
J
C
A
P
0
6
(
2
0
1
9
)
0
0
2

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Lattice formulation of axion inflation.
Application to preheating
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Abstract. We present a lattice formulation of an interaction φ
ΛFF̃ between an axion and

some U(1) gauge sector with the following properties: it reproduces the continuum theory
up to O(dx2

µ) corrections, it preserves exact gauge invariance and shift symmetry on the
lattice, and it is suitable for self-consistent expansion of the Universe. The lattice equations
of motion can no longer be solved by explicit methods, but we propose an implicit method
to overcome this difficulty, which preserves the relevant system constraints down to arbitrary
(tunable) precision. As a first application we study, in a comoving grid in (3+1) dimensions,
the last efolds of axion-inflation with quadratic potential and the preheating stage following
afterwards. We fully account for the inhomogeneity and non-linearity of the system, including
the gauge field contribution to the expansion rate of the Universe and its backreaction into
the axion dynamics. We characterize in detail, as a function of the coupling, the energy
transfer from the axion to the gauge field. Two coupling regimes are identified, sub- and
super-critical, depending on whether the final energy fraction stored in the gauge field is
below or above ∼ 50% of the total energy. The Universe is very efficiently reheated for
super-critical couplings, rapidly entering in a radiation dominated stage. Our results on
preheating confirm previously published results.
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1 Introduction

Compelling evidence [1] supports the inflationary paradigm as the leading explanation for
the initial conditions of the early Universe. The exact scenario responsible for inflation
remains however unidentified. Inflation is often assumed to be driven by a singlet scalar
field, the inflaton, with potential and initial conditions appropriately chosen to sustain a long
enough period of accelerated expansion. From a model building point of view, inflationary
constructions suffer typically from being very sensitive to unknown ultraviolet (UV) physics,
what can be viewed as a challenge to the robustness of the predictions. A simple way to
avoid this problem relies on the introduction of a symmetry that naturally forbids certain
interactions between the inflationary sector and other physics. In this respect, a promising
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candidate as an inflaton is a pseudo-scalar field or axion, that enjoys a shift-symmetry. If
the inflationary sector is invariant under a constant shift of the field amplitude, the form of
possible interactions of the inflaton with other species is severely restricted, “protecting” the
inflationary dynamics from unknown UV physics.

Axions-like fields are actually ubiquitous in particle physics, as they represent a possible
solution to the strong CP problem [2], potential dark matter candidates [3, 4], or interesting
inflaton incarnations [5, 6]. Several implementations of axion-driven inflation scenarios have
been proposed, from Natural inflation [5, 7] to N -flation [8–10] and stringy oriented axion
monodromy models [11, 12]. There has been in fact a significant interest in the construc-
tion of viable axion inflation models within the framework of string theory [13–20]. In this
paper we will not be concerned, however, with the exact implementation of axion inflation.
For simplicity we will consider a quadratic potential, corresponding to the simplest type of
chaotic inflation [21]. Even though these scenarios are under pressure by current CMB ob-
servations [1], the addition of a small non-minimal gravitational coupling can easily reconcile
them with the data [22]. We consider a quadratic potential simply as a working “arena”
for scenarios with a monomial shaped potential with a minimum after inflation. This choice
will actually enable us to compare our results with others in the literature, where the same
choice was made. Furthermore, as it will become clear later, a major aim of this paper is
to introduce a robust lattice formulation of the interaction of a shift-symmetric field with
a gauge field, in the context of an expanding Universe, and for this matter the choice of
potential is simply irrelevant.

For any inflationary scenario, a reheating stage must follow after inflation, converting
all the energy available into the particle species constituting all the matter and radiation in
the Universe. Eventually, when the created particles dominate the total energy budget of the
Universe and thermalize, the Universe enters into the thermal era characteristic of the “hot
Big Bang” paradigm. If the inflaton has sufficiently large couplings to other species, the ini-
tial stages after inflation are typically characterized by non-perturbative particle production
phenomena, typically known as preheating. Preheating mechanisms have been investigated
in detail in the past: from parametric resonance [23, 24], spinodal instabilities [25, 26] and
instant-like effects [27, 28] of scalar field species, to parametric excitation of fermions [29–31]
or non-perturbative excitation of gauge fields [32, 33]. For reviews on preheating see [34, 35].
In this paper we will actually study the post-inflationary preheating dynamics in axion in-
flation. In general, once we have chosen the inflaton potential, the details of preheating
depend directly on the choice of interactions between the inflaton and the fields coupled to
the inflaton.1 In the case of axion inflation, the shift symmetry severely constrains the form
of the inflaton coupling to other species.

In particular, the lowest dimensional operator compatible with a shift symmetry is the
interaction term between the pseudo-scalar field and the Pontryagin or topological number
density K ≡ FµνF̃µν of some gauge sector.2 We will focus on an Abelian gauge group, explor-
ing the particle production of the gauge field due to the inflaton oscillations after inflation,
when the inflaton and the gauge field interact via φFµνF̃

µν . The phenomenology due to the

1Alternatively, the Universe can be reheated even in the absence of direct couplings of the inflaton to
other field species, like in the context of gravitational reheating [36] and variants [37, 38] A recent criticism
of standard gravitational reheating [39], reinforces however the idea that the Universe can be successfully
reheated most naturally when the inflaton is coupled to other species.

2One can also consider a derivative coupling of the axion inflaton to the axial current of the fermions [40–44],
what leads to very interesting phenomenology, including e.g. the successful realization of baryogenesis.
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presence of this coupling in axion inflation models is very rich, and it has been extensively
studied in the literature. Namely, during slow-roll inflation, an exponential production of
helical gauge bosons is expected [45–50]. The exited gauge fields can then lead to interesting
phenomenology such as the production of non-Gaussian density perturbations [20, 51, 52]
(see [53] for a critical discussion), primordial black holes [20, 50, 54, 55], thermalization ef-
fects [56, 57], magnetic fields [45, 58], (chiral) gravitational waves [6, 49, 52, 59] (see [53, 60]
for critical discussions), and a very efficient preheating mechanism [61, 62]. These effects are
very sensitive to the inflaton velocity, hence becoming larger towards the end of inflation and
in particular during the preheating stage after inflation, as the inflaton velocity oscillates,
rapidly changing strength and sign. Let us finally note that a later decay of helical gauge
fields after inflation could be used to generate the baryon asymmetry of the Universe [63–67].

Some works have already studied (p)reheating after axion-driven inflation scenarios,
considering peturbative decays [17], linearized analyses of an Abelian gauge field coupled to
an oscillating scalar field [68–70], and a full non-linear analysis [61]. Ref. [61] is actually
of particular relevance to us, as it has studied in full detail the non-linear dynamics of
preheating after axion inflation with a coupling φFµνF̃

µν . The aim of our present work
is actually twofold: a) to introduce a refined lattice formulation of axion inflation setup’s,
particularly suited for describing an interaction of the form φFµνF̃

µν , and b) to consider,
as a first application of this technique, a review of the preheating stage after axion inflation
studied in [61], so that we can compare numerical results.

In particular, we propose the use of the lattice formulation of an interaction term
φFµνF̃

µν based on the formulation introduced in [71], but adapted to include self-consistent
expansion of the Universe, so that both (pseudo-)scalar and gauge fields contribute to the ex-
pansion rate. Our lattice technique reproduces the continuum limit of the theory to quadratic
order in the lattice spacing, and more importantly it obeys the following properties on the
lattice: i) the system is exactly gauge invariant, and ii) shift symmetry of the axion is exact.
Property i) implies that physical constraints such as the Gauss law or the Bianchi identities,
are exactly verified on the lattice (up to machine precision). Property ii) implies that the
lattice formulation has naturally embedded a construction of the topological number density
that admits a total (lattice) derivative representation K ≡ FµνF̃

µν = ∆+
µK

µ, which repro-

duces the continuum expression K = ∂µK
µ ∝ ~E · ~B up to O(dx2

µ) corrections. Without

this property the interaction φFµνF̃
µν cannot be interpreted as a derivative coupling, and

hence it would not really be shift symmetric. As it is precisely shift symmetry that justifies
the functional form of the interaction in first place, it seems therefore relevant to preserve
exactly such symmetry at the lattice level. This leads however to an extra technical com-
plication compared to standard formulations of Abelian gauge lattice theories: we can no
longer solve the lattice equations of motion by an explicit method, but rather by means of
implicit methods that require numerically iterative procedures at each time step.

Summarizing, the lattice representation we use preserves all the relevant physical prop-
erties of the system, i.e. gauge invariance, shift symmetry and the topological nature of
FµνF̃

µν . Hence it represents the best approximation (to quadratic order in the lattice spac-
ing) to the theory in the continuum. Equipped with our lattice formulation, we will study
the last efolds of inflation and the preheating stage in axion-inflation, studying in detail the
energy transfer from the inflaton to the Abelian gauge field as a function of the coupling
strength.

This paper is organized as follows. In section 2 we briefly review the dynamics during
inflation, introducing the standard equations of motion and considering both analytical and
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numerical solutions in the continuum. In section 3 we introduce a non-compact lattice formu-
lation of an Abelian gauge theory with topological term FµνF̃

µν , suitable for self-consistent
expansion of the Universe. We explain in detail the virtues of this formulation and how to
iterate the lattice equations of motion. In section 4 we study in the lattice the last efolds of
inflation and the preheating stage following afterwards. In section 4.1 we discuss our strategy
for initializing the fields on the lattice, determine what is the appropriate initial cutoff for
the gauge field fluctuations, and study the consistency of the dynamics during the last efolds
of inflation for simulations initiated at different times. In section 4.2 we study preheating
after inflation, investigating the transfer of energy from the axion into the Abelian gauge
field. We analyse in detail the evolution of the energy densities and the power spectra of
the fields. We quantify the efficiency of preheating as a function of the coupling strength.
In section 4.3 we demonstrate our numerical ability to preserve the relevant dynamical con-
straints on the lattice. In section 5 we summarize our results and discuss future prospects
and applications of our lattice formalism. In the appendices we present interesting aspects
of our lattice implementation, and relevant tests passed by our simulations.

From now on mpl = 1√
8πG
' 2.44 ·1018 GeV is the reduced Planck mass. The expanding

Universe is described by a Friedmann-Lemâıtre-Robertson-Walker (FLRW) background met-
ric ds2 = −dt2 + a2(t)d~xd~x, where a(t) is the scale factor, and t represents the cosmic time.
Latin letters run over spatial dimensions, and greek letters over space-time dimensions, as
usual. We assume summation over repeated indices in the continuum, but not in the lattice.

2 Axion inflation with φFµνF̃
µν coupling

Here we describe the continuum theory formulation of the scalar-gauge system with coupling
φFF̃ . We first introduce the basic field definitions and conventions in section 2.1, and then
discuss the field dynamics during axion inflation in section 2.2, reviewing analytical results
from the literature, both in the absence and presence of backreaction of the gauge field into
the dynamics. In section 2.3 we describe numerical solutions in the absence of backreaction,
that will serve as the basis for our approach to initialize the gauge field on the lattice.

2.1 Basic framework

Let us begin by considering the action in a FLRW background for an Abelian gauge field
coupled to a pseudo-scalar field φ, which will be referred to as an axion from now on. Given
our choice of signature (−,+,+,+), we have

S =

∫
d4x
√
−g
(

1

2
m2

plR−
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4
FµνF

µν +
φ

4Λ
FµνF̃

µν

)
, (2.1)

where Λ is a mass scale controlling the scalar-gauge coupling strength. The quadratic poten-
tial supports slow-roll inflation at super-Planckian field values, while the mass of the axion
is fixed to m = 1.5 · 1013 GeV, in order to explain the amplitude of the CMB temperature
anisotropies. The field strength of the gauge field, and its dual counterpart are defined
as usual

Fµν ≡ ∂µAν − ∂νAν , F̃µν ≡
1

2
εµνρσF

ρσ , (2.2)

however notice that as we are in FLRW, εµνρσ is the completely anti-symmetric tensor in
curved space-time

ε0123 ≡ 1√
−g

=
1

a3(t)
. (2.3)
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Action (2.1) is invariant under gauge transformations Aµ −→ Aµ + ∂µα(x), where
α(x) ∈ R is an arbitrary function, whilst the axion enjoys a shift symmetry [explicitly broken
though by the mass term of eq. (2.1)] as φ → φ + c, with c ∈ R an arbitrary real constant.
Defining the axion conjugate momenta, and electric and magnetic fields, as usual by

πφ ≡ φ̇ , Ei ≡ Ȧi − ∂iA0 , Bi ≡ εijk∂jAk , (2.4)

the action can be re-written in a vectorial form like

Sm =

∫
d4x

(
1

2
a3π2

φ −
1

2
a(~∇φ)2 − 1

2
a3m2φ2 +

1

2
a( ~E2 − a−2 ~B2) +

φ

Λ
~E · ~B

)
. (2.5)

From here it is worth noticing that the interaction term between the axion and the gauge
field is not coupled to the space-time background.

