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of two fluids induces corrections to the Lagrangian bias expansion and tracer advection, both
of which we formulate as expansions in the three linear modes of the Lagrangian equations of
motion. We compute the linear-order two-fluid corrections in the Zeldovich approximation,
finding that modifications to the bias expansion and tracer advection both enter as percent-
level corrections over a large range of wavenumbers at low redshift and draw parallels with
the Eulerian formalism. We then discuss nonlinear corrections in the two-fluid picture, and
calculate contributions from the relative velocity effect (∝ v2

r) at one loop order. Finally,
we conduct an exploratory Fisher analysis to assess the impact of two-fluid corrections on
baryon acoustic oscillations (BAO) measurements, finding that while modest values of the
relative bias parameters can introduce systematic biases in the measured BAO scale of up
to 0.5σ, fitting for these effects as additional parameters increases the error bar by less than
30% across a wide range of bias values.
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1 Introduction

Observations of the large-scale structure (LSS) of the universe allow us to shed light on areas
of physics ranging from galaxy formation and evolution to fundamental physics. A prime
target of present and future LSS surveys is the measurement of baryon-acoustic oscillations
(BAO) — the imprints of sound waves in the baryon-photon fluid observed in the cosmic
microwave background (CMB) on the observed clustering of galaxies — which can be used
as a standard ruler to constrain the expansion of the universe [1]. Upcoming surveys such as
DESI [2], EUCLID [3] and WFIRST [4] will provide BAO measurements with higher-than-
ever precision, and even more futuristic BAO surveys such as a Stage II 21-cm experiment [5]
have been proposed. These next-generation observational campaigns will require us to model
the LSS with unprecedented accuracy, at the sub-% level.

One area of recent interest in the field of LSS has been in accounting for the effects
induced by the existence of multiple species (cold dark matter, baryons, neutrinos), with
similar but distinct clustering properties, using analytic methods. Studies of the perturba-
tive approach to structure formation have traditionally grouped all nonrelativistic species
into a “total matter” fluid, whose gravitational collapse is the dominant source of structure
on cosmological scales in the late-time universe, but many authors have recently extended
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these techniques to include neutrinos [6–10] and baryons [11–17] in the Eulerian framework
of Standard Perturbation Theory (SPT). In parallel, the response of galaxy and halo for-
mation to the existence of multiple fluid species has also been subject of extensive investiga-
tion [11, 16–22]. Of particular interest are the present-day imprint of relative perturbations
between baryons and dark matter on large scales which, being seeded in the same epoch and
at the same scales as the baryon acoustic oscillations, has the potential to confound future
BAO measurements [11, 22–24]. While these relative perturbations do not grow significantly
in time (and relative velocities in fact decay) and are thus small compared to the total-matter
growing mode at late times, they amount to coherent supersonic flows post-recombination
and could have significant effects on the formation of the first halos and galaxies [11, 13],
which are the progenitors of the objects we observe today.

The goal of this work is to formulate perturbation theory and galaxy bias in the presence
of multiple fluids within the Lagrangian framework, with a particular focus on the two-fluid
baryon-dark matter scenario. Our work is a direct extension of the aforementioned SPT
calculations. While Lagrangian Peturbation Theory (LPT) is order-by-order equivalent to
SPT, it seamlessly allows a consistent treatment of large scales bulk flows, which are re-
sponsible for the final shape and position of the BAO features in the correlation functions
or power spectrum [25–31]. The theory can also be extended to handle density field ‘recon-
struction’ [32–36]. These features make LPT a natural language for investigating possible
distortions to the BAO feature.

This paper is organized as follows. In section 2, we introduce the linear Lagrangian
equations of motion and discuss the role of non-gravitational forces such as Compton drag
with the CMB. Modifications to Lagrangian galaxy bias and advection in the two-fluid limit
are then introduced in section 3. In section 4, we employ the results of the preceding two
sections and calculate the lowest-order two-fluid corrections to the galaxy power spectrum
in the Zeldovich approximation. Cross spectra and subtleties in the IR resummation are
briefly discussed in section 4.2. In section 5 we take up whether the calculated two-fluid
corrections can significantly bias BAO measurements, arguing that any such biases can be
mitigated by simultaneously fitting for these easily-characterizeable effects. Our conclusions
are summarized in section 6.

2 Linear equations of motion in Lagrangian space

In the Lagrangian picture, fluid dynamics is encoded in the displacements Ψσ(q) of fluid
elements of each species, σ, originally situated at Lagrangian positions q, such that their
Eulerian positions at conformal time τ (dτ = a−1dt) are given by [28, 37, 38]

xσ(q, τ) = q + Ψσ(q, τ). (2.1)

The subscript σ = {c, b} denotes the species, either cold dark matter (CDM) or baryons,
respectively, whose motion we are tracking. Assuming that initial displacements are in-
finitesimally small compared to those at the redshifts of interest, the overdensity, δσ, of each
species at Eulerian position x can be solved for via mass conservation

1 + δσ(x, τ) =

∫
d3q δD(x− q−Ψσ(q, τ)) =

∫
d3q

d3k

(2π)3
eik·(x−q−Ψσ(q,τ)), (2.2)

where δD is the Dirac delta function. Taylor expanding to first order in displacements yields
the familiar result that δσ(x) = −∇ ·Ψσ(q), but, as seen in equation (2.2), one feature of
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working in the Lagrangian picture is that the translation into Eulerian quantities, such as
the density field, invariably involves nonlinear combinations of Ψ even when only the linear
equations of motion are considered.

