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Abstract. The extended Jordan-Brans-Dicke (eJBD) theory of gravity is constrained by a
host of astrophysical and cosmological observations spanning a wide range of scales. The cur-
rent cosmological constraints on the first post-Newtonian parameter in these simplest eJBD
models in which the recent acceleration of the Universe is connected with the variation of
the effective gravitational strength are consistent, but approximately two order of magnitude
larger than the time-delay test within the Solar System. We forecast the capabilities of future
galaxy surveys in combination with current and future CMB anisotropies measurements to
further constrain the simplest dark energy models within eJBD theory of gravity. By consid-
ering two cases of a monomial potential (a quartic potential or a cosmological constant), we
show how Euclid-like galaxy clustering and weak lensing data in combination with BOSS and
future CMB observations have the potential to reach constraints on the first post-Newtonian
parameter ypN comparable to those from the Solar System.

Keywords: cosmological parameters from CMBR, cosmological parameters from LSS, mod-
ified gravity
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1 Introduction

Jordan-Brans-Dicke (JBD) theory of gravity [1, 2] is among the simplest extensions of general
relativity (GR), in which the gravitational field is mediated by a scalar field whose inverse
plays the role of an effective gravitational constant which varies in space and time. JBD
theory depends on just one additional parameter wgp, connected to the post-Newonian pa-
rameter ypN = (1 + wpp)/(2 + wpp) measuring the deviations from Einstein GR, which is
recovered in the limit of ypy — 1, i.e. wpp — +00. Observations on a wide range of scales
constrain JBD theory around GR: the tightest limits, ypx — 1 = (2.1£2.3) x 107> (68% CL)
are obtained from radar timing data by the Cassini spacecraft within our Solar System [3].
Extended JBD (eJBD) theory of gravity with a potential term for the scalar field:

5= [dev=g |5 (R 20,006 ) - V(0) + L] (1)
include the simplest scalar-tensor models of dark energy in which the current acceleration
of the Universe is connected to a variation of the effective gravitational constant [4-10] (see
also ref. [11]). These models are also known as extended quintessence [6, 9].

The phenomenology in the eJBD theory of gravity is much richer than in Einstein
Gravity (EG), since cosmological variation of the effective gravitational constant could lead
to different predictions not only for cosmic microwave background (CMB) anisotropy [12]
and the growth of structures, but also for Big Bang Nucleosynthesis (BBN) [13, 14].

Testing the viability of the cosmology in eJBD theory is fully complementary to the
Solar System constraints just presented. For models described by eq. (1.1) with a quadratic
potential [4, 11, 15], the recent Planck 2015 [16, 17] and baryonic acoustic oscillations (BAO)
data [18-20] constrain 1 — vpx < 0.003 (95% CL) [21] (see also [22] for constraints obtained
by relaxing the hypothesis of flat spatial sections and [23-25] for the constraints based on
the Planck 2013 data). These cosmological constraints on ypyn are approximately two order
of magnitude looser than Solar System constraints.

In this paper we investigate the capabilities of future CMB and large scale structures
(LSS) observations to further improve the cosmological constraints on the post-Newtonian
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Figure 1. Evolution of o/0g (top panel), wpg (middle panel), and Q; (bottom panel) as function
of z for different choices of v from v = 10=* to v = 1073 for n = 4. The value o of the scalar field
at present is fixed consistently with the Cavendish-type measurement of the gravitational constant
G=6.67Tx10"8 cm?3 g~ ! s72.

parameter ypy within the eJBD theory, as also forecasted in [26, 27]. We expect that up-
coming galaxy surveys such as DESI' [28], Euclid? [29, 30], LSST? [31], SKA* [32, 33], will
help in improving the constraints of structure formation on ~px for the eJBD theory. As
a representative example of what we will gain from upcoming galaxy surveys, we consider
the two main probes of Euclid, galaxy clustering (GC), and weak lensing (WL). In addition,
we will consider the role of possible future CMB polarization anisotropy observations, as
AdvACT [34], CORE [35-37], LiteBIRD [38, 39], and S4 [40], in further improving on the
Planck measurements.