Varying the action eq. (2.1) with respect to the axion and gauge field, leads to the
respective equations of motion (EOM)

∂0∂0φ = −3H∂0φ+
1

a2

∑
i

∂i∂iφ−m2φ+
1

4Λ
FµνF̃

µν , (2.6)

∂µ
(√
−gFµν

)
=

1

Λ
∂µ

(√
−gφF̃µν

)
, (2.7)

where H = ȧ/a is the Hubble parameter. The vectorial counterparts are

π̇φ = −3Hπφ +
1

a2
~∇2φ−m2φ+

1

a3Λ
~E · ~B, (2.8)

~̇E = −H ~E − 1

a2
~∇× ~B − 1

aΛ
πφ ~B +

1

aΛ
~∇φ× ~E − φ

aΛ

(
~̇B − ~∇× ~E

)
︸ ︷︷ ︸

=0

, (2.9)

~∇ · ~E = − 1

aΛ
~∇φ · ~B − φ

aΛ
~∇ · ~B︸ ︷︷ ︸

=0

, (2.10)

where eq. (2.10) is not dynamical and represents the Gauss constraint. Note that in
eqs. (2.9)–(2.10) we have kept terms that in reality are identically zero due to the Bianchi
identities

∂µ(
√
−gF̃µν) = 0 ⇐⇒

 ~̇B − ~∇× ~E = 0

~∇ · ~B = 0
. (2.11)

We keep these null terms just to remind the reader that, in the lattice, obtaining vanishing
Bianchi identities is not guaranteed by default, as it depends on the lattice representation of
the terms involving the gauge field in the Lagrangian. The lattice formulation of φFµνF̃

µν

that we will describe in section 3, is based precisely on the ability to obtain vanishing Bianchi
identities, and a Pontryagin density of topological nature (i.e. admitting a total derivative
representation).

Together with eqs. (2.8)–(2.10), we also need to take into account Friedmann equations
governing the expansion of the Universe,

ä

a
=
−1

6m2
pl

(3p+ ρ) , (2.12)(
ȧ

a

)2

=
1

3m2
pl

ρ , (2.13)
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where the first equation describes the dynamics of the scale factor, whereas the second
represents a constraint to which we will refer to as the Hubble constraint. Here ρ and p
are the background energy and pressure densities, defined from the stress-energy tensor of a
perfect fluid Tµν ≡ (ρ+ p)uµuν + pgµν , like

ρ = T00 , p =
1

3a2

∑
i

Tii . (2.14)

In our problem at hand, the explicit form of these quantities can be obtained from the
energy-momentum tensor in curved space-time

Tµν =
−2√
−g

δ(
√
−gLm)

δgµν
(2.15)

= gµν

(
−1

2
gαβ∂αφ∂βφ−

1

2
m2φ2 − 1

4
gαρgβσFαβFρσ

)
+ ∂µφ∂νφ+ gαβFµαFνβ ,

where Lm is the Lagrangian in eq. (2.1). The energy and pressure densities then read

ρ ≡ 1

2
π2
φ +

1

2a2

∑
i

(∂iφ)2 +
1

2
m2φ2 +

1

2

(∑
i

E2
i

a2
+
∑
i

B2
i

a4

)
, (2.16)

p ≡ 1

3a2

∑
j

Tjj =
1

2
π2
φ −

1

6a2

∑
i

(∂iφ)2 − 1

2
m2φ2 +

1

6

(∑
i

E2
i

a2
+
∑
i

B2
i

a4

)
. (2.17)

2.2 Axion inflation dynamics

The potential V (φ) = 1
2m

2φ2 naturally sustains a slow-roll regime of inflation for large field
amplitudes. Introducing the slow-roll parameter

εH = − Ḣ

H2
, (2.18)

we expect εH � 1 for most of the inflationary period, when the energy is dominated by the
potential energy of the inflaton. As inflation goes on and the inflaton rolls down its potential,
the slow-roll parameter grows (as the Hubble rate H decreases), and eventually it reaches
εH = 1, what signals the end of inflation.

Deep inside inflation, eqs. (2.8)–(2.9) can be simplified by neglecting the gradients of
the axion, |∇2φ| � m2φ and |∇φ× ~E| � |πφ ~B|, as well as the backreaction of the gauge field

into the axion dynamics, | ~E · ~B| � a3m2Λφ. Moreover, the contribution of the gauge field
to the energy and pressure densities appearing in eqs. (2.12)–(2.13) should also be negligible,
a2 ~E2 + ~B2 � a4m2φ2. The expansion of the Universe in such an approximation is dictated
by the dynamics of an homogeneous axion,

φ̈+ 3Hφ̇+m2φ = 0 ,
ä

a
=

1

3m2
pl

(
m2φ2 − φ̇2

)
. (2.19)

At the onset of inflation the initial value of the inflaton is super-Planckian φi � mpl and
from the slow-roll conditions we can infer that φ̇i ' −V,φ/3Hi, Hi ' (φi/

√
6)(m/mpl).
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The inflaton slowly rolls its potential reducing its amplitude, until it becomes eventually
of order φ ∼ mpl, just when εH & 1. More precisely, from the condition εH(φend) = 1 we
obtain φend = 1.039mpl. The number of efolds before the end of inflation is simply obtained as

N ≡ − ln
aend
a

= − 1√
6mpl

∫ tend

t
dt′
√
φ̇2(t′) +m2φ2(t′) ∼ −

(
φ

2mpl

)2

, (2.20)

where we use the convention that during inflation N < 0, and in the last equality we have
used properties of slow-roll, so it should only be taken as indicative.3 In order to ensure that
the inflationary period lasts ∼ 50− 60 efolds, the value of the inflaton at the moment when
CMB fluctuations exited the Hubble radius must have been of the order φCMB ∼ 14−15mpl.

Deep inside inflation, say O(10) efolds before the end, the homogeneous axion domi-
nation is very well justified. However, because of the axionic-coupling φFµνF̃

µν , the gauge
field will be excited during inflation. Thus, even if we start with a gauge field amplitude
given by quantum fluctuations, as we approach the end of inflation, the gauge field will be
largely amplified, and it might — depending on the scalar-gauge coupling — impact on the
inflationary dynamics. Analytically, it has been studied that the backreaction of the gauge
field into the axions can potentially delay the end of inflation in a significant way, see e.g. [52].

Let us briefly describe the status of the art on the analytical understanding of the gauge
field dynamics and its backreaction. We can start by considering the gauge field evolution
imposing homogeneity of the axion field. Switching to conformal time τ ≡

∫
dt′

a(t′) , eq. (2.7)
becomes

ν = 0 → ∂j∂jA0 = ∂τ∂jAj , (2.21)

ν = i → ∂2
τAi − ∂j∂jAi +

1

Λ
εijk∂τφ∂jAk = 0 . (2.22)

In order to solve these equations, it is useful to work in Fourier space, where we decompose
each mode in a basis of helicity states

~A(τ,x) =

∫
d3k

(2π)3
~A(τ,k)eik·x =

∑
λ=±

∫
d3k

(2π)3
Aλ(τ, k)~ελ(k̂)eik·x , (2.23)

where the helicity vectors ε±i (k̂) are defined in such a way that they satisfy the following
properties

kiε
±
i (k̂) = 0 , εijkkjε

±
k (k̂) = ∓ikε±i (k̂) , ε±i (k̂)∗ = ε±i (−k̂) , ελi (k̂)ελ

′
i (−k̂) = δλλ′ . (2.24)

Using this mode decomposition and the properties of the helicity vectors just exposed, the
differential equations for the two polarizations of the gauge field read(

∂2
τ + k2 ∓ kφ̇

ΛHτ

)
A±(τ, k) = 0 , (2.25)

where we have used the slow-roll condition τ ≈ −1/aH. Because of the different sign in
eq. (2.25), if φ̇ < 0 (φ̇ > 0) the polarization A+ (A−) will be exponentially amplified, while
A− (A+) will not, and hence can be neglected. A solution for the functional form of the

3We have actually checked that the expression in eq. (2.20) as a function of the inflaton amplitude, predict
the number of efolds before the end of inflaton up the last efold, with only ∼ 3% error.
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excited polarization (say A+ if we choose φ̇ < 0), normalized to match the form of quantum
fluctuations in the ultraviolet limit, is given by [47]

A+(τ, k) =
e
π
2
ξ

√
2k
W−iξ, 1

2
(2ikτ) ' 1√

2k

(
k

2|ξ|aH

)1/4

eπ|ξ|−2
√

2|ξ|k/aH , (2.26)

where the second expression is valid for k|τ | � 2|ξ|, with the parameter ξ is defined as

ξ ≡ φ̇

2HΛ
. (2.27)

The expression in eq. (2.26) is expected to approximate well the real solution to the gauge
field mode function in the limit where ξ = const, which is well justified deep inside inflation,
but less and less accurate towards the end of it. The second expression in eq. (2.26) exhibits
clearly the fact that the gauge field is mostly amplified around the Hubble scale at each time.

Using eq. (2.26) one can compute the mean electromagnetic energy density and the
topological term, as a function of ξ [47],

1

2a4
〈a2E2 +B2〉 ' 1.4 · 10−4 H

4

|ξ|3
e2π|ξ| , (2.28)

1

a3
〈 ~E · ~B〉 ' −2.4 · 10−4 H

4

|ξ|4
e2π|ξ| . (2.29)

In the Hartree approximation, the dynamics are described by the equations

φ̈ = −3Hφ̇−m2φ+
1

a3Λ
〈 ~E · ~B〉 , (2.30)

ä

a
=

1

3m2
pl

(
1

2
m2φ2 − φ̇2 − 1

2a4
〈a2E2 +B2〉

)
, (2.31)

so by plugging eqs. (2.28), (2.29) in eqs. (2.30), (2.31), one can quantify the backreaction of the
gauge field into both the axion and expanding Universe dynamics within such approximation.
One can estimate in that way the moment during inflation (for a given coupling Λ−1) when
the terms 〈 ~E · ~B〉 and 〈a2E2 +B2〉 become relevant.

Before we move further into other considerations, let us discuss the allowed range of
values for the scale Λ. In particular, to respect CMB limits on the amount of primordial
non-Gaussianity, the function ξ defined by eq. (2.27) should respect ξ . ξCMB ' 2.5 at
CMB scales [72, 73], which translates (given our choice of potential 1

2m
2φ2) into 1/Λ .

35m−1
pl . However, to ensure that primordial black holes are not over-produced by large

density fluctuations, a more stringent constraint actually emerges, requiring ξ . ξCMB '
1.5 − 1.7 [54, 55]. This implies that 1/Λ . 22 − 25m−1

pl . In practice, as the primary focus
of the application of our lattice formalism in this paper will be preheating, we will not need
to reach so large couplings: as we will show in section 4.2, the preheating efficiency does not
improve further as soon as we reach 1/Λ & 10m−1

pl . Hence, a range like 1/Λ ≤ 15m−1
pl , which

from now on we adopt as a fiducial range, suffices for our purposes.

