionic fields that remain massless after
moduli stabilisation, θ1 and θ2, both of which are kinetically coupled to the inflaton. We
showed that one of these fields always induces a geometrical instability. For right-left Fibre
Inflation models [19], it is the fibre axion θ1 that leads to unstable isocurvature perturbations,
while in left-right realisations of Fibre Inflation [30], the instability is triggered by the base
axion θ2. In both cases we have tried to avoid the instability by giving mass to the axions. We
found that although a potential for these fields can be generated by non-perturbative effects,
it is not possible to avoid the instability without significantly modifying the dynamics of
Fibre Inflation. Furthermore we have numerically probed the system and have shown that
this behaviour is independent of the choice of initial conditions.
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At this point, two independent lines of future research arise. On the one hand, one could
avoid any potential issue with geometrical destabilisation by making the axions heavy enough.
However this would lead to a completely different inflationary model with a truly multi-field
dynamics that should be carefully analysed. On the other hand, if one wants to preserve
the typical leading order Fibre Inflation dynamics, the exponential growth of the dangerous
axionic entropic mode cannot be ignored. Thus in order to determine the ultimate fate of
the system one should resort to more sophisticated methods beyond perturbation theory like
numerical relativity or the stochastic inflation formalism. Let us simply mention here that,
once the isocurvature instability sets in, it is highly possible that the backreaction of the
perturbations on the background becomes important and stops the geometrical instability
by inducing a turn in the trajectory.

Let us finally stress that in the analysis of Fibre Inflation with more than one ultra-
light entropic direction, in order to make use of the results in the literature concerning the
effective mass-squared of the isocurvature modes, we have reduced the field space to two
dimensions by projecting out one of the ultra-light directions at a time. Given that only one
of the entropic directions turns out to be unstable, this seems reasonable though it would
be interesting to perform the full analysis without performing such approximation. We leave
this study for future work.
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[25] M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds,
JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].

[26] M. Berg, M. Haack and E. Pajer, Jumping Through Loops: On Soft Terms from Large Volume
Compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [INSPIRE].

[27] M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of String Loop Corrections in Type IIB
Calabi-Yau Flux Compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].

[28] D. Ciupke, J. Louis and A. Westphal, Higher-Derivative Supergravity and Moduli Stabilization,
JHEP 10 (2015) 094 [arXiv:1505.03092] [INSPIRE].

[29] T.W. Grimm, K. Mayer and M. Weissenbacher, Higher derivatives in Type II and M-theory on
Calabi-Yau threefolds, JHEP 02 (2018) 127 [arXiv:1702.08404] [INSPIRE].

[30] B.J. Broy, D. Ciupke, F.G. Pedro and A. Westphal, Starobinsky-Type Inflation from
α′-Corrections, JCAP 01 (2016) 001 [arXiv:1509.00024] [INSPIRE].

[31] M. Cicoli, D. Ciupke, S. de Alwis and F. Muia, α′ Inflation: moduli stabilisation and observable
tensors from higher derivatives, JHEP 09 (2016) 026 [arXiv:1607.01395] [INSPIRE].

[32] A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys.
Lett. B 91 (1980) 99 [Adv. Ser. Astrophys. Cosmol. 3 (1987) 130] [INSPIRE].

– 22 –

https://doi.org/10.1103/PhysRevD.95.043541
https://arxiv.org/abs/1610.08297
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.08297
https://doi.org/10.1103/PhysRevD.70.103510
https://arxiv.org/abs/hep-ph/0402059
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0402059
https://doi.org/10.1103/PhysRevD.73.023525
https://arxiv.org/abs/hep-ph/0511310
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0511310
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://arxiv.org/abs/1502.01589
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01589
https://doi.org/10.1103/PhysRevLett.117.141301
https://doi.org/10.1103/PhysRevLett.117.141301
https://arxiv.org/abs/1510.01281
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.01281
https://doi.org/10.1088/1475-7516/2018/12/037
https://arxiv.org/abs/1807.03818
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.03818
https://doi.org/10.1088/1475-7516/2017/02/013
https://arxiv.org/abs/1607.08609
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.08609
https://arxiv.org/abs/1901.03657
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.03657
https://doi.org/10.1088/1475-7516/2009/03/013
https://arxiv.org/abs/0808.0691
https://inspirehep.net/search?p=find+EPRINT+arXiv:0808.0691
https://doi.org/10.1088/1475-7516/2016/05/032
https://arxiv.org/abs/1603.06789
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.06789
https://doi.org/10.1088/1475-7516/2014/11/045
https://arxiv.org/abs/1404.6236
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.6236
https://doi.org/10.1007/JHEP11(2016)182
https://doi.org/10.1007/JHEP11(2016)182
https://arxiv.org/abs/1611.04612
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.04612
https://doi.org/10.1007/JHEP11(2017)207
https://arxiv.org/abs/1709.01518
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.01518
https://doi.org/10.1088/1475-7516/2019/02/048
https://doi.org/10.1088/1475-7516/2019/02/048
https://arxiv.org/abs/1809.01159
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.01159
https://doi.org/10.1088/1126-6708/2005/11/030
https://arxiv.org/abs/hep-th/0508043
https://inspirehep.net/search?p=find+EPRINT+hep-th/0508043
https://doi.org/10.1088/1126-6708/2007/09/031
https://arxiv.org/abs/0704.0737
https://inspirehep.net/search?p=find+EPRINT+arXiv:0704.0737
https://doi.org/10.1088/1126-6708/2008/01/052
https://arxiv.org/abs/0708.1873
https://inspirehep.net/search?p=find+EPRINT+arXiv:0708.1873
https://doi.org/10.1007/JHEP10(2015)094
https://arxiv.org/abs/1505.03092
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.03092
https://doi.org/10.1007/JHEP02(2018)127
https://arxiv.org/abs/1702.08404
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.08404
https://doi.org/10.1088/1475-7516/2016/01/001
https://arxiv.org/abs/1509.00024
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.00024
https://doi.org/10.1007/JHEP09(2016)026
https://arxiv.org/abs/1607.01395
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.01395
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(80)90670-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B91,99%22


J
C
A
P
0
5
(
2
0
1
9
)
0
4
6

[33] R. Kallosh and A. Linde, Non-minimal Inflationary Attractors, JCAP 10 (2013) 033
[arXiv:1307.7938] [INSPIRE].

[34] R. Kallosh, A. Linde, D. Roest, A. Westphal and Y. Yamada, Fibre Inflation and α-attractors,
JHEP 02 (2018) 117 [arXiv:1707.05830] [INSPIRE].

[35] M. Cicoli, D. Ciupke, C. Mayrhofer and P. Shukla, A Geometrical Upper Bound on the Inflaton
Range, JHEP 05 (2018) 001 [arXiv:1801.05434] [INSPIRE].

[36] M. Sasaki and E.D. Stewart, A General analytic formula for the spectral index of the density
perturbations produced during inflation, Prog. Theor. Phys. 95 (1996) 71 [astro-ph/9507001]
[INSPIRE].

[37] S. Groot Nibbelink and B.J.W. van Tent, Scalar perturbations during multiple field slow-roll
inflation, Class. Quant. Grav. 19 (2002) 613 [hep-ph/0107272] [INSPIRE].
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