Our paper is organized as follows. After this introduction, we give a lighting review
of eJBD recast as Induced Gravity (IG) (by a redefinition of the scalar field with standard
units and standard kinetic term) in section 2. In section 3 and 4 we present the Fisher
methodology for CMB and LSS for our science forecasts. In section 5 we present our results
and in section 6 we draw our conclusions.

2 Dark energy within the extended Jordan-Brans-Dicke theories

In this section we review some general considerations of the late-time cosmology within the
eJBD theories. We consider a field redefinition to recast the eJBD action in eq. (1.1) into an
action for induced gravity (IG) with a standard kinetic term for a scalar field o:

’}/O'QR gt

— = 5-0,00,0 V(o) + L - (2.1)

Sz/d%ﬂ[

where v = (4wpp) ! and yo? = ¢.

The cosmology evolution after inflation can be divided roughly in three stages and is
summarized in figure 1. In the first stage relevant for our study, i.e. deep in the radiation era,
o is almost frozen, since it is effectively massless and non-relativistic matter is subdominant.
During the subsequent matter dominated era, ¢ is driven by non-relativistic matter to higher
values, leading to an effective gravitational constant Gx(a) = 1/ (87r702) which decrease in

"http://desi.Ibl.gov/.
*http://sci.esa.int /euclid/.
S3http://www.lsst.org/.
“http://www.skatelescope.org/.
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time. The potential V(o) kicks in only at recent times determining the rate of the accelerated
expansion. For a simple monomial potential V(o) o ¢™¢ and in absence of matter, exact
power-law solutions for the scale factor a(t) ~ tP describing an accelerated expansion exist

for the class of monomial potentials with p = 2% [41, 42]. A de Sitter solution
for the scale factor is found instead for nic = 2, 4.

In figure 1 we display different quantities as a function of redshift: the scalar field
normalized to its value at present (left panel), the parameter of state wpg of the effective
dark energy component (middle panel), and the critical densities corresponding to EG with
a gravitational constant given by the current value of the scalar field, i.e. 87Gn(z = 0) =
1/(y03). Tt is interesting to note from wpg displayed in figure 1 that the effective parameter
of state for dark energy in these extended JBD models is similar to the so called old [43] and
new [44] early dark energy models.

Since now on we will restrict ourselves to two cases of monomial potentials, i.e. V(o)
o™¢ with nig = 4 or nijg = 0, suitable to reproduce a background cosmology in agreement
with observations. We consider a scalar field ¢ = ¢; nearly at rest deep in the radiation
era, since an initial non-vanishing time derivative would be otherwise rapidly dissipated [15].
The initial time derivative of the scalar field is taken as do/dT = 3ywo;/2 — with w =
m — satisfying the equation of motion. We choose o; by fixing the value o of the
scalar field at present consistently with the Cavendish-type measurement of the gravitational
constant G = 6.67 x 1078 cm? g~! s72, i.e. 70(2] = ﬁ%. We also consider adiabatic initial
conditions for fluctuations [45]. In this way for a given potential the models we study have
just one parameter in addition to the ACDM model, i.e. the coupling to the Ricci curvature
ACDM model 7.

The evolution of linear perturbations in this class of eJBD can be described with a set of
dimensionless functions ay = dln¢/dIlna, ap = —am, ax = wBDaﬁ/I, and at = 0 according
to the parametrisation introduced in ref. [46].

Planck 2015 temperature, polarization and lensing [16, 17] constrain v < 0.0017 at 95%
CL and by combining with BAO data the 95% CL upper bound tightens to 0.00075 [21]. The
cosmological variation of the effective gravitational strength between now respect to the one
in the relativistic era is constrained as [0G /G x| < 0.039 at 95% CL [21]. Such eJBD models
predict a value for the Hubble parameter larger than ACDM, because of a degeneracy between
~v and Hy. This effect can be easily understood by interpreting the larger value of the effective
gravitational constant in the past as a larger number of relativistic degrees of freedom.