2.3 Backreaction-less (numerical) solution

The non-linearity of the system makes actually the dynamics very complicated, and probably
inaccurate, to be dealt with an analytical approach. Hence the importance of our lattice study
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(section 4.1, 4.2), which will capture in full detail the non-linearities of the system. However,
to be able to address the problem from the lattice point of view, we need to have control
over the field configuration that will be introduced in the lattice as an initial condition.

As the solution eq. (2.26) may not be so precise towards the end of inflation, we will use
a different approach in order to introduce an initial condition of the fields in the lattice. In
particular, back to cosmic time, but still keeping the axion homogeneous, eq. (2.25) becomes

Ä±(t, k) +

(
ȧ

a

)
Ȧ±(t, k) +

[
k2

a2
±

(
kφ̇

aΛ

)]
A±(t, k) = 0 , (2.32)

where we have used again the helicity mode decomposition from eq. (2.23). Once again,
given our convention φ̇ < 0, only A+ becomes tachyonic, so we will only worry about this
polarization. Note that since we are working in cosmic time, no approximations have been
done apart from assuming the homogeneity of the axionic field. Furthermore, since this
equation is linear in k, we can solve it numerically in a 1-dimensional grid of discretized
comoving momenta {k1, k2, . . . , kn}, initializing each mode ki at a time when its wavelength
is well inside the Hubble radius. Introducing a conformal transformation of the gauge field,
A+ ≡ a−1/2Ã+, we can get rid off the friction term in eq. (2.32). We then obtain that
modes which are deep inside the Hubble radius k � aH during inflation, evolve according

to ¨̃A+ + ω2
kÃ+ ' 0, with ω2

k '
k2

a2
� H2, äa . Choosing the Bunch-Davies vacuum, Ã+(t, k �

aH) ' 1√
2ωk

e−iωkt, we can use the following initial condition,

A+(ki, ti) =
Ã+(ki, ti)√

a(ti)
' e−iωiti√

2a(ti)ωi
≡ 1√

2ki
[cos(ωiti)− i sin(ωiti)] , (2.33)

Ȧ+(ki, ti) =
d

dt

{
Ã+(ki, ti)√

a(ti)

}
' −i ωi√

2ki
e−iωiti ≡ − 1

a(ti)

√
ki
2

[sin(ωiti) + i cos(ωiti)] , (2.34)

where ωi ≡ ki/a. Furthermore, the initial time for each mode is obtained from the condition

ki ≡ xia(ti)H(ti) , xi � 1 , (2.35)

with xi some large positive value determining the initial “penetration” of the scale 1/k inside
the Hubble radius. In practice, we choose xi = 1000 for all the modes, making sure in this
way that we initialize the gauge field sufficiently deep inside the Hubble radius.

In figure 1a we show the numerical evolution in time of the gauge field power spectrum
k3

m2 |A+(k, t)|2 for two modes, k/m = 2.58 · 10−5 (lower curve) and k/m = 9.50 · 10−3 (upper
curve). We decompose each curve in real and imaginary contributions so one can see the
mode oscillations deep inside the Hubble scale. As the physical wavelength approaches the
Hubble radius, the field mode amplitude becomes excited, growing during few efolds. As it
becomes more and more super-Hubble, its amplitude asymptotically freezes to a constant
value, as expected from an interaction ∝ kφ̇. In figure 1b we illustrate the evolution in time
of gauge field power spectra for different values of the coupling. As expected, the larger the
axionic coupling Λ−1, the more excited the gauge field is. Let us remark that these spectra,
built from the mode evolution displayed in the panel (a), are obtained by numerically evolving
eq. (2.32) with initial conditions (2.33), (2.34), considering that the inflationary background
dynamics are entirely due to the homogeneous axion, according to eqs. (2.19). In other
words, numerical solutions shown in figure 1 ignore the possible backreaction of the gauge
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(a) (b)

Figure 1. Panel (a): the evolution through inflation of the power spectrum amplitude of the
backreaction-less solution for two modes, k/m = 2.58 · 10−5 (lower curve) and k/m = 9.50 · 10−3

(upper curve). Panel (b): the gauge field power spectrum for different couplings at N =
−2.0,−1.5,−1.0,−0.5, 0.0 efolds before the end of inflation, built from the backreaction-less solution.
The dashed lines represent the analytical solution eq. (2.26) at −Ni = 2 efolds before inflation ends.

field itself in the inflationary dynamics. We will refer from now on to this approximation as
the “backreaction-less” solution, which differs more and more from the truly physical solution
the closer we get to the end of inflation, or the larger the strength of the coupling Λ−1. This
numerical backreaction-less solution is however very useful for two purposes: a) it will serve
as the initial condition on the lattice before backreaction becomes relevant, and b) it shows
clearly that the analytical solution fails noticeably towards the end of inflation (see figure 1b),
even if the gauge field backreaction is still negligible (see dicussion in section 4.1.1).

3 Lattice formulation of axion inflation with φFµνF̃
µν coupling

In this section we present a lattice formulation of an axionic-coupling φFF̃ for a U(1) gauge
group based on [71], but adapted to self-consistent expansion of the Universe. Armed with
this formulation, we will derive the equivalent lattice equations to simulate numerically the
field dynamics described by eqs. (2.8)–(2.9), together with eq. (2.12) describing the expansion
of the Universe sourced by (pseudo-)scalar and gauge fields as in eqs. (2.16)–(2.17), while
preserving the constraint equations on the dynamics eq. (2.10), and on the expansion rate
eq. (2.13). As the resulting lattice equations of motion are more complicated than usual and
require implicit solution methods, we also present our methodology to solve them.

3.1 Lattice action in flat space-time

We will start by considering the interaction φFµνF̃
µν in flat space-time, so we can set up

notation and introduce the proper problems arising in the lattice formulation of such term,
postponing for later other problems due to the inclusion of the expansion of the Universe
in the lattice. We label each lattice point as n = (t, ~n) = (t, n1, n2, n3), the lattice spacing
and time step as ∆x and ∆t, and indicate a displacement by a lattice unit in direction
µ̂ (spatial or temporal) as n + µ̂, or simply +µ̂. To avoid confusion, we do not consider
summation over repeated indices in lattice variables. We use a non-compact formulation of
lattice gauge theory, where gauge fields live on the links between two neighbouring sites,
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Aµ ≡ Aµ
(
n+ 1

2 µ̂
)
. We define the lattice versions of electric and magnetic fields as

Ei ≡ (∆+
0 Ai −∆+

i A0)
∣∣
l=n+ î

2
+ 0̂

2

, Bi ≡
∑
j,k

εijk∆
+
j Ak

∣∣
l=n+ î

2
+ ĵ

2

, (3.1)

and, for later convenience, the more elaborated versions

E
(2)
i ≡

1

2
(Ei + Ei,−i)

∣∣
l=n+ 0̂

2

, B
(4)
i ≡

1

4
(Bi +Bi,−j +Bi,−k +Bi,−j−k)

∣∣
l=n

, (3.2)

where the notation
∣∣
l=...

specifies the site where each field naturally lives and ∆±µϕ ≡
±1
dx (ϕ±µ − ϕ) are standard forward and backward lattice derivatives.

In flat space-time the action of our problem [cf. eq. (2.5) with a = 1] reads

Sm =

∫
d4x

(
1

2
π2
φ −

1

2
(~∇φ)2 − 1

2
m2φ2 +

1

2
( ~E2 − ~B2) +

φ

Λ
~E · ~B

)
. (3.3)

Following [71], an appropriate lattice action mimicking eq. (3.3) is

SL = ∆t∆x3
∑
t,~n

{
1

2

(
∆−0 φ

)2 − 1

2

∑
i

(
∆+
i φ
)2 − 1

2
m2φ2 +

1

2

∑
i

(
∆+

0 Ai −∆+
i A0

)2
−1

4

∑
i,j

(
∆+
i Aj −∆+

j Ai

)
+
φ

Λ

∑
i

1

2
E

(2)
i

(
B

(4)
i +B

(4)

i,+0̂

)}
, (3.4)

We refer the interested reader to [71] for details on the derivation of this action. Here we
simply repeat its virtues. In particular, eq. (3.4) ensures that:

1. Gauge invariance is manifest with the U(1) lattice transformation Aµ → Aµ + ∆+
µα,

where α(n) an arbitrary real function.

2. All terms reproduce the continuum limit to order O(dx2). Variation of the action will
therefore lead to lattice equations of motion that reproduce their continuum counter-
parts also to order O(dx2), see below eqs. (3.5)–(3.7).

3. Variation with respect to the gauge field leads to
∑

j,k εijk(∆
+
j + ∆−j )(E

(4)
k +E

(4)
k,+k) =

(∆+
0 + ∆−0 )(B

(4)
i +B

(4)
i,+i) and

∑
i ∆−i (B

(4)
i +B

(4)
i,+i) = 0, i.e. vanishing Bianchi identities

on the lattice.

4. The topological term KL ≡ (FµνF̃
µν)L ≡ 4

∑
i

1
2E

(2)
i (B

(4)
i + B

(4)
i,+0) admits a discrete

total derivative representation KL =
∑

µ ∆+
µK

µ
L, with K0

L = −KL
0 ≡ 2

∑
iA

(2)
i B

(4)
i ,

Ki
L = KL

i ≡ −
∑

j,k εijk

(
E

(2)
j A

(2)
k,−i + E

(2)
j,−iA

(2)
k

)
.
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The equations of motion describing the real time dynamics on a lattice follow from
variation of action eq. (3.4). Fixing the gauge to A0 = 0, we obtain [71]

∆+
0 πφ =

∑
i

∆−i ∆+
i φ+ 0̂

2

−m2φ
+ 0̂

2

+
1

Λ

∑
i

1

2
E

(2)

i,+ 0̂
2

(
B

(4)
i +B

(4)

i,+0̂

)
(3.5)

∆−0 Ei,+ 0̂
2

= −
∑
j,k

εijk∆
−
j Bk −

1

2Λ

(
πφB

(4)
i + πφ,+iB

(4)
i,+i

)
+

1

8Λ
(2 + dx∆+

i )
∑
±

∑
j,k

εijk

{
[(∆±j φ)E

(2)
k,±j ]+ 0̂

2

+ [(∆±j φ)E
(2)
k,±j ]− 0̂

2

}
(3.6)

∑
i

∆−i Ei,+ 0̂
2

= − 1

4Λ

∑
±

∑
i

∆±i φ+ 0̂
2

(
B

(4)
i +B

(4)

i,+0̂

)
±i

, (3.7)

where the electric field E
i,+ 0̂

2

≡ ∆+
0 Ai lives at semi-integer time steps, whereas the axion

conjugate field πφ ≡ ∆−0 φ lives at integer times, as the axion field itself φ
+ 0̂

2

lives at semi-

integer times, due to its pseudo-scalar nature. Eq. (3.7) represents the Gauss constraint of the
system. It can be shown that the set of eqs. (3.5)–(3.7) reproduces correctly the continuum
equations of motion to order O(dx2).

3.1.1 Implicit (iterative) solution for the electric fields

Standard lattice equations of a gauge system, e.g. an Abelian-Higgs model, typically admit
an explicit scheme for their solution: field amplitudes at a given time can be obtained from
the corresponding values at the previous time step, i.e

φ
+ 0̂

2

= φ− 0̂
2

+ dtπφ , Ai,+0̂ = Ai + dtE
i,+ 0̂

2

, (3.8)

and similarly the evolution of conjugate momenta can be obtained from previous ones as

πφ,+0̂ = πφ + dtQ 0̂
2

, E
i,+ 0̂

2

= E
i,− 0̂

2

+ dtPi , (3.9)

with Q+0̂/2 and Pi characteristic kernels of the system of equations. This simple leap-frog
scheme assumes that Q+0̂/2 and Pi are functions only of the field amplitudes. The set of

eqs. (3.5)–(3.7) does not admit however such explicit scheme of evolution (unless the axion is
forced to remain homogeneous). Inspecting eq. (3.6), we observe that on the right hand side
there are terms containing Ek,±j+0̂/2. This means that to solve for the electric field Ei,+0̂/2

on the left hand side, one needs to know the neighbouring electric fields Ek,±j+0̂/2 at the
same evolved time. This makes it impossible to solve explicitly for electric fields.