2.1 General formalism

While CDM particles by assumption experience only the gravitational force, baryons are
subject to non-gravitational effects, such as Compton drag and pressure gradients. These
effects can be summarized in the equations of motion of the fluid elements

Ψ̈c +HΨ̇c = −∇xΦ(q + Ψc)

Ψ̈b +HΨ̇b = −∇xΦ(q + Ψb) + Fb(q + Ψb), (2.3)

where overdots signify derivatives with respect to τ , H = d ln a/dτ is the conformal Hubble
parameter, Fb is the non-gravitational force per unit mass felt by baryons, and Φ is the
gravitational potential at Eulerian position x satisfying Poisson’s equation

∇2
xΦ(x, τ) =

3

2
Ωm(τ)H2(τ)δm(x, τ), (2.4)

where Ωm is the total matter mass density and δm is the total matter overdensity (see below).

At the linear level, there is no difference between the Eulerian and Lagrangian positions
in the above equations of motion, and we will neglect this distinction in the rest of this section
unless otherwise stated. Indeed, taking the divergence of equation (2.3) in the linear limit
(xσ ≈ q) directly yields the Euler equation when we map overdensities to displacements and
velocities to their derivatives:

δσ(xσ)↔ −∇ ·Ψσ(q) , vσ(xσ)↔ Ψ̇σ(q). (2.5)

Note that the first mapping is correct only to linear order, while the second one is exact if
the full x(q) is used. Assuming this translation, the solutions to the Lagrangian equations
of motion as described below are essentially identical to those extracted from Boltzmann
codes such as CAMB [39] or CLASS [40], provided one chooses post-recombination initial
conditions for the Lagrangian displacements.

To solve equation (2.3) in the linear limit, it is convenient to rewrite the baryonic and
CDM displacements in terms of a mass-weighted matter component (Ψm = wcΨc + wbΨb),
which sources the gravitational potential, and a relative component that characterizes the
differential flows between baryons and CDM (Ψr = Ψb − Ψc), where we have defined the
mass fractions of each species, wσ = ρσ/ρm. These are related to the Eulerian quantities
δm = wbδb + wcδc and vr = vb − vc by δa = −∇ ·Ψa and va = Ψ̇a, where a = {m, r}, again
at the linear level. The equations of motion in terms of these components are

Ψ̈m +HΨ̇m = −∇Φ + wbFb (2.6a)

Ψ̈r +HΨ̇r = Fb. (2.6b)

If in addition non-gravitational forces are negligible, the matter and relative components
decouple, such that equation (2.6a) can be solved as

Ψm(τ) = −m+D+(τ) + m−D−(τ) ≈ −m+D+(τ) , (2.7)
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where D+ is the usual linear-theory growth factor. In the last step we have neglected the
decaying mode, m−, since it is a tiny fraction of the total displacement at all redshifts
of interest. For non-gravitational forces, like Compton drag or pressure gradients, direct
integration of the linear equations of motion show that the non-gravitational terms make
a negligible contribution to the matter component Ψm, such that the transfer function at
redshifts below z = 6 agree with the linear solution in equation (2.7) to within 0.2%, with
even better agreement at the lower redshifts of interest in this paper. In the above we have
included a minus sign for convenience such that δm,0 = ∇ ·m+.

We end this subsection by discussing the full solution of the relative displacement when
Fb = Fb(τ) is independent of Ψr. In this case equation (2.6b) is linear and first order in Ψ̇r

and can be solved as:

Ψ̇r(τ) = vr(τi)
(ai
a

)
+

1

a

∫ τ

τi

dτ ′ a(τ ′)Fb(τ
′), (2.8)

where we have set the boundary conditions at initial time τi assuming the non-gravitational
effects encoded in Fb do not turn on until τ > τi. Equation (2.8) turns out to be an excellent
approximation for the large-scale Compton drag electrons experience in the reionization era
due to their relative motion with respect to the CMB rest frame, Fb = −neσT (ργ/ρb)avb,
where σT is the Thompson scattering cross section, ργ is the photon energy density and ne
the free electron number density. Eq. (2.8) also applies baryonic pressure forces on small
scales Fb ∝ −∇δb — in both cases the total-matter component may be substituted for the
baryonic component (i.e. δb ≈ δm) at the sub-percent level [17]. In the case of the large-scale
Compton drag, assuming vb ' vm yields

Ψ̇r(τ) = Ψ̇r(τi)
a(τi)

a(τ)
+

[
1

a

∫ ln(a(τ))

ln(a(τi))
d ln(a′)

(
ne(a

′)σT
ργ(a′)

ρb(a′)

)
f(a′)D+(a′)

a′2

]
Ψm(τi)

D+(τi)
, (2.9)

with f = dD+/d ln(a) the linear theory growth factor. The Compton drag thus induces a
mixing between the matter and relative components through a numerical prefactor depen-
dent only on the linear growth factor D+ and reionization history via ne. Finally, we can
integrate (2.9) to yield

Ψr(τ) = −r+ + r−Dr(τ, τi) + m+DCD(τ, τi), Dr(τ, τi) =

∫ τ

τi

H0dτ
′

a(τ ′)
(2.10)

where we can identify Ψr(τi) = −r+, a(τi)vr = H0r−, and the Compton-drag kernel DCD is
defined as the conformal time integral of the square-bracketed function in (2.9). The linear
solutions to both the total-matter and relative