Constraints on v and dG /Gy based on current CMB and BAO data do not depend
significantly on the index of the monomial potential, but cosmological bounds on Gy /GN
do [21].

There is still cosmological information for eJBD models to extract from the CMB pattern
beyond Planck. In figure 2, it shows the residuals of the lensed TT and EE CMB angular
power spectrum as function of the multipole ¢ with respect to the sample variance for a sky
fraction of fqy, = 0.7 and fq, = 0.4. Note the promise of E-mode polarization spectrum to
constrain «y, we show the room of improvement on v expected from CMB temperature and
polarization power spectra.

3 Fisher approach for CMB anisotropy data

In this section, we start describing the formalism for our science forecasts. Under the Gaussian
assumption for signal and noise, the Fisher matrix for CMB anisotropies in temperature and
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Figure 2. Relative change in the CMB angular power spectra induced by different values of the
coupling parameter from v = 1074 to v = 1073, The black dashed (dotted) line refers to the noise
spectrum of a cosmic-variance limited experiment with a sky fraction of fu,, = 0.7(0.4).

polarization [47-51] is:

CMB (20+4+1) X _ ocY
Faﬁ = fSkYZ 92 Z agé (Covg 1)XY 392 ’ (3.1)
¢ Xy ¢

where C’g{ is the CMB angular power spectrum in the ¢ multipole for XY €
(TT,EE, TE, ¢¢, T¢),> and 6, refers to the base of parameters considered in the analy-
sis which are specified in section 5 togheter with their best-fit value. The elements of the
symmetric angular power spectrum covariance matrix Covy at the £*® multipole are:

(creel)’
~TT 2
(COVE)TTTT = (C}‘T) — 2f 5 (3.2)
crECy?
~EE\ 2
(Cove)pper = (CEE) ’ (3.3)
2
_ 2 e = ~EE ( ~T¢
Conppenr = (P e O () ",
¢)TETE 2 2C’f¢ ) :
N2
(COV6)¢¢¢¢ = < EM’) ) (3.5)
2
~T ~TT A =
(Ce ¢> + CITCY? poe (CTEY?
(Covy) = S (3.6)
tT¢To = 2 2CPE :
~TE\2
(Cove) prpg = (CFF)7, (3.7)
cre (ere)
(Cove)prrp = Crtog® — W ) (3.8)
N 2
(Cove)prps = <CZT¢> ; (3.9)

SE¢ has a negligible effect on the constraints, we do not consider its contribution.
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(Cove)ppry = CFICT7 — = e (3.10)
(Cove)gprp = CLECHE, (3.11)
(Cove) yyry = CLOC) 7, (3.12)

where C_'f = Ct?( + Nl?( is the sum of the signal and the noise, with NEE, Nl:r‘b = 0. For the
temperature and polarization angular power spectra, here NX = crxbz_2 is the isotropic noise
convolved with the instrument beam, bf is the beam window function, assumed Gaussian,
with by = e~ ¢ wi/16I02, g is the full width half maximum (FWHM) of the beam
in radians; wprt and wgg are the inverse square of the detector noise level on a steradian
patch for temperature and polarization, respectively. For multiple frequency channels, aglbf
is replaced by sum of this quantity for each channels [47]:

-1
N}:[ > 1X] . (3.13)

channels = £

We consider the minimum variance estimator for the noise of the lensing potential by com-
bining the TT, EE, BB, TE, TB, EB CMB estimators calculated according to [52].