A potential solution to this problem is to obtain an explicit scheme by using an approx-
imated version of the lattice equations of motion. Making the following approximation on
the right hand side of eq. (3.6),

{
[(∆±j φ)E

(2)
k,±j ]+ 0̂

2

+ [(∆±j φ)E
(2)
k,±j ]− 0̂

2

}
≈ 2[(∆±j φ)E

(2)
k,±j ]− 0̂

2

, (3.10)
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leads to an explicit, but approximated, equation of motion for the electric fields

E
i,+ 0̂

2

∣∣
1

= E
i,− 0̂

2

+ dtCi +
dt

8Λ
(2 + dx∆+

i )
∑
±

∑
j,k

εijk[(∆
±
j φ)E

(2)
k,±j ]− 0̂

2

, (3.11)

where

Ci ≡ −
∑
j,k

εijk∆
−
j Bk −

(
πφB

(4)
i + πφ,+iB

(4)
i,+i

)
2Λ

+
(2 + dx∆+

i )

8Λ

∑
±

∑
j,k

εijk[(∆
±
j φ)E

(2)
k,±j ]− 0̂

2

.

(3.12)

The error caused in eq. (3.11) is of order O(dt). Therefore, the set of coupled equations
eqs. (3.5), (3.11) will only reproduce the continuum limit of the dynamics up to order O(dxµ),
instead of O(dx2

µ). Furthermore, as the left and right hand sides of eq. (3.7) are not well
balanced anymore, eq. (3.11) leads into a violation of the Gauss law (which accumulates
in time), and hence the whole scheme may exhibit inaccuracies in the numerical solution,
which are out of control. Solving the dynamics with eq. (3.11) instead of eq. (3.6), does not
represent therefore an appealing solution.

In order to preserve an order O(dx2) in the accuracy of the equations of motion, and to
verify the Gauss law to machine precision, [71] proposed an implicit method for solving the
electric fields iteratively. In practice the solution E

i,+ 0̂
2

∣∣
1

of eq. (3.11) is simply viewed as an

intermediate value of the updated electric fields at each lattice site. Then, by inserting this
solution into the original eq. (3.6), we obtain a new and more precise value of it, which will
be called E

i,+ 0̂
2

∣∣
2
. Then, in a following iteration E

i,+ 0̂
2

∣∣
2

acts as an intermediate solution to

compute E
i,+ 0̂

2

∣∣
3
, and so on. The iteration can be done n times, obtaining a solution

E
i,+ 0̂

2

∣∣
n

= E
i,− 0̂

2

+ dtCi +
dt

8Λ
(2 + dx∆+

i )
∑
±

∑
j,k

εijk(∆
±
j φ) 0̂

2

E
(2)

k,±ĵ+ 0̂
2

∣∣∣
n−1

, (3.13)

where E
i,+ 0̂

2

∣∣
0
≡ E

i,− 0̂
2

. In the limit n → ∞ this solution approaches the exact solution

E
i,+ 0̂

2

to eq. (3.6). To reproduce the continuum theory up to order O(dx2), it should be

enough to iterate two times. In practice, to verify the Gauss constraint eq. (3.7) to machine
precision, we need a solution as close as possible to the exact solution to eq. (3.6), and hence
it is not clear a priori how many iterations are required for such purpose. Approximating the
solution of the electric fields by E

i,+ 0̂
2

≈ E
i,+ 0̂

2

∣∣
n

will lead to a degree of violation of the Gauss

constraint, the smaller the larger the number of iterations n. We can therefore exploit this
fact and determine (by trial an error in a given simulation) the number of iterations needed
to verify the Gauss law to certain degree of violation. In practice, we observe that n = 10
iterations is typically enough to verify the Gauss law with machine precision, as presented in
section 4.3.

3.2 Adding expansion of the Universe in the lattice

Having laid the foundations of an interaction φFµνF̃
µν on the lattice, let us implement now

the expansion of the Universe. We build a lattice action that reproduces eq. (2.1) in the
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continuum using the same axionic coupling as in eq. (3.3),

SL = ∆t∆x3
∑
t,~n

{
1

2
a3
(

∆−0 φ+ 0̂
2

)2
− 1

2
a

+ 0̂
2

(
∆+
i φ+ 0̂

2

)2
− 1

2
a3

+ 0̂
2

m2φ2

+ 0̂
2

(3.14)

+
1

2
a

+ 0̂
2

∑
i

(
∆+

0 Ai −∆+
i A0

)2 − 1

4a

∑
i,j

(
∆+
i Aj −∆+

j Ai

)
+
φ

Λ

∑
i

1

2
E

(2)
i

(
B

(4)
i +B

(4)

i,+0̂

)}
,

where we choose that the scale factor a
+ 0̂

2

lives at semi-integer times, so that at integeter

times we write

a ≡ 1

2

(
a− 0̂

2

+ a
+ 0̂

2

)
. (3.15)

From here, we can derive the discrete equations of motion in an expanding background.
Fixing the gauge to A0 = 0, we obtain

∆+
0

(
a3πφ

)
= a

+ 0̂
2

∑
i

∆−i ∆+
i φ+ 0̂

2

− a3

+ 0̂
2

m2φ
+ 0̂

2

+
1

Λ

∑
i

1

2
E

(2)

i,+ 0̂
2

(
B

(4)
i +B

(4)

i,+0̂

)
, (3.16)

∆−0

(
a

+ 0̂
2

E
i,+ 0̂

2

)
= −1

a

∑
j,k

εijk∆
−
j Bk −

1

2Λ

(
πφB

(4)
i + πφ,+iB

(4)
i,+i

)
(3.17)

+
1

8Λ
(2 + dx∆+

i )
∑
±

∑
j,k

{
εijk[(∆

±
j φ)E

(2)
k,±j ]+ 0̂

2

+ [(∆±j φ)E
(2)
k,±j ]− 0̂

2

}
,

a
+ 0̂

2

∑
i

∆−i Ei,+ 0̂
2

= − 1

4Λ

∑
±

∑
i

(
∆±i φ+ 0̂

2

)(
B

(4)
i +B

(4)

i,+0̂

)
±i

, (3.18)

where eq. (3.18) represents the Gauss law, and the conjugate momenta are

πφ ≡ ∆−0 φ+ 0̂
2

, E
i,+ 0̂

2

≡ ∆+
0 Ai . (3.19)

By expanding each term in eqs. (3.16)–(3.18) around their natural site, it can be shown
that this set of equations reproduce to order O(dx2

µ) the equations describing the continuum
dynamics, eqs. (2.8)–(2.10).

Let us consider now the expansion of the Universe. In light of the continuum equations
eqs. (2.12), (2.13), and given our choice of a scalar factor living at semi-integer times, lattice
counterpart of Friedmann equations can then be written as(

∆+
0 a−0̂/2

)2
=

a2

3m2
pl

ρL , (3.20)

∆−0 ∆+
0 a+0̂/2 = −

a+0̂/2

6m2
pl

(ρL + 3pL)+0̂/2 , (3.21)

where eq. (3.20) is the lattice version of the Hubble constraint. From eqs. (2.16), (2.17) we
can identify the mean value (volume average) of the energy and pressure densities in the
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lattice as

ρL = H̄kin +
1

a2

1

2
(H̄grad

−0̂/2
+ H̄grad

+0̂/2
) +

1

2
(H̄pot

−0̂/2
+ H̄pot

+0̂/2
) +

1

a2

1

2
(H̄E
−0̂/2

+ H̄E
+0̂/2

) +
1

a4
H̄B ,

(ρL + 3pL)+0̂/2 = 2(H̄kin + H̄kin
+0̂

)− 2H̄pot

+0̂/2
+

2

a2
+0̂/2

H̄E +
1

a4
+0̂/2

(H̄B + H̄B
+0̂

) , (3.22)

with

H̄kin =
1

N3

∑
~n

π2
φ

2
, H̄grad =

1

N3

∑
~n

1

2

∑
i

(∆+
i φ+ 0̂

2

)2 , H̄pot =
1

N3

∑
~n

1

2
m2φ2

+ 0̂
2

H̄E =
1

N3

∑
~n

∑
i

1

2
E2

i,+ 0̂
2

, H̄B =
1

N3

∑
~n

∑
i,j

1

4
(∆+

i Aj −∆+
j Ai)

2 , (3.23)

so that H̄kin, H̄grad, H̄pot are the terms associated with the axion’s kinetic, gradient and
potential energy densities, and H̄E , H̄B are those associated with the gauge field electric
and magnetic energy densities. Note that H̄grad, H̄pot and H̄E naturally live at semi-integer
times, whereas H̄kin and H̄B live at integer times. Thus, we choose the semi-sums above so
that l.h.s. and r.h.s. in each of the eqs. (3.20), (3.21) are consistently living at the same time
(given our choice of scale factor living at semi-integer times), and reproduce the continuum
eqs. (2.12), (2.13) to order O(dx2

µ).

Let us emphasize that it is only eq. (3.21) that controls the evolution of the scalar
factor; eq. (3.20) instead, is not a dynamical equation, but rather a constraint that should
be conserved by the real time evolution of the field. Its violation indicates the degree of
violation of “energy conservation” in an expanding Universe.

3.2.1 Implicit (iterative) solution for the scale factor

Eqs. (3.21), (3.22) and (3.23) show that there is no explicit scheme for evolution of the scale
factor. To see this, let us label b the lattice time derivative of the scale factor a+0/2, i.e.

∆+
0 a+ 0̂

2

= b+0̂ . (3.24)

By inspecting eq. (3.16) we observe that to evolve the axion’s conjugate momentum

πφ,+0̂ =
1

a3
+0̂

(
a3πφ + dtQ̃

+ 0̂
2

)
, (3.25)

we need a+0̂ = 1
2(a

+ 0̂
2

+ a+ 3
2

0̂), which contains a+ 3
2

0̂, i.e. an unknown quantity which has

not been computed yet at that moment. We could find a+ 3
2

0̂ by using eq. (3.24) once b+0̂

is known, but to calculate b+0̂ we need πφ,+0̂. Therefore, there is no consistent scheme of
evolution.

It is worth stressing that if we had chosen a scale factor living instead at integer times,
an analogous problem would still appear but related with the evolution of Ei,+ 3

2
0̂, instead of

πφ,+0̂. This can be traced back to the fact that in our system, the pseudo-scalar field is forced
to live at semi-integer times due to the nature of the axionic-coupling interaction, see [71]
for further discussion on this.
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In order to solve for the scale factor, we will then use an implicit method similar to
the one used in section 3.1.1 to solve for the electric field. In particular, we first make the
following approximation,

a+0̂ ≡
1

2

(
a

+ 0̂
2

+ a+ 3
2

0̂

)
≈ a

+ 0̂
2

, (3.26)

from where we compute a first approximated value of the evolved conjugate momenta as

πφ,+0̂

∣∣
1

=
1

a3

+ 0̂
2

(
a3πφ + dtQ̃

+ 0̂
2

)
. (3.27)

An approximate value of the parameter b+0̂

∣∣
1

then follows as

b+0̂

∣∣
1

= b− c+0̂/2 dt− dt
a+0̂/2

3m2
pl

[
H̄kin + H̄kin

+0̂

∣∣
1

]
, (3.28)

where c+0̂/2 ≡
a+0̂/2

3m2
pl

[
H̄E

+0̂/2

a 2
+0̂/2

+

(
H̄B

+0̂
+ H̄B

)
2a 4

+0̂/2

− H̄pot

+0̂/2

]
, (3.29)

from where we can then also compute a first approximation of the evolved scale factor

a+ 3
2

0̂

∣∣
1

= a
+ 0̂

2

+ dtb+0̂

∣∣
1

. (3.30)

An iterative scheme can then be put forward as

πφ,+0̂

∣∣
n

=
a3

+0̂

∣∣
n−2

a3
+0̂

∣∣
n−1

πφ,+0̂

∣∣
n−1

,

b+0̂

∣∣
n

= b− c+0̂/2 dt− dt
a+0̂/2

3m2
pl

[
H̄kin + H̄kin

+0̂

∣∣
n

]
,

a+ 3
2

0̂

∣∣
n

= a
+ 0̂

2

+ dtb+0̂

∣∣
n

. (3.31)

For a sufficiently large number of iterations n, we expect to reproduce the continuum evolution
up to order O(dx2), ensuring a sufficiently good accuracy in the conservation of the Hubble
constraint eq. (3.20).

3.3 Lattice power spectrum of fields

Let us discuss here briefly the lattice formulation of the power spectrum of a generic field f ,
with ensemble average 〈f2〉 in the continuum defined as

〈f2〉 =

∫
d log k Pf (k) , 〈fkfk′〉 = (2π)3 2π2

k3
Pf (k)δ(k− k′) . (3.32)

In the lattice the ensemble average is substituted with a volume average,

〈f2〉V =
dx3

V

∑
n

f2(n) . (3.33)

Using the following convention for the discrete Fourier transform,

f(n) ≡ 1

N3

∑
ñ

e−i
2π
N
ñnf̃(ñ) , f̃(ñ) ≡

∑
n

e+i 2π
N
ñnf(n) , (3.34)
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one obtains

〈f2〉V =
1

2π2

∑
|ñ|

∆ log k(ñ) k3(ñ)

(
dx

N

)3 〈∣∣f̃(ñ)
∣∣2〉

R(ñ)
, (3.35)

where 〈(. . .)〉 ≡ 1
4π|ñ|2

∑
ñ′∈R(ñ)(. . .) is an angular average over the spherical shell of radius

ñ′ ∈ [|ñ|, |ñ+ ∆ñ|], with ∆ñ a given radial binning, and we used the following lattice defini-
tions: ∆ log k(ñ) ≡ kIR

k(ñ) , k(ñ) ≡ kIRñ and kIR ≡ 2π
L . By identification with eq. (3.32), we

conclude that

Pf (k) ≡ k3(ñ)

2π2

(
dx

N

)3 〈∣∣f̃(ñ)
∣∣2〉

R(ñ)
. (3.36)

The lattice spectra of the axion, gauge field amplitude and its associated electric and
magnetic fields, are given by

Pφ(k(ñ)) =
k3(ñ)

2π2

(
dx

N

)3 〈∣∣φ̃(ñ)
∣∣2〉

R(ñ)
, (3.37)

PA(k(ñ)) =
k3(ñ)

2π2

(
dx

N

)3∑
i

〈∣∣Ãi(ñ)
∣∣2〉

R(ñ)
, (3.38)

PE(k(ñ)) =
k3(ñ)

2π2

(
dx

N

)3∑
i

〈∣∣ ˙̃Ai(ñ)
∣∣2〉

R(ñ)
, (3.39)

PB(k(ñ)) =
k5(ñ)

2π2

(
dx

N

)3∑
i

〈∣∣Ãi(ñ)
∣∣2〉

R(ñ)
. (3.40)

Given our choice of quadratic potential V (φ) = 1
2m

2φ2, we note that we measure all
observables in units of m, as this is a natural choice in our problem, given that a) the mass
of the axion is the only dimensionful scale in the problem while the gauge field backreaction
remains negligible, and b) it will determine the frequency of oscillations of the axion field
around the minimum of its potential during the preheating stage. Hence we measure e.g. the
gauge field amplitude or its energy in the corresponding powers of m, [〈 ~A 2〉] = m2, [〈 ~E2〉] =
[〈 ~B2〉] = m4. Correspondingly their logarithmic spectra have identical dimensions, [PA] =
m2, [PE ] = [PB] = m4, etc.

4 Dynamics on the lattice

In this section we study the evolution of the fields during the last efolds of inflation (sec-
tion 4.1), and during the preheating stage that follows afterwards (section 4.2).

4.1 Part I. Inflation (last efolds)

Here we concentrate first in the study of the last efolds of inflation. As long as excitation of
the gauge field remains “small” — we will quantify what this means in a precise manner –, we
can ignore the backreaction of the gauge field in the inflationary dynamics and safely use the
initial conditions described in section 2.3. Whereas this should represent a safe procedure
deep inside inflation, it is expected to become less and less accurate the closer we are to
the end of inflation, as the excitation of the gauge field is larger and the axion may also
develop some degree of inhomogeneity. However, due to the natural limitations of using a
finite volume, we cannot start our simulation too many efolds before the end of inflation,
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(a) (b)

Figure 2. Panel (a): the evolution of the axionic and electromagnetic energy densities for 1/Λ
varying between 6m−1

pl (lower bound) and 15m−1
pl (upper bound). Panel (b): the magnitude of the

different terms appearing in eq. (2.8). We computed the evolution of the 1
a3Λ | ~E · ~B| term for 1/Λ

which varies between 6m−1
pl (lower bound) and 15m−1

pl (upper bound).

say −N � 1. In fact, the initial modes captured in the lattice would be red-shifted too fast
out of the box and we would miss the successive relevant ones within our limited dynamical
range. It is clear that we can only aim to start our simulations some −N ∼ O(1) number of
efolds before the end of inflation.

4.1.1 Initial conditions

To determine, for a given coupling, when the backreaction-less solution described in sec-
tion 2.3 becomes a bad approximation to the real dynamics, we need to determine the mo-
ment when the contribution of the gauge field to the expansion of the Universe, as well as
its backreaction on the axion dynamics, become non-negligible. In figure 2a we show the
evolution of the electromagnetic energy density built from the gauge field backreaction-less
numerical solution, together with the energy density components of the axion field, during the
last efolds of inflation. In figure 2b, we plot the different terms involving the gauge field and
the homogeneous axion in eq. (2.8). For the range of couplings exhibited, 6 ≤ mpl/Λ ≤ 15, we
see that the axionic energy components always dominate until the end of inflation. The ratio
of the electromagnetic to the axion energy density is always very suppressed, for instance, at
N = −1 the ratio ranges between ∼ O(10−8)−O(10−4). Even at the end of inflation the sup-
pression still persists as ∼ O(10−7) for the lowest coupling and ∼ O(10−1) for 1/Λ = 15m−1

pl .

At the same time, we see that the terms m2φ and 3Hφ̇ in the axion field equation of motion
dominate over φ̈ (slow-roll condition) all the way until εH = 1, whereas the electromagnetic
backreaction term 1

a3Λ
~E · ~B starts to be significant for the largest couplings only at −N . 0.5

efolds. We see therefore that choosing as initial time for our lattice simulations any moment
between N ∼ −2 and N ∼ −1 efolds before the end of inflation guarantees that both the
energy density and backreaction of the gauge field have a negligible contribution (orders or
magnitude suppressed) into the inflationary dynamics for all the relevant coupling range we
considered.

Gauge field backreaction effects will be automatically accounted for, as small as they
might be, once we plug in the backreaction-less solution as an initial condition in our lattice
simulations. In fact, our code will solve the full fields dynamics in a 3+1 space-time according
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to the discretized version of the equations of motion, naturally accounting for the gauge
field contribution to the inflationary dynamics. Furthermore, let us remind that the above
discussion about the weight of gauge field effects on the inflationary dynamics, based on
the backreaction-less solution, also assumes that the gradient contributions from the axion
field are negligible. That is a very reasonable assumption as the axion is only expected to
develop inhomogeneities whenever the backreaction of the gauge field becomes noticeable.
Our code will account for possible effects due to the development of axion gradients, allowing
us to quantify in a self-consistent manner the validity of neglecting axion inhomogeneities in
first place.

Finally, we note that we have chosen to initialize the electric field to zero, Ei(ti) = 0.
This, together with the fact that we introduce the axion initially as homogeneous, φ(ti, ~x) =
φ0(Ni), guarantees that the lattice Gauss constraint given by eq. (3.18) is automatically
satisfied by the initial conditions. Once the Gauss constraint is verified initially, it will
remain conserved through all the running time of the simulations. Depending on the number
of iterations used in the implicit method to solve for the electric field (recall section 3.1.1), we
will preserve the Gauss law with worse or better accuracy, even down to computer precision
if desired. In section 4.1.2 we will elaborate further on the consistency of taking initial
vanishing electric field. In section 4.3 we will elaborate on our numerical ability to preserve
the Gauss law eq. (3.18) and the Friedmann constraint eq. (3.20) [cf. eqs. (2.10), (2.13) for
the continuum counterparts.]

4.1.2 Overlapping trajectories and fluctuations’ cutoff

In the previous section we have concluded that introducing the backreaction-less solution as
an initial condition −N ∼ 1− 2 efolds before the end of inflation seems consistent with the
idea that all gauge field contributions to i) the axion dynamics, ii) to the expansion of the
Universe, and iii) to the induction of axion gradients, are negligible. Of course, the deeper
inside inflation, the less excited the gauge field is, and hence the better such consideration
becomes. From that point of view, the larger the number of efolds before the end of inflation
to introduce the initial condition in the code, the better we should capture the real dynamics.
However, in practice, starting at an arbitrary number of efolds before the end of inflation,
say at N < −2, does not allow to capture well the whole dynamical range of mode excitation.
Modes are red-shifted away out of our simulation box very fast during inflation, so to capture
the whole dynamical range all the way from the beginning of the simulation until the end
of preheating, is only possible if we start sufficiently close to the end of inflation. Actually,
given that we are limited to lattice sizes of ≤ 2563 sites, starting our simulation at −N = 2
is already barely acceptable, as we will show in a moment.

To quantify the appropriated choice of the initial number of efolds −N before the end of
inflation to introduce the initial condition in our code, we can do the following self-consistency
exercise: for each given coupling we introduce initial conditions based on the backreaction-
less solution at two different moments. We shall identify these moments t2 and t1, which are
naturally associated to −N2 and −N1 efolds before the end of inflation. Let us suppose that
t2 < t1 (equivalently −N2 > −N1). Then we evolve the lattice equations of motion for each

initial condition and we label each dynamical solution for the fields as {φ(2)(t, x̄), A
(2)
µ (t, x̄)}

and {φ(1)(t, x̄), A
(1)
µ (t, x̄)}. We shall obtain each solution until the condition εH(tend) = 1 is

reached numerically in each case. If the backreaction is truly negligible at both initial times,

essentially we should obtain numerically that {φ(2)(t, x̄), A
(2)
µ (t, x̄)} = {φ(1)(t, x̄), A

(1)
µ (t, x̄)}

for all the overlapping time range t1 ≤ t ≤ tend, where tend signals the end of inflation. We
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will refer to this situation as correct “overlapping dynamical histories” between two initial
conditions started at t2 and t1. If on the contrary, between t2 and t1 the backreaction of the
gauge field becomes noticeable, the solution initialized at t2 will not coincide later at t1, with

the one just initialized in that moment, i.e. {φ(2)(t1, x̄), A
(2)
µ (t1, x̄)} 6= {φ(1)(t1, x̄), A

(1)
µ (t1, x̄)}.

In this case, we then have to initialize the fields at yet another earlier time t3 < t2, and check
again whether the dynamical field trajectories overlap or not for t2 ≤ t ≤ tend. Neverthe-
less, let us remember that we cannot push t3 too deep inside inflation because of the finite
size of our lattice box. Hence, we expect the trajectories to fail overlapping also when the
initialization of fields happens too many efolds before the end of inflation.

In order to perform the “overlapping trajectories” test, we need first to determine what
is the typical range of excitation of the gauge field fluctuations during inflation. Based on
the backreaction-less solution, we can already anticipate that within the allowed range of
coupling values mpl/Λ . 22, we only expect to excite the gauge field up to modes k/m . 20
up to the end of inflation, see figure 1. However, for our application to preheating, see
section 4.1, we will only be interested in the coupling range 6 ≤ m−1

pl /Λ ≤ 15, and hence
only modes up to k/m . 10 will be excited towards the end of inflation. During preheating,
however, higher modes will be excited, and thus we need to guarantee that the natural UV
cutoff kUV =

√
3 π
dx of the lattice, is large enough to encompass the physically excited modes.

Let us emphasize here that whenever we say we start a simulation at a given number
−Ni of efolds before the end of inflation, this refers to the would be efolds in a Universe
dominated only by the axion. In reality, for the largest a couplings, the contribution of the
gauge field to the expansion rate towards the end of inflation may become noticeable, and
hence the number of efolds till we reach the condition εH = 1, will actually be larger than
−Ni. Having this in mind, in figure 3a we show the evolution of the magnetic energy density
power spectra for mpl/Λ = 15 from a lattice simulation started at N = −2 efolds before
the end of inflation (in purple) up to the end of inflation (in red). It can clearly be seen
that the spectrum shifts towards the ultraviolet and grows in amplitude, as expected. In
figure 3b we illustrate the overlap of magnetic power spectra at N = −1, 0, superimposing
the evolution of simulations initialized at Ni = −2.0,−1.5,−1.0,−0.5, 0.0, and plotting also
spectra given by initial conditions in dashed lines. From this figure we can notice how the
dynamical range varies according to the initialization moment Ni. In fact, the deeper inside
inflation we initialize the fields, the more red-shifted the lattice cutoffs kIR and kUV are.
This is done to ensure that we are able to capture whole range of relevant modes at the
initial condition and during the simulation. It is clear that, because of the ultraviolet shift
of excitations, if we were to use a fixed dynamical range for all initializations, we would not
capture either the initial spectra deep in inflation, or the excited modes towards the end of it
and afterwards. In light of these considerations, we decided to choose as an IR lattice cutoff
adapted to the initialization moment Ni by fixing kIR = 0.5 a(Ni)H(Ni). This automatically
leads to a lattice cutoff kUV =

√
3NkIR/2 which, for the coupling range considered, suffices

to later encompass all the physically excited UV modes during preheating.

Another important aspect concerns the modes which are in vacuum at the moment of
initialization and how to deal with them. Since we are interested in the classical simulation
of the system, these modes should be eliminated (set to zero) above an initial cutoff k ≥ k∗.
Whereas at N = −2 the gauge field spectrum shows fluctuations excited up to k . 1m, at
the end of inflation the cutoff has grown to k . 7− 10m. However, we cannot introduce as
initial cutoff k∗|Ni the one inferred from the backreaction-less initial condition at the initial
moment Ni, because there will be always harder modes k & k∗|Ni in vacuum at that initial
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(a) (b)

Figure 3. Panel (a): the evolution during the last 2 efolds of inflation of the magnetic power
spectra for the coupling 1/Λ = 15m−1

pl and initialization at Ni = −2.0 efolds. Panel (b): the
“overlap” of magnetic power spectra at N = −2,−1, 0 for different initialization moments Ni =
−2.0,−1.5,−1.0,−0.5, 0.0 efolds. Dashed lines represent the initial power spectra.

time, that will be successively excited later on as we approach the end of inflation. This
is precisely the meaning of the ultraviolet displacement of the spectra observed in figure 3.
Therefore we need to introduce a sufficiently large cutoff, otherwise modes in vacuum that are
meant to be excited during the last efolds before the end of inflation will not be excited. On
the other hand, the initial cutoff cannot be arbitrary large, since the energy density obtained
from integrating over the logarithmic spectrum until such cutoff should be dominated by
the excited part of the spectrum. The contribution to the energy density of vacuum modes
should be sub-dominant because they are not physical in our classical simulation. In practice,
we will choose to introduce as initial cutoff the inferred one from the spectra at the end of
inflation based on the excitation range of the backreaction-less solution (for each coupling
Λ−1). This way we guarantee to cover the dynamical range of gauge field excitation, which
is the most important criteria for the correct evolution of the system. However this choice
implies that deeper inside inflation there will be a larger and larger contribution to the
energy densities coming from the ultraviolet vacuum tail. This effect becomes more clear
when looking at the overlap of dynamical trajectories started at successive earlier times.
In figure 4 we plot the evolution in time of the magnetic (a) and electric (b) energy density
components of the gauge field, for 1/Λ = 9.5m−1

pl . There, it is actually manifest the failure of
the overlapping of trajectories during inflation started at different initial times if the natural
UV lattice cutoff is the one considered for the initial fluctuation spectrum (i.e. if we do not
introduce any initial cutoff). When instead a shorter UV cutoff is introduced according to
the prescription explained before, we see that the trajectories overlap well, as they should.
However, it is noticeable an unnatural decay in time from the onset of each simulation. This
is a reflection of the fact that some vacuum modes are still contributing to the total energy,
in particular those between the physical cutoff and our initial cutoff. This effect could be
removed by means of an adaptative cutoff, that dynamically shifts towards the ultraviolet at
the same speed as the real cutoff of the physical spectrum, hence capturing only the range of
physically excited modes, leaving out the undesired vacuum ones. This approach is shown in
dashed lines in both panels of figure 4 and there we see how the trajectories correctly grow
during inflation and successively overlap. Nonetheless, we notice that after inflation ends, all
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(a) (b)

Figure 4. Panel (a): the “overlapping of magnetic energy density trajectories” for the coupling
1/Λ = 9.5m−1

pl initialized at Ni = −2.0 (red), . . . , 0.0 (purple) efolds. To compute the trajectories
we make use of three different UV cutoffs: the lattice cutoff, the “end of inflation” cutoff and an
adaptative cutoff.

trajectories overlap relatively well independently of whether we chose the prescribed initial
cutoff or an adaptative one, as the UV vacuum tail contribution becomes irrelevant once the
spectrum is dominated by the physically excited modes.

Note that in figure 4b, the evolution in time of the electric energy density goes up
abruptly initially, and then follows a smooth overlapping trajectory (when the right cutoff is
chosen). This is because, as mentioned in section 4.1.1, in order to have the Gauss law initially
verified, we set the electric field to zero as initial condition, even though the amplitude of
the gauge field is introduced according to the backreaction-less solution. The electric field is
however rapidly generated from the equation of motion of the gauge field, as it is not possible
to sustain the magnetic field given by the initial condition of the gauge field, without restoring
the electric counterparts. Therefore for few time steps after the onset of the initial condition,
the evolution of both the gauge and electric field amplitudes do not follow the real physical
dynamics, since the electric field need first to catch up with its physical value. However,
this occurs very fast and, since we expect the gauge field dynamics to be initially linear,
very soon the spectrum of gauge field fluctuations starts shifting towards the UV. Thus the
system will completely lose memory of this artefact after a very short period of adjustment.
However, thanks to this artefact, we are able to preserve the Gauss law from the onset to the
end of our simulation. Once the restoration is completed by the dynamics, the electric field
energy density enters into a correct regime of overlapping dynamical trajectories initiated at
different times, as clearly exhibited in figure 4b. In conclusion, the initially vanishing electric
field trick has no impact in the dynamics, however allowing for a simple initialization of the
fields preserving the Gauss law from the beginning.

4.1.3 Choice of initialization moment

In section 4.1.2 we have shown that during inflation the trajectories of electromagnetic energy
densities overlap consistently for initialization moments going from Ni = −2.0 to Ni = 0.0
efolds. However, from figure 3b we notice a fall in power for the simulation that started at
Ni = −2.0 efolds, particularly in the UV tail of the spectrum. This is a symptom of lack of
dynamical range. Now we will show how well the trajectories overlap during preheating, and
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(a) (b)

(c) 1/Λ = 9.5m−1
pl (d) 1/Λ = 15m−1

pl

Figure 5. Panel (a): the “overlapping of electromagnetic energy density trajectories” for two cou-
plings during the last efolds of inflation and first stages of preheating. Panel (b): the same overlapping
during preheating for 1/Λ = 15m−1

pl . Panels (c) and (d): the overlapping of magnetic power spectra
for the same coupling at mt = 1 (c) and mt = 20 (d).

from there decide how much we can initialize the simulations inside inflation without losing
the dynamical range of the system.

In figure 5a we can see evolution and overlap of electromagnetic energy density during
the onset of preheating for the couplings 1/Λ = 9.5m−1

pl and 1/Λ = 15m−1
pl . We notice

that during the last stages of inflation the trajectories overlap very well, but eventually
some discrepancies emerge, in particular for the simulations starting at Ni = −2.0 and
Ni = −1.5 efolds. In figure 5b we have zoomed in the overlapping trajectories for the
coupling 1/Λ = 9.5m−1

pl , from where we can see more in detail the discrepancy between the
Ni = −1.0,−0.5, 0.0 efolds and the Ni = −2.0,−1.5 efolds initializations. We notice that
the field dynamics starting at Ni = −2.0 exhibit a clear discrepancy after mt ≈ 1, while the
Ni = −1.5 case presents differences between mt ≈ 2 and ≈ 5, but eventually it catches up
the other trajectories. From figures 5c and 5d we can inspect the magnetic power spectra
at mt = 20 for 1/Λ = 9.5m−1

pl and 1/Λ = 15m−1
pl . As notice before, the Ni = −2.0 case

manifests a decrease of power in the UV modes for both couplings. Moreover we can see the
presence of extra wiggles which are not present or not very noticeable in the other spectra.
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From these two plots we can also convince ourselves that the Ni = −1.5 case is borderline
since for IR modes we have a good overlap but the UV modes start to suffer from the same
fall in power encountered for the Ni = −2.0 case.

The reason for this is very simple: when we initialize the fields as early as Ni = −2.0
efolds before the end of inflation, we need to make larger the volume of the lattice. As
we actually take as our lattice IR cutoff as kIR = 0.5aH, the earlier we start a simulation
the more we reduce our lattice IR cutoff to capture the initial spectrum of gauge modes
at that time. This reduces automatically the lattice UV cutoff, which is always given by

kUV =
√

3N
2 kIR. Therefore, the problem with starting our simulation at Ni = −2.0 efolds is

that we barely capture well the UV range that is really needed later on for describing the
gauge field excitation during preheating. As a result, the simulations started at Ni = −2.0
efolds, may eventually differ from others started later, specially in the case of relatively
large couplings mpl/Λ & 9, where the enhancement of gauge field is not negligible. Whereas
Ni = −2.0 as a starting time is barely acceptable, we have seen that the dynamically evolved
solutions starting at earlier times, say Ni < −2.0, exhibit clear differences which are only
due to the lack of a good dynamical coverage. Therefore, cannot consider them.

Based on the discussion presented so far, we could take as a typical initializing time of
our simulations Ni = −1.5 or Ni = −1.0 efolds before the end of inflation. For the largest
couplings simulations starting at Ni = −1.5, the results are however borderline acceptable,
as they still exhibit some lack of power in UV. Because of this, we have finally decided to
take as our canonical starting time as Ni = −1.0. This choice guarantees for all the couplings
that the initial backreaction is negligible, based on figure 2b, and at the same time allows to
use a sufficiently large dynamical range in our simulations, so that all the relevant excited
modes from the start to the end of the simulation, are well captured. Once again, let us
notice that Ni = −1.0 refers to a Universe dominated by an axion sector only; for the largest
couplings however the physical number of efolds till the end of inflation can be larger, as the
gauge field backreaction in the inflationary dynamics is not negligible.

4.2 Part II. Preheating

In this section we investigate the preheating stage after inflation. In particular, we analyse
the time evolution of the different energy density components and of the gauge field power
spectra, and we quantify the efficiency of energy transfer from the axion to the gauge field,
as a function of the coupling 1/Λ. All simulations presented here start according to the
prescription discussed in section 4.1.1, using a grid of N3 = 2563 points, and initialized at
our canonical choice of Ni = −1.0 efolds before end of inflation (as viewed from the axion-only
dominated dynamics).

4.2.1 Energy densities and power spectra

We start by studying the evolution in time of the volume averaged energy density components.
We will consider three different coupling values, representative of three distinct regimes,
characterized by the fraction of energy transferred from the axion into the gauge field. In
figure 6a we see the evolution of the axion and gauge field energy density components for
1/Λ = 6m−1

pl . This value is representative of the “sub-critical” coupling regime, for which the
energy density of the gauge field remains always sub-dominant with respect to the axionic
one through the whole evolution (during and after inflation). For sub-critical couplings the
gradient energy density is tiny compared to the other components, so we do not display it
in figure 6a. We observe that the kinetic and potential energy densities of the axion behave
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(a) 1/Λ = 6m−1
pl (b) 1/Λ = 9.5m−1

pl (c) 1/Λ = 15m−1
pl

Figure 6. Complete evolution of the energy density components, normalized by the initial one, for
three different representative couplings. The black and dashed lines represent the expected scalings
of the dominant sector in an expanding Universe.

as those of an harmonic oscillator with frequency m in an expanding Universe. This is
expected as in this weak coupling regime the axionic sector dominates the energy budget of
the Universe (and hence the expansion rate). In other words, the backreaction of the gauge
field remains mostly negligible. As expected, the oscillation-averaged kinetic and potential
energy densities correctly scale as ρ ∝ a3 (say the envelope of the oscillation maxima),
as if the Universe was matter dominated with a ∝ t2/3. Concerning the gauge field, we
see that the evolution of electric and magnetic energy densities are characterized by wiggles
around a common trajectory. These wiggles appear after the end of inflation during the
axion oscillation regime, and decrease in amplitude towards late times, as the velocity of the
axion also becomes gradually smaller due to the expansion of the Universe. After few axion
oscillations (approximately ∼1–2 efolds after the end of inflation) the dilution of the gauge
field due to the expansion of the Universe becomes stronger than the tachyonic instability
from the axionic coupling, and hence on the overall the electromagnetic energy density starts
decaying in time.

The energy densities for 1/Λ = 9.5m−1
pl are shown in figure 6b. This case corresponds

to the critical coupling value, as the gauge field is well excited and eventually, from mt ∼ 20
(N ∼ 2 efolds after inflation), its mean energy density becomes comparable to the axion en-
ergy density. Furthermore, we notice an enhancement of the gradient mean energy density,
which reflects a larger degree of inhomogeneity of the axion field. This is due to the backre-
action of the gauge field into the scalar sector, which is not completely negligible anymore.
Once the total energy density becomes almost equivalently split between the axion and the
gauge sector, we notice a change in the scaling of the kinetic and potential mean energy den-
sities, as expected. In particular, the observed scaling is neither characteristic of matter- or
radiation-domination, as the Universe is neither axion or gauge field dominated, but rather
dominated by an even mixture of the two. We note nonetheless that the axion field mean
value still oscillates around the minimum of the potential, as the axion inhomogeneities still
represent only a small perturbation over the homogeneous background configuration.

Finally in figure 6c, we present the energy densities for a super-critical coupling,
1/Λ = 15m−1

pl . In this case the gauge field mean energy densities rapidly become domi-
nant. We see that the oscillations of the mean kinetic and potential energy densities have
disappeared and that the gradient energy also becomes rapidly comparable to the others.
This shows how for a super-critical coupling the gauge field backreaction, and correspond-
ingly the inhomogeneity of the axionic field, are very noticeable, clearly impacting on the
evolution of the system dynamics. We see that for this large coupling, the wiggles that
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(a) Kinetic energy (b) Potential energy (c) Gradient energy

(d) Electric energy (e) Magnetic energy (f) Axionic and EM energies

Figure 7. The different mean energy densities components, divided by the initial one, for three
couplings: 1/Λ = 6m−1

pl in blue, 1/Λ = 9.5m−1
pl in red and 1/Λ = 15m−1

pl in green.

appeared during the evolution of electric and magnetic energy densities for sub-critical and
critical couplings, have now disappeared. This can be explained by the fact that the gauge
field are not being excited periodically by the axion since the latter cannot be considered
anymore an oscillating homogeneous condensate. We also note that at late times the gauge
sector reaches equipartition, with both the electric and magnetic energy densities correctly
scaling as ρ ∝ a−4, while the scale factor scales as a ∝ t1/2. This is expected, as it cor-
responds to a radiation dominated Universe with expansion rate dictated by a dominating
massless gauge field.

For further clarity, we plot in figure 7 the different energy components of the system
separately, comparing in each panel the evolution of a given component for the same three
couplings 1/Λ. The amount of gauge field excitation and corresponding impact in the system
dynamics, comparing sub-critical, critical and super-critical couplings, is clearly appreciated
in the different panels, in an component by component basis.

For a better understanding of the dynamics of preheating, we analyse now the time
evolution of the power spectra of the gauge field. We will actually consider only the power
spectra of the “comoving” electric and magnetic energy densities, removing the appropriate
scale factor powers from the physical expressions, so that the dilution due to the expansion
of the Universe is not visible, and we can focus only in the gauge field excitation due to its
coupling to the axion. In figure 8 the evolution of the magnetic energy power spectra for
the previous three representative couplings, while the same analysis for the electric power
spectrum is shown in figure 9. We will focus our discussion about power spectra only based
on the magnetic energy spectrum, as the details on the electric counterpart are rather similar.

In figures 8a–8c we see that the growth of the three coupling cases is, as expected, visibly
distinct. This fact is highlighted by figure 8d, where the line-styles represent different stages
of the lattice evolution. We see that for the sub-critical case 1/Λ = 6m−1

pl plot in figure 8a,
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(a) 1/Λ = 6m−1
pl (b) 1/Λ = 9.5m−1

pl

(c) 1/Λ = 15m−1
pl (d)

Figure 8. The growth, from purple to red, of the magnetic energy power spectra of the three different
couplings is shown in panels (a),(b) and (c). The time between each line is m∆t = 1. The panel
(d) shows a comparison between the three at different times: at the beginning of the simulation
(continuous line), at the end of inflation (dashed line) and at mt = 100 (dotted line).

only infrared modes k < k∗ = 5 m are excited, whereas higher modes are barely excited and
do not play any role in the dynamics.4

The picture changes for the critical couplings 1/Λ = 9.5m−1
pl shown in figure 8b, where

modes above the initial cutoff are excited through the simulation, due to the non-linearity
of the system. Let us recall that during inflation higher modes were successively excited as
they approached the Hubble scale from initially sub-horizon scales, what corresponds to a
linear regime of the system, where modes of different wavelength are not influenced by each
other. However, after inflation, when the axion starts oscillating, the backreaction between
the gauge field and the axion becomes more noticeable, so the dynamics become non-linear
as both fields influence each other, leading to a spread of power into higher momenta. We
also note that for both sub-critical and critical couplings, the power spectra grow towards a
stationary configuration, where the modes start to oscillate until they relax. These oscillations

4Ultraviolet modes k > k∗ = 5 m in the sub-critical coupling example are interpreted as remaining in
vacuum and hence should not be considered in a classical simulation. Their energy density however is totally
sub-dominant compared to the infrared modes, and their presence in our simulation is harmless.
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(a) 1/Λ = 6m−1
pl (b) 1/Λ = 9.5m−1

pl

(c) 1/Λ = 15m−1
pl (d)

Figure 9. The growth, from purple to red, of the electric energy power spectra of the three different
couplings is shown in panels (a),(b) and (c). The time between each line is m∆t = 1. The panel
(d) shows a comparison between the three at different times: at the beginning of the simulation
(continuous line), at the end of inflation (dashed line) and at mt = 100 (dotted line).

are due to the change of sign and amplitude of the axion momenta πφ, which is still oscillating
around the bottom of its potential.

Finally we can take a look at the super-critical case 1/Λ = 15m−1
pl shown in figure 8c,

where the excitation of ultraviolet-modes above the initial cutoff takes place very rapidly,
immediately after the end of inflation. The spread of power to higher modes occurs from
the beginning of preheating (before the axion can even reach its minimum), as the growth of
the mode amplitudes is actually significantly larger compared to the critical and sub-critical
cases. This is precisely the spectral counterpart of what we observed in terms of the energy
densities [cf. figures 6c, 7f], as in supercritical cases the energy is transferred so efficiently to
the gauge field that from the very end of inflation the systems becomes non-linear, resulting
in an immediate excitation of ultraviolet modes well above the initial cutoff. In summary,
the gauge field excitation encompasses now a broader range of momenta, and it is actually
significantly larger in amplitude, as it can be immediately appreciated by comparing the
range of scales in both x and y axis of figures 8a, 8b and 8c. Most of the excited modes in
the dynamical range of supercritical coupling, have actually amplitudes within a range of 3
orders of magnitude. An interesting aspect appreciated in figure 8c is that the oscillations
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(a) log scale (b) linear scale

Figure 10. The preheating efficiency evolution in semi-logarithmic (a) and linear (b) scales for
couplings going from 6m−1

pl , in purple, to 15m−1
pl , in red.

of the modes around the final stable configuration are not present, except for a small range
around k/m ≈ 1.

In figure 8d we present finally a direct comparison of the power spectra for the three
chosen couplings, showing them at the beginning of the simulation ∼ 1 efold before the
end of inflation (continuous lines), at the end of inflation (dashed lines), and at the end of
the simulation when the system has reached a stationary configuration (dotted lines). The
difference in the amplitudes and in the range of excited modes are quite evident. However,
we would like also to point out two aspects that the three cases have in common. The first
one is that the peak of the power spectra is around k/m ≈ 3, and the second is that the
highest rate of excitation happens during the very first stages after the end of inflation. The
transfer of energy with an axionic coupling is therefore extremely efficient, and will lead to
very efficient preheating for the highest couplings.

4.2.2 Preheating efficiency

We analyze now the efficiency of preheating as a function of the coupling 1/Λ. In particular
we monitor the evolution in time of the ratio between the electromagnetic and total energy
densities ρEM/ρtot. This is what is shown in figure 10 for 1/Λ ranging from 6m−1

pl to 15m−1
pl ,

sampled in ∆Λ−1 = 0.25m−1
pl intervals. We notice that, for small couplings 1/Λ < 9m−1

pl ,
the preheating efficiency is typically smaller than ∼ 10 %, while for large couplings couplings
1/Λ > 10m−1

pl , the energy stored in the electromagnetic field is above ∼ 80 %, reaching

an almost perfectly reheated Universe as soon as the couplings reach 1/Λ & 14m−1
pl . The

transition between inefficient (. 50%) and efficient (& 50%) preheating occurs precisely
around the critical value 1/Λc ≈ 9.5m−1

pl .

Looking in detail at figure 10a we can appreciate different patterns of the preheating
efficiency. A first pattern concerns the sub-critical coupling regime 1/Λ . 9.5m−1

pl , for
which the gauge energy density growth is dictated in first place by the tachyonic instability,
but once the scalar sector starts oscillating, the growth suddenly decreases drastically and
wiggles appear. We can see that for such small couplings the growth continues at a very
slow rate until mt ≈ 20− 30. From that moment onward the electromagnetic energy density
starts decreasing in time, as the instability due to the axionic coupling cannot compensate the
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Figure 11. The maximal value of the efficiency ratio ρEM/ρtot for the different couplings. In the
left-lower part we present a magnified plot for the 1/Λ ≥ 9.5m−1

pl couplings, for which preheating is
efficient.

dilution due to the expansion of the Universe (which effectively behaves as matter domination
after mt ≈ 20− 30).

For supercritical couplings 1/Λ & 9.5m−1
pl , the transfer of energy into the gauge field is

very efficient immediately after the end of inflation, the more efficient the larger the coupling
Λ−1. However, for the largest couplings 1/Λ & 12m−1

pl , the transfer is so efficient that the
growth of the gauge energy reaches rapidly a local maximum around mt ∼ 1 − 2, and the
growth then ceases. This pattern can be clearly appreciated in figure 10b. The larger the
coupling Λ−1 the sooner the maximum in ρEM/ρtot is reached, and the smaller its amplitude
is. The reason for this is that for larger couplings in the supercritical regime, the earlier the
kinetic energy density of the axion drops below the electromagnetic energy density. When
the kinetic axion energy becomes very sub-dominant (typically ∼ 10% of the electromagnetic
energy), the tachyonic instability looses efficiency and the excitation of gauge field stops,
until the kinetic energy is eventually restored, inducing again the tachyonic instability. In
order words, after reaching the local maximum, the ratio ρEM/ρtot falls for short while, but
begins to grow again soon afterwards, as the tachyonic instability becomes again active. This
pattern can be observed for instance in figure 6c, and we certify that we have always observed
it for sufficiently large couplings. It is not clear to us, however, whether the gradients of the
axion field are also playing any role in this pathological behaviour, as the term ∝ ~∇φ is
present in the equation of motion of the gauge field eq. (2.9).

Finally, let us note that the precise value of the critical coupling Λ−1
c ' 9.5m−1

pl can be
actually inferred from figure 11, where we show the maximum values that the ratio ρEM/ρtot

reaches for each simulation. Looking at figure 11 it becomes very clear why we speak in
first place about sub-critical Λ−1 . Λ−1

c and supercritical Λ−1 & Λ−1
c coupling values. For

couplings below the critical value the preheating efficiency decreases actually exponentially
fast. We also notice that only when the system transfers at least ∼ 80 % of its energy into the
gauge field, then it reaches eventually a stationary configuration where the energy fractions
remain constant. Since in the supercritical case the Universe energy budget is dominated
by the massless gauge field, the energy density of the gauge fields scales as radiation. The
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(a) (b)

Figure 12. Panel (a): Hubble constraint violation through the simulation for different scalar itera-
tions IS . IE = 2 is fixed. Panel (b): Gauss constraint violation through the simulation for different
number of electric iterations, IE = 0 (purple), . . . , 11 (red). IS = 2 is fixed.

Universe is therefore fully reheated, entering into a radiation dominated epoch very soon
after the end of inflation, for couplings Λ−1 & 14m−1

pl (see zoomed plot in figure 11).

4.3 Verification of dynamical constraints

In order to test the correctness of our lattice approach, we are going to study the evolution
of the Gauss and Hubble constraints of the system, which are given by eqs. (3.18), (3.20).
To be more precise, we will obtain the violation of these two constraints at each time step
by computing the following quantity,

∆G,H =

√
(l.h.s.− r.h.s.)2√

(l.h.s.)2 + (r.h.s.)2
, (4.1)

where l.h.s. and r.h.s. refer to the left and right hand sides of eqs. (3.18), (3.20) respectively.
Then a total violation of the constraint corresponds to ∆G,H = 1, while the exact conservation
would imply values of ∆G,H close to machine precision.

We start by studying the dependence of the Hubble constraint on the number of scale
factor iterations, which will be denoted by IS , while keeping fixed the number of electric
iterations, IE , at 2. In figure 12a we can inspect its violation for a simulation with coupling
1/Λ = 15m−1

pl . We notice that for IS = 0 the system reaches the complete violation of the
constraint, which corresponds to the development of an instability. Indeed in this case the
dynamics of the fields are completely spoiled as the values quickly diverge towards infinities.
The end of the orange line, IS = 0, corresponds to the appearance of a non-numerical value
in the outputs of the simulation. This implies that the explicit approximation of the scale
factor, eq. (3.26), makes the system of equations unstable. Thus the results will be totally
spoiled if the iterative method presented in section 3.2.1 is not used. Concerning the other
three cases we notice that the conservation of the Hubble constraint has almost the same
evolution. More precisely, the case IS = 1 presents a small deviation compared to IS = 2, 3,
which instead are indistinguishable. This behaviour repeats itself also for IE 6= 2. From
these considerations we conclude that IS = 2 is the minimal number of iterations of the scale
factor in order to have the best possible conservation of the Hubble constraint.
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Having fixed the number of scale factor iterations, we can study the evolution of the
Gauss constraint as a function of the number of electric iterations. This dependence is
shown in figure 12b, for IE going one by one from 0 (purple) to 11 (red) and the coupling
1/Λ = 15m−1

pl . We see that each extra iteration reduces the violation of the Gauss constraint
by a factor ∼ 10, until a lower limit is reached. In fact the lines given by IE = 10 and IE = 11
are superimposed and higher iterations give the same result. This demonstrates that, for
a sufficiently high number of electric iterations, our lattice approach conserves the Gauss
constraint up to machine precision. The question now is to know if all these iterations and
the consequently increased precision in the Gauss constraint are really necessary to capture
the dynamics of the problem. This is important because, for each iteration, we are adding
loops of computations over the whole lattice grid, hence increasing the computational cost.
In fact we have found out that each iteration increases of ∼ 7 % the total time of simulation,
as shown in appendix B. The conclusion is that the dynamics are almost insensitive to the
number of electric iterations, as opposed to what happens with IS . In fact we only noticed
a small departure from the physical trajectory for IE = 0, while for IE ≥ 1 substantially we
have the same evolution through the whole simulation. We then decided to set both electric
and scale iterations to 2 during our simulations.

5 Discussion

In this paper we have introduced a lattice formulation of an axionic coupling φ
ΛFF̃ , gener-

alizing the original flat-space formulation from ref. [71] to curved space with self-consistent
expansion of the Universe, so that both (pseudo-)scalar and gauge field degrees of freedom
contribute to the expansion rate. This formulation preserves (at the lattice level) all the
properties of the continuum theory: gauge invariance, shift symmetry and the topological
nature of FµνF̃

µν = ∂µK
µ. We have proposed iterative methods to deal with the fact that

we can no longer solve the lattice equations of motion by an explicit method. We have
demonstrated that despite this technical complication, our numerical evolution is capable
of preserving the Gauss constraint down to machine precision, and the Hubble expansion
constraint down to the usual ∼ 10−4 accuracy in standard leap-frog evolution algorithms.
Our lattice formulation represents therefore an optimal tool for studying the dynamics of
axion-driven scenarios with a derivative coupling to an Abelian gauge field, as we approxi-
mate correctly the continuum theory up to quadratic order corrections in the lattice spacing,
while preserving all of its relevant properties on the lattice.

Using the proposed lattice formulation we have studied the last efolds of inflation and
the onset of preheating in an axion-inflation model with quadratic potential. We have charac-
terized in detail the energy transfer from the inflaton to the Abelian gauge field as a function
of the strength of the coupling 1/Λ. We have first observed that the analytical solution pro-
vided in the literature (for ξ constant), fails significantly towards the end of inflation. Hence,
in order to set the initial condition on the lattice, it is better to solve numerically in Fourier
space the evolution of the gauge field deep inside inflation, when the backreaction is still
negligible. Once the lattice code is initialized, full account of the backreaction of the gauge
field is automatically considered in our simulations, including the influence of the gauge field
on the axion dynamics, on the expansion rate, and even on the possible development of axion
inhomogeneities.

We have quantified in detail for quadratic axion-inflation the efficiency of preheating,
i.e. the ability of the system to transfer a given percentage of energy from the axion into
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the gauge field, as a function of the strength of the coupling 1/Λ. Two coupling regimes
are clearly identified, sub-critical Λ−1 . Λ−1

c and super-critical Λ−1 & Λ−1
c , depending on

whether the final energy fraction stored in the gauge field is below or above ∼ 50%. The
approximated value of the critical coupling Λ−1

c ' 9.5m−1
pl can be extracted from figure 11,

which summarizes well the preheating efficiency in this scenario. For sub-critical couplings
the efficiency of preheating drops exponentially when reducing the coupling, as the tachyonic
growth due to the axionic coupling can never compete with the dilution due to the expansion
of the Universe. For super-critical couplings the efficiency grows very fast when increasing
the value of the coupling, reheating the Universe very efficiently (with more than ∼ 95% of
the total energy in the gauge field) for couplings Λ−1 & 14m−1

pl .

Before we conclude we would like to note that a flat-space version of our lattice formula-
tion was used in a previous study in the context of the anomalous non-conservation of fermion
number in Abelian gauge theories at finite temperature [74]. There, a statistical study of the
Chern-Simons number Q(t) ∝

∫ t
0 dt

′ ∫ d3xFF̃ = NCS(t) −NCS(0), with NCS(t) ∝
∫
d3x ~A~B,

proved to be very sensitive to the lattice formulation used. Based on this observation, we
were expecting something similar to occur in the scenario studied here, and hence all the
great care we put in the construction of a lattice formulation respecting all the necessary
symmetries of the continuum. Our numerical results on preheating are however very similar
to those presented already in ref. [61], where numerical simulations of the same system were
also explored with a less refined lattice formulation. It seems therefore that the relevance of
introducing a lattice representation of FF̃ that can be expressed as a total derivative (hence
preserving exactly the shift symmetry on the lattice), may depend on the case of study. For
the observables and context where we have applied our formalism in this paper — preheating
after axion inflation –, we conclude that it does not seem to be a crucial aspect. It is however
the outcome of our results, based on an exact shift symmetry on the lattice, that ultimately
validates this fact for the axion inflation scenario considered.

Our lattice formulation represents in any case a powerful tool for studying the non-linear
dynamics of any system composed by an axion-like field (with arbitrary potential) and an
Abelian gauge field coupled to the latter via a Chern-Simons interaction, considering self-
consistent expansion of the Universe, and preserving exactly gauge and shift symmetries on
the lattice. We expect therefore that our present paper will be the first one of a series, where
we plan to apply our lattice formulation to review and investigate further phenomenological
aspects of axion-driven inflation scenarios with a φFF̃ coupling, particularly in the non-linear
regime where analytical studies cannot be precise.
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A Dynamical range study

An important aspect which can be analysed from the power spectra of the fields is how well
we are covering the dynamical range of momentum of our system. In order to do this we
run simulations with slightly different infrared lattice cutoff which we define by kIR = xkaH,
where xk < 1 is the arbitrary parameter and aH = a(ti)H(ti) is defined by the initial
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(a) 1/Λ = 6m−1
pl (b) 1/Λ = 9.5m−1

pl (c) 1/Λ = 15m−1
pl

Figure 13. Power spectra comparison for different lattice spacings dx at t = 50 m−1. The study has
been done with 1/Λ = 8.25m−1

pl , 11m−1
pl , 15m−1

pl .

conditions. We know that once kIR is defined, also the UV cutoff kUV is fixed by the relation

kUV =
√

3N
2 kIR. Then, by comparing the resulting power spectra we will be able to know how

different values of xk affect the dynamics. If no evident distortion of the spectra appear, it
means that our momentum coverage is sufficient to capture the dynamics of the system. The
results of this study are presented in figure 13, where we show the magnetic energy density
power spectra for three representative couplings at mt = 50. We see that the range of
momentum is shifted for each different xk, accordingly to our definition of kIR. Nevertheless,
the picture is broadly the same and no particular difference can be spotted, even though
xk = 0.3 is borderline in the UV. We then conclude that with our choice of xk = 0.5 we are
well capturing the dynamical range of the system.

B Time-demand of iterative methods

In this appendix we present a study on the time-demand of iterative methods. More precisely
we would like to quantify how much costs, from the computational point of view, each extra
loop imposed by these methods. In order to do this we will compute, for each combination
of iterations, the ratio

ti,j
t0,0

, where ti,j is the time needed for a code implementing IE = i,

IS = j iterations to run the simulation.

In figure 14a we show the results for IE = 0, 1, . . . , 15 and IS = 0, 1, 2, 3, 4. From
it we see that the increase on time is proportional to both number of electric and scale
factor iterations. This is not surprising since each iteration adds always the same amount of
computations to the simulation. From fitting the data, we find that the mean incremental
percentage for each extra electric iteration is

IS = 0 → 5.7 %

IS = 1 → 7.8 %

IS = 2 → 7.6 %

IS = 3 → 7.7 %

IS = 4 → 7.3 % .

Moreover, we figured out that for each extra scale factor iteration the computational time
increases by ∼ 8%.
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Figure 14. Panel (a): time-demand increase as a function of the number of electric and scale
factor iterations, respectively IE and IS . Panel (b): statistical variation in evolution due to random
realizations of the initial conditions for 1/Λ = 15m−1

pl . The statistics have been computed over
112 runs.

C Statistical fluctuations

Here we present a statistical study to understand how much the fluctuations due to random-
ness in the initial conditions affect the dynamics of the system. In fact, each initialization of
gauge field follows a random realization of a Rayleigh distribution, which rms value coincides
with the input value of the initial spectra computed following the prescription of section 2.3.
In figure 14b we see that basically the dynamical evolution in insensitive to the statistical
realization, as the standard deviation at each time step is essentially negligible.
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