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1 Introduction

The inflationary scenario, whose original formulation was initially advocated by Starobin-
sky [1, 2] and Guth [3], finds its fundamental motivation in the quest for the resolution of
three major conceptual issues in early universe cosmology, namely the homogeneity and flat-
ness of our universe, and the magnetic-monopole problem. Later on, Linde [4], Albrecht, and
Steinhardt [5] built on this proposal introducing a scheme in which the accelerated expansion
was driven by a scalar field, commonly referred to as the inflaton, rolling slowly on a plateau
of the potential toward its minimum. Scalar field inflation has the added value of providing a
mechanism for the generation of density perturbations that constitute the seeds for structures
that grow in the later dust-dominated era. The key idea behind scalar field inflation is that, if
this plateau is sufficiently flat, the phase of (quasi-)exponential expansion lasts long enough
to solve the cosmological problems mentioned above, providing also a mechanism for the
universe to gracefully leave this highly accelerated phase. This last paradigm can be recast
as a f(R) theory of gravity (see, e.g., [6–9]) and it has become part of the standard picture
of the early universe. The Starobinsky model [1, 2] appears to be particularly favoured by
present observations [10, 11].

In inflationary theory, it is common practice to employ the semiclassical picture of
gravity, which restricts the picture to the dynamics of quantum fields on a classical curved
spacetime. Further, only quantum fluctuations of the fields around classical values are al-
lowed. However, this approximation inevitably fails to capture relevant quantum properties
of gravity in the very early universe [12]. A way to preserve a quantum mechanical description
of the early universe consists of conceiving the classical spacetime geometry as an emergent,
rather than a fundamental, property of nature. A scheme that successfully implements this
picture at both astrophysical and cosmological scales is the so-called corpuscular theory of
gravity [13–16]. Its fundamental idea is that a classical spacetime can be thought of as a
self-sustained marginally bound state of a large number of soft off-shell gravitons. The high
multiplicity of this state allows one to recover the classical and semiclassical features of the
emergent spacetime. The first implementation of the corpuscular model [13–16] investigated
the physics hidden inside a black hole’s event horizon. Precisely, within this framework a
black hole of mass M is understood as a marginally bound state of N off-shell gravitons of
typical Compton length λG of the order of the Schwarzschild radius RH = 2GNM .1 Then,
even when the system enters the strong coupling regime, the requirement of a marginally

1We shall use units with c = 1 and the Newton constant GN = `p/mp, where `p and mp are the Planck
length and mass, respectively, and the reduced Planck constant is ~ = `p mp.
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bound state allows us to frame this theoretical set-up as a Newtonian theory of many gravi-
tons that appear to be loosely confined in a potential well of size λG ' RH. As a consequence,
the effective gravitational coupling among the constituent gravitons of this bound state scales
like α ∼ 1/N . This result is of paramount importance for this whole picture since it allows
one to understand classical black holes as the result of bound states of gravitons on the
verge of a quantum phase transition. Indeed, while the effective coupling α is very small,
the collective coupling for the system g = N α ∼ 1, and this configuration clearly matches
the traditional picture of an interacting Bose-Einstein condensate at the critical point. This
ultimately allows us to provide a corpuscular interpretation of Hawking radiation in terms of
gravitons leaking out of the bound state [13–16]. Further, working in this general framework,
it is possible to recover the correct post-Newtonian expansion of the gravitational field gen-
erated by a static, spherically symmetric source [17, 18] in a fully quantum framework and
the Bekenstein-Hawking area law [19], including semiclassical logarithmic corrections [20, 21]
for the Hawking radiation. What is more, when applied to the case of maximally symmet-
ric spaces, the corpuscular theory of gravity has proven effective in reproducing the main
features of inflation [12, 22] and dark matter phenomenology [23, 24]. In particular, it was
shown in refs. [25, 26] that Starobinsky’s inflation is naturally embedded in this framework.

In this work, we show that a corpuscular description of f(R) theories of gravity always
excludes the exact de Sitter spacetime, thus generalizing the results obtained in ref. [27], while
providing some (fully quantum mechanical) insight on the physically admissible f(R) models.