In this paper, we consider four different cases as representative of current CMB mea-
surements and future concepts. We study the predictions for a Planck-like experiment con-
sideridering the specifications of fq, = 0.7, and a multipole range from fy;, = 2 up to
lmax = 2500 in eq. (3.1). We use one cosmological frequency of 143 GHz assuming in flight
performace corresponding to a sensitivity of 33 pK-arcmin in temperature and 70.2 uK-acmin
in polarization, with a Gaussian beam width of 7.3 arcmin [53], see CMB-1 in [54].

Since small-scale CMB anisotropy measurements will improve thanks to Stage-3 gener-
ation of ground-based CMB experiments, we consider AdvACT [34, 55] with a noise level of
1.4 uK-arcmin in temperature and 8 pK-acmin in polarization, with a Gaussian beam width
of 1.4 arcmin and fg, = 0.4, over a multipole range 30 < ¢ < 3000.

As concept for the next generation of CMB polarization experiments, we consider CORE
and Stage-4 (hereafter S4). For CORE, we consider six frequency channels between 130
and 220 GHz with noise sensitivities of 1.5 uK-arcmin in temperature and 2 pK-acmin in
polarization, with a Gaussian beam width of 5.5 arcmin [35-37]. We consider f,,x = 3000
for the CORE configuration with a sky coverage of fq, = 0.7.

The ground-based S4 proposal will be able to map modes up to ¢ ~ 5000. Following [40],
we consider for S4 a sensitivity o = op/ V2=1 pK-arcmin with a resolution of Opwn = 3
arcmin over ~ 40% of the sky. Ground-based facilities are limited on large scales due to
galactic foreground contamination and in addition a contamination is expected on the small
scales in temperature. For these reasons, we assume for S4 /,,;;, = 30 and a different cut at
high-¢ of L. = 3000 in temperature and £-_ = 5000 in polarization. To complement at
low multipoles, i.e. 2 < £ < 30, we combine with Planck AdvACT and with the Japan CMB
polarization space mission proposal LiteBIRD [38, 39] S4. For the estimate of the noise of
the lensing potential we use the multipole range 30 < ¢ < 3000.

4 Fisher approach for LSS data

We now give the details for the Fisher forecasts with future LSS data. We consider Euclid-like
specifications as a representative case for future galaxy surveys. Euclid is a mission of the



ESA Cosmic Vision program that it is expected to be launched in 2022. It will perform both
a spectroscopic and a photometric survey: the first aims mainly at measuring the galaxy
power spectrum of ~ 30,000,000 galaxies while the second at measuring the weak lensing
signal by imaging ~ 1.5 billion galaxies.

Both surveys will be able to constrain both the expansion and growth history of the
universe and will cover a total area of 15,000 square degrees.

4.1 Spectroscopic galaxy power spectrum

Following [56], we write the linear observed galaxy power spectrum as:

2 (2)H(z
Pt (2 : ki) = m [b(2)os(2) + f(z, k)os(2)p?]

where the subscript r refers to the reference (or fiducial) cosmological model.

Here Pyot(z) is a scale-independent offset due to imperfect removal of shot-noise, y =
k-7 /k is the cosine of the angle of the wave mode with respect to the line of sight pointing
into the direction 7, P.(z, k) is the fiducial matter power spectrum evaluated at different
redshifts, b(z) is the bias factor, f(z, k) is the growth rate, H(z) is the Hubble parameter
and D 4(z) is the angular diameter distance. The wavenumber k and p have also to be written
in terms of the fiducial cosmology (see for more details [56-58]). The fiducial bias used in
this paper is b(z) = 0.72z 4+ 0.7 according to [59].

The Fisher matrix for the galaxy power spectrum is given by [56]:

P _ /kmax k2dk; 8111 Pgal(z; k, /L) 8111 Pgal(z; ka /‘L)
aff — . 472 00, 895

X Veff . (4.2)
The observed galaxy power spectrum is given by eq. (4.1) and the derivatives are evaluated
numerically at the fiducial cosmology; kmin = 0.001 2/Mpc and its value depends on the
survey size whereas kpax is such that root mean square amplitude of the density fluctuations
at the scale Rpax = 27/kmax Mpc/h is 0%(Rmax) = 0.25, however in order to not depend
strongly on the non-linear information we consider two cases imposing an additional cut at
kmax = 0.1 h/Mpc and at kmax = 0.25 h/Mpc. The effective volume of the survey in each bin
is given by:

A Ppa(z; kop)

Vet = S Veurvey s 4.3
where 7 is the average comoving number density in each bin, the value of the n and fiducial
specific Euclid-like specifications can be found in [60, 61].

To complete the GC information, we include low-redshift spectroscopic information from
BOSS [62, 63] on the redshift range 0.2 < z < 0.8 over 10,000 square degrees.

4.2 Weak lensing

The weak lensing convergence power spectrum is given by [64-68]:

PO =1 [ e W P (= 5 (44)

where the subscript ij refers to the redshift bins around z; and z;, with W;(z) is the window
function (see [69] for more details). The tomographic overall radial distribution function of



galaxies for a Euclid-like photometric survey is [30]:
D(z) = 22 exp [— (z/zo)l'ﬂ : (4.5)

with 20 = Zmean/1.412 and mean redshift zmean = 0.9, the number density is d =
35 galaxy per arcmin?. Moreover we consider a survey up to zmax = 3 divided into 10 bins
each containing the same number of galaxies. While tomography in general greatly reduces
statistical errors the actual shape of the choice of the binning does not affect results in a
serious way, although in principle there is room for optimisation [70].

The Fisher matrix for weak lensing is defined as:

B (20+1)ALOP;; 1 0Pkm 1
Fop = fsky; T a5.Cit g, Cmi- (4.6)
where A/ is the step in multipoles, to which we chose 100 step in logarithm scale; whereas
0, are the cosmological parameters and:

Cjk = P+ 05k (e nj (4.7)

where ~int is the rms intrinsic shear, which is assumed <7§1t>1/ 2 = 0.22. The number of
galaxies per steradians in each bin is defined as:

1802
n; = 3600d< - ) ﬁj, (4.8)

where d is the number of galaxies per square arcminute and 7; is the faction of sources that
belongs to the j—th bin.

5 Statistical errors forecasts

In this section we estimate marginalised statistical errors for the cosmological parameters of
our model, using the Fisher matrix calculation. The probes are assumed to be independent,
hence the total Fisher matrix is simply given by the sum of the single Fisher matrices:

Fog = Fop"™® + F5 + F5". (5.1)

We perform the Fisher forecast analysis for the set of parameters w., 0 =
{wh, ho, ns, In(10'1°A), v}. For the CMB we consider also the reionization optical depth 7
and then we marginalize over it before to combine the CMB Fisher matrix with the other
two. We assume as fiducial model a flat cosmology with best-fit parameters corresponding to
we = Qch? = 0.1205, wy, = Q,h?% = 0.02218, hg = Hp/100 = 0.6693, 7 = 0.0596, ng = 0.9619,
and In (10'° A;) = 3.056 consistent with the recent results of Planck [71]. As a fiducial value
for the coupling to the Ricci curvature we choose v = 1075, the value is within the 95% CL up-
per bound from current cosmological data [21] and is contrained at 30 with the Solar System
data [3]. We have considered two fiducial potentials, a quartic potential and a constant one.

The CMB angular power spectra, the matter power spectra, together with the Hubble
parameter H(z), the angular diameter distance D4(z), and growth rate f(z,k) have been
computed with CLASSig, a modified version of the Einstein-Boltzmann code CLASS® [72, 73]
dedicated to eJBD theory [25]. This code has been successfully validated against other codes
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Figure 3. Left: joint marginalized constraints (68%-95% CL) on hy and « from single probe alone.
Dashed lines correspond to the 68%-95% CL using the GC information from Euclid-like in combination
with BOSS. Right: joint marginalized constraints (68%-95% CL) on hg and + from the combination
CMB+Euclid-GC for the four CMB surveys. Dashed lines correspond to the 68% CL using the GC
information up to kpax = 0.25 h/Mpec.

in [74]. Non-linear scales have been included to the matter power spectrum assuming the
halofit model from [75]. Figure 3 shows the constraints from the single observational probes.
The different orientation of the 2-dimensional contours shows that the most efficient way to
reduce the constraint error on -y is to combine different cosmological probes.

With our Fisher approach, we find that the uncertainty from Planck simulated data
alone is o(y) ~ 0.00064 at 68% CL (consistent with our finding with Planck 2015 real
data [21]) will improve by a factor three using AdvACT+Planck, a factor four with CORE,
and a factor five with the combination S4+LiteBIRD, i.e. o() ~ 0.00022, 0.00016, 0.00013
at 68% CL respectively.

The combination of quasi-linear information with kpax = 0.1h/Mpc from galaxy GC
spectrum from Euclid-like and BOSS to the CMB leads to a significant improvement of the
uncertainty on -y, approximately three-ten times with respect to the constraints obtained
with the CMB alone.

In order to understand the improvement carried by mildly non-linear scales, we also
include the case of kpax = 0.25 h/Mpc which further improves the uncertainty on . In this
case, we find five-twenty times better errors compared to CMB alone. We show in figure 3 the
2-dimensional marginal errors for the combination of CMB+Euclid-GC Fisher matricies for
Planck, AdvACT+Planck, CORE, S4+LiteBIRD which correspond to the uncertainties of
o () =~ 0.000058 (0.000032), o () ~ 0.000054 (0.000027), () ~ 0.000052 (0.000025), () ~
0.000051 (0.000025) at 68% CL for kpax = 0.1 (0.25) h/Mpc; including also BOSS-GC infor-
mation we obtain respectively 0.000057 (0.000031), 0.000052 (0.000026), 0.000050 (0.000024),
0.000049 (0.000023) at 68% CL for kmax = 0.1 (0.25) h/Mpc.

Finally, we considered the combination of our three cosmological probes (CMB, GC,
WL) to identify the tightest constraint on v by including non-linear scales through WL. The
sensitivity on v combining the CMB with GC information up to kpax = 0.1 h/Mpc and WL
assuming /. = 1500 corresponds to () =~ 0.000045, o(v) ~ 0.000037, o(vy) ~ 0.000029,
o(y) ~ 0.000023, at 68% CL for Planck, AdvACT+Planck, CORE, and S4+LiteBIRD.

Shttp://github.com/lesgourg/class_public.
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Figure 4. Left: forecast marginalized constraint on v (68% CL) as a function of the maximum
multipole fyax included in the WL. Dashed lines correspond to the combination GC using the
Euclid-GC information up to kmax = 0.25h/Mpc, and dot-dashed lines including also BOSS up
t0 kmax = 0.25h/Mpc. The gray shaded region represent the 68% CL contraint from Solar System
data [3]. Right: joint marginalized constraints (68%-95% CL) on nig and v from the combination
CMB+Euclid-GC for the four CMB surveys. Dashed lines correspond to the 68% CL using the
Euclid-GC information up to kmax = 0.25 h/Mpc.

These uncertainties improve of another 1.5 factor if we push the GC information up to
kmax = 0.25 h/Mpc.

We show in figure 4 the impact of non-linear scales pushing the WL up to our optimistic
case of fpax = 5000. We find a small improvement in terms of error on v pushing £, for
the WL from 1500 to 5000.

The most conservative forecast of Euclid-like plus BOSS to quasi-linear scales in com-
bination with Planck improve between a factor three and approximately a factor twenty the
current uncertainties based on Planck 2015 and BAO data.

In table 1, we show the marginalized uncertainties on all the cosmological parameters
from the combination of the CMB surveys with Euclid-like and BOSS using the conservative
range of scales.

We study the impact of a larger fiducial value for v = 10~* (still compatible with
current Planck 2015 + BAO constraints) on the forecasted uncertainties. We find that the
effect on CMB and GC is around ~ 10% on the uncertainties; this implies that we will be
able to detect at 2-5 ¢ CL a value of ¥ = 10~* with the combination of the CMB with
GC information from a Euclid-like experiment. Regarding the WL, the uncertainties halve
leading to a clearer detection of such v at more then 5 ¢ when WL from Euclid-like is added.

We repeat our series of forecasts with a different potential for the scalar field with an
index equal to zero, i.e. n;g = 0, namely a cosmological constant. For this fiducial cosmology
we find only a small degradation of the uncertainties on +, pointing to a weak correlation
between the two parameters.

Finally, we test also the possibility to constraint the index of the scalar potential around
nic = 0 with future cosmological data, see figure 4. The tightest uncertainty that we obtain
combining all the three cosmological probes and including non-linear scales in the GC up to
kmax = 0.25 h/Mpc and in the WL up to fyax = 5000 is o (nig) ~ 5 at 68% CL.

In order to compare our finding on cosmological scales with the constraints obtained
within the Solar System we quote the constraint on the post-Newtonian parameters defined



Planck AdvACT+Planck S4+LiteBIRD
+ BOSS-GC + BOSS-GC + BOSS-GC
+ Euclid-GC+WL + Euclid-GC+WL + Euclid-GC+WL
10* o (we) 1.3 (1.1) 1.0 (0.78) 0.83 (0.67)
105 o (wp) 9.8 (8.8) 4.5 (3.8) 3.2 (2.8)
10 o(h) 1.7 (0.99) 1.4 (0.84) 1.0 (0.64)
103 o(ns) 1.8 (1.2) 1.5 (0.96) 1.2 (0.88)
10° o (In (10'0A4y)) 1.3 (0.75) 1.1 (0.71) 0.98 (0.56)
10° o(v) 4.5 (2.7) 3.7 (2.2) 2.3 (1.5)

Table 1. Marginalized uncertainties (68% CL) on the cosmological parameters for v = 10~° and
nig = 4. We consider the combination of three CMB surveys with the information up to quasi-linear
scales from the GC (kpax = 0.1 h/Mpc) using Euclid-like plus BOSS and WL (£,.x = 1500) from
Euclid-like. Numbers in round brakets refer to the uncertainties for our optimistic case with GC up
t0 kmax = 0.25 h/Mpc and WL up to £pax = 5000.

for this class of eJBD theories as:
1+ 4y

148y

Our derived forecasted uncertainties span between o (|[ypy — 1]) ~ 5.3 x 1074 —2.5 x 1073 at
68% CL for a CMB experiment with a Planck sensitivity through a future CMB experiment
able to perform a cosmic-variance measurement of the E-mode polarization at small scales.
Combining CMB information with GC and WL, we find o (|ypy — 1|) =~ 9.2 x 107° and
including non-linear scales a minimum error on the deviation from GR in the weak field limit
corresponding to o (|ypn — 1]) ~ 6.2 x 107° at 68% CL.

YPN = (5.2)

6 Conclusion

eJBD theories represent the simplest scalar-tensor theory of gravity where Newton’s constant
is allow to vary becoming a dynamical field, as a function of space and time.

This class of theories have been already severely constrained from Solar System exper-
iments leading to ypxy — 1 = (2.1 £2.3) x 1075 at 68% CL [3]. These Solar System tests
constrain the weak-field behaviour of gravity, and the strong-field behaviour that this family
of theories can still exhibit is contrained by the binary pulsar [76, 77].

However, it is conceivable that gravity differed considerably from GR in the early Uni-
verse. Even if GR seems to work well today on Solar System scales, in several scalar-tensor
theories there is generally an attractor mechanism that drives to an effective cosmological
constant at late time. BBN [13, 14] provides a test of gravity at early times based on the
impact of the effective gravitational constant on the expansion rate and on the cosmological
abundances of the light elements produced during BBN.

Cosmological observations, such as CMB anisotropies and LSS matter distribution,
probe different epochs and scales of the Universe. The redshift of matter-radiation equality
is modified in eJBD theories by the motion of the scalar field driven by pressureless matter
and this results in a shift of the CMB acoustic peaks [12, 78].

Planck data have been already used to constrain this eJBD models [22-25] (see [79-
81] for analysis with pre-Planck data). Latest Planck 2015 publicly data release constrain
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1—2pN < 0.007 at 95% CL, and the combination of CMB and LSS data through the addition
of BAO information has shown a promising way to further constrain these class of models in
light of upcoming LSS experiments, leading to 1 — ypn < 0.003 at 95% CL [21].

In this paper we investigated how well some future CMB experiments and LSS surveys
will be able to improve current cosmological constraints on this simple scalar-tensor theories.
We consider eJBD theory of gravity where a potential term is included in order to embed
in the original JBD theory the current acceleration phase of the Universe. Our results have
been enlightening and we can summarise them as follows:

e Future CMB experiment, such as AdvACT, CORE and Stage-4 CMB, will improve
current constraints from Planck 2015 alone by a factor 3-5, thanks to a better measure
of the small scale CMB anisotropies. We find that in the best case o (1 — ypn) =~ 0.0005
at 68% CL for propose space and ground-base CMB experiment CORE and S4.

e We forecast the combination of CMB and spectroscopic surveys using the 3-
dimensional observed galaxy power spectrum. We consider a Euclid-like spectrocopic
survey and to complete the redshift coverage of a Euclid-like selection function
0.9 < z < 1.8 [60, 61] we include optical spectroscopic observations from BOSS in the
range 0.2 < z < 0.8 [62, 63].

The combination of quasi-linear information up to kyax = 0.1 h/Mpc for the Euclid-like
and BOSS GC to the CMB leads roughly a reduction around three-ten times with
respect to the uncertainties obtained with the CMB alone, with a best case bound of
o (1 — 'VPN) ~ 0.0002 at 68% CL.

e We find that the inclusion of mildly non-linear scales in the galaxy power spectrum
is crucial to drive the contraints from cosmological observation at the same order of
current Solar System constraints.

e WL surves will improve the sensitivity on v approximately by a factor 2.

e The best bound that we obtain combining all the three cosmological probes and
including non-linear scales in the GC up to kpmax = 0.25h/Mpc and in the WL up to
lmax = 5000 is o (1 — vpn) =~ 0.000062 at 68% CL.

This forecast is only approximately a factor three worst than the current Solar System
constraint.

Although consistent with [26, 27] our estimate of ypy is based on different assuptions.
It is difficult to compare our results with the pioneering work [26]: theoretical predictions,
forecast methodology and experimental specifications in [26] are different from our analysis.
Overall, we can say that our forecasted uncertainty on «pyn is more optimistic than those
quoted in [26] because we combine expected constraints from different probes. [27] use LSST
photometric specifications for galaxy clustering and weak lensing, and SKA1-MID intensity
mapping, whereas we use Euclid-like spectroscopic survey for galaxy clustering and photo-
metric specifications for weak lensing; we do not consider any screening.

We close with three final remarks. Our forecasted sensitivity on ~ypy is smaller than the
one obtained from models with a non-universal coupling between dark matter and dark energy
and motivated by eJBD theories [82]. As second remark, our works shows the importance of
developing non-linear approximation schemes for eJBD theories [83-86] to reach the accuracy
required by future cosmological observations. As a third and conclusive point, it would be
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interesting to further add complementary probes at low redshift: indeed, we have been
quite inclusive with the forecasts from next CMB polarisation experiments whereas other
measurement at lower redshift complementary to Euclid and BOSS and might be crucial to
strengthen our predictions.
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