2 de Sitter universe

It is well known that the de Sitter metric is an exact solution of the modified theory of
gravity [7, 8, 28]

S =
1

16πGN

∫
d4x
√
−g f(R) , (2.1)

with [29, 30]

f(R) = γ `2pR
2 , (2.2)

where γ is a dimensionless constant. We recall that the equation of motion arising from
the variation of the action (2.1) for a spatially flat Friedmann-Lemâıtre-Robertson-Walker
(FLRW) metric,

ds2 = −dt2 + a2(t)
(
dr2 + r2 dΩ2

)
, (2.3)

is [6–9, 29, 31]

6 f ′(R)H2 = Rf ′(R)− f(R)− 6H Ṙ f ′′(R) , (2.4)

where a prime and an overdot denote differentiation with respect to R and to the comoving
time t, respectively. In particular, for the theory (2.2), one obtains

12RH2 = R2 − 12H Ṙ (2.5)

and, for de Sitter spacetime with a(t) = e
√

Λ/3 t and constant H ≡ ȧ/a =
√

Λ/3, one has

Ṙ = 24H Ḣ = 0 , (2.6)
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and

R

12
=
Ḣ + 2H2

2
= H2 =

Λ

3
. (2.7)

Integrating the left hand side of eq. (2.7) over a sphere of Hubble radius LΛ = H−1
Λ =

√
3/Λ

yields

L3
ΛH

2
Λ ' LΛ ≡ −GN UN (2.8)

and, likewise, the right hand side of eq. (2.7) yields

L3
Λ (Λ/3) ' LΛ ≡ GN UPN , (2.9)

where we introduced a “Newtonian” and a “post-Newtonian” (or post-Minkowskian) energy
UN and UPN, respectively.2 These expressions will be our starting point to investigate the
relation between corpuscular model and de Sitter space.

3 Corpuscular de Sitter and depletion

Let us begin by assuming that matter and the corpuscular state of gravitons together repro-
duce the Friedmann equation of cosmology, which we write as the Hamiltonian constraint

HM +HG = 0 , (3.1)

where HM is the matter energy and HG is the analogue quantity for the graviton state.
Local (Newton or Einstein) gravity being attractive implies that HG ≤ 0, although this is
not true for the graviton self-interaction [17, 18], and might not be true for the cosmological
condensate of gravitons as a whole, as we are now going to discuss.

In order to obtain the de Sitter spacetime in general relativity, that is the theory (2.1)
with f(R) = R, one must add a cosmological constant term, or vacuum energy density ρΛ,
so that the Friedmann equation,

3H2 = 8πGN ρΛ , (3.2)

equals precisely eq. (2.7). Upon integrating again on the volume inside the Hubble radius,
one has

LΛ ' GN L
3
Λ ρΛ ' `p

MΛ

mp
, (3.3)

which looks exactly like the expression of the horizon radius for a black hole of mass MΛ,
and is the reason why it was conjectured that de Sitter spacetime could likewise be viewed
as a graviton condensate [12].

One can roughly describe the corpuscular model by assuming that the (soft, virtual)
graviton self-interaction gives rise to a condensate of NΛ gravitons of typical Compton length
λ ' LΛ, so that MΛ = NΛ `pmp/LΛ, and the usual consistency condition

MΛ ∼
√
NΛmp (3.4)

2Factors of order unity will be often omitted from now on.
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for the graviton condensate immediately follows from eq. (3.3). Equivalently, one finds

LΛ ∼
√
NΛ `p , (3.5)

which shows that for a macroscopic universe one needs NΛ � 1. The above relations do
not need to hold for gravitons that do not belong to the condensate, therefore one expects
deviations to occur if regular matter is added [23, 24], or if the system is driven out of
equilibrium.

We can refine the above corpuscular description of de Sitter by following the line of
reasoning of refs. [17, 18], where it was shown that the maximal packing condition yielding
the scaling relation (3.5) for a black hole actually follows from the energy balance (3.1) when
matter becomes totally negligible. In the present case, matter is absent a priori and HM = 0,
so that one is left with

HG ' UN + UPN = 0 . (3.6)

The negative “Newtonian energy” of the NΛ gravitons can be obtained from a coherent state
description of the condensate [17, 18] in which each graviton has negative binding energy εΛ

given by the Compton relation, that is

UN 'MΛ φN = NΛ εΛ = −NΛ
`pmp

LΛ
. (3.7)

The positive “post-Newtonian” contribution is then given by the (bootstrapped) graviton
self-interaction term [17, 18]

UPN ' NΛ εΛ φN = N
3/2
Λ

`2pmp

L2
Λ

, (3.8)

where we used the Newtonian potential

φN = −NΛ `pmp

MΛ LΛ
= −

√
NΛ

`p
LΛ

, (3.9)

as follows from eq. (3.7) and the scaling relation (3.4).
In an ideal de Sitter universe, gravitons should satisfy the balance condition (3.6). Let

us rewrite the Hamiltonian (3.6) as

H(2)
G ' β (UN + UPN) , (3.10)

corresponding to the effective metric action (2.1) with eq. (2.2). Here we have introduced
the dimensionless parameter β > 0 of order unity in order to keep track of this contribution.
Let us include a term corresponding to the Einstein-Hilbert action, that is

H(1)
G ' αUN , (3.11)

where α > 0. The full energy balance is therefore

HG = H(1)
G +H(2)

G ' (α+ β)UN + β UPN = 0 (3.12)

and, because of the term proportional to α, we expect the expressions (2.8) and (2.9) for the
ideal de Sitter condensate to no longer constitute a solution. In fact, we are interested in
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a stage when departures from the de Sitter scalings are small, and we can therefore assume
that the potentials now take the slightly more general form

GN UN ' −L3H2 (3.13)

and

GN UPN ' L3 L−2
Λ , (3.14)

where L ∼ LΛ is the new Hubble radius. Substitution into eq. (3.12) yields

L3
[
− (α+ β)H2 + β L−2

Λ

]
' 0 , (3.15)

which is solved by

H2 ' β

α+ β

1

L2
Λ

. (3.16)

Of course, the de Sitter case is properly recovered when α = 0, but α > 0 implies that
H < HΛ as expected. If the system starts with H ' HΛ, the time derivative Ḣ must be
negative (i.e., the universe does not superaccelerate) in order to ensure the constraint (3.12)
holds at all times. This can be seen explicitly by writing

H = HΛ + Ḣ δt , (3.17)

where the typical time scale δt ' LΛ, since gravitons of Compton length LΛ cannot be
sensitive to shorter times. Equation (3.15) finally yields

Ḣ ' − α

α+ β

HΛ

δt
' − α

α+ β

1

L2
Λ

. (3.18)

Further, the slow-roll parameter in the corpuscular model is

ε ≡ − Ḣ

H2
' α

α+ β
, (3.19)

and one obtains ε = 0 in the limit α→ 0, provided the quantum depletion can be neglected.
In detail, gravitons in the condensate generate the effective Hubble parameter

H ∼ N
−1/2
Λ ∼ L−1

Λ , but they also scatter and deplete. Their number therefore changes
in time, according to [12, 22]

`p ṄΛ√
NΛ

=
`p ṄΛ√
NΛ

∣∣∣∣∣
eom

+
`p ṄΛ√
NΛ

∣∣∣∣∣
q

, (3.20)

where the classical equation of motion gives (for α 6= 0)

`p ṄΛ√
NΛ

∣∣∣∣∣
eom

' − Ḣ

H2
' α

α+ β
, (3.21)

and the purely quantum depletion yields

− Ḣ

H2
= `p ṀΛ ' −

m2
p

M2
Λ

' −`2pH2 ' − β

α+ β

1

NΛ
. (3.22)
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Putting the two terms together we obtain, for α� β ' 1,

− Ḣ

H2
' `p ṄΛ√

NΛ
' α

(
1− β

αNΛ

)
, (3.23)

leading to a critical value of α

α & αc '
β

NΛ
∼

`2p
L2

Λ

, (3.24)

which can be interpreted as a minimum “distance” from de Sitter space.
Now, the HamiltonianHG for a polynomial f(R) theory of gravity always consists of two

contributions H(1)
G and H(2)

G in corpuscular gravity. Effectively, the universe moves away from
a de Sitter fixed point of eq. (2.2), f(R) ' R2, and approaches asymptotically another fixed
point of general relativity with positive cosmological constant, that is f(R) ' R−Λ [23–25].
More precisely, assuming that R ' Λ is approximately constant, eq. (2.4) yields

6 f ′(R)H2 ' Rf ′(R)− f(R) . (3.25)

If we write

f(R) =

N∑
k=1

ak `
2k−2
p Rk , (3.26)

we find

Rf ′(R)− f(R) =
N∑
k=2

(k − 1) ak `
2k−2
p Rk (3.27)

and, up to coefficients of order unity, eq. (3.25) reduces to

H2

(
a1 +

N∑
k=2

k ak `
2k−2
p Rk−1

)
'

N∑
k=2

(k − 1) ak `
2k−2
p Rk , (3.28)

where we singled out the coefficient a1 for later convenience. Using R ' Λ and defining
n = k − 1 yield

a1H
2 '

N−1∑
n=1

[
n
(
Λ−H2

)
−H2

]
an+1 `

2n
p Λn

'
N−1∑
n=1

(
Λ−H2

)
nan+1 `

2n
p Λn . (3.29)

If we then use eqs. (2.8) and (2.9), it is easy to see that

H2 ' −GN UN

L3
Λ

' − `p
mp L3

Λ

UN (3.30)

and

Λ ' GN UPN

L3
Λ

' `p
mp L3

Λ

UPN , (3.31)

– 6 –
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which lead to

a1 UN + (UN + UPN)

N−1∑
n=1

nan+1

(
`3p UPN

L3
Λmp

)n

' 0 . (3.32)

For the Starobinsky model (N = 2), the latter reads simply

a1 UN + a2

(
`3p UPN

L3
Λmp

)
(UN + UPN) ' 0 . (3.33)

Now, recalling that a1 = α and a2 = γ, it is

αUN + γ
`2p
L2

Λ

(UN + UPN) ' 0 , (3.34)

in which we further used the de Sitter value (2.9) for UPN, since we are interested in studying
the stability of this space. Comparing with eq. (3.12), one recovers

β = β2 ≡ γ
`2p
L2

Λ

. (3.35)

Likewise, for the general eq. (3.26), one obtains eq. (3.12) with α = a1 and

β = βN ≡
N−1∑
n=1

nan+1

(
`p
LΛ

)2n

. (3.36)

All of the above estimates can be improved but, comparing with the previous discussion, we
expect again a bound similar to the one in eq. (3.24).

4 Conclusions

When the corpuscular model is studied in conjunction with quadratic corrections to the
Einstein-Hilbert action, as is natural, and is applied to early universe cosmology (as in
Starobinsky inflation, currently favored by cosmological observations), one finds that an exact
de Sitter space is always excluded. This result is significant because de Sitter spacetime is
the most common attractor in the FLRW cosmology based on general relativity and on f(R)
theories of gravity and, in order to be a fixed point, de Sitter space must be an exact solution
of the cosmic dynamics.

From an effective point of view, in the corpuscular model a universe that is close to (but
not exactly) de Sitter in the high curvature regime where f(R) ∝ R2 moves away from it due
to gravitons leaking out of the bound state and approaches a different de Sitter space in the
low curvature regime where f(R) ' R − Λ. If the universe was described at all times by a
purely classical f(R) theory, this beheavior would be described by a heteroclinic trajectory
linking two de Sitter fixed points in phase space, but this is not the case in the corpuscular
model with graviton depletion, in which the universe departs from the initial, high curvature,
coherent state.

From a classical perspective, an f(R) theory can be conformally mapped into Einstein
gravity minimally coupled to a scalar field with a complicated potential, the latter is known

– 7 –
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as the Einstein conformal frame whereas the former defines the Jordan frame for the model.
A key result of ref. [12] is that the exclusion of the de Sitter space is a direct consequence of
the quantum depletion in the Einstein frame. Here, instead, we offer a different angle to this
result based on the Hamiltonian constraint of cosmology and the Jordan frame description
of quantum depletion.

Finally, the cosmological phenomenology of the corpuscolar model is quite reasonable
and not exotic, in the sense that phantom behavior is always avoided since Ḣ must be negative
and, in addition to never reaching a de Sitter state, the universe never superaccelerates.
Further details of this intriguing corpuscular cosmology of the early universe will be reported
elsewhere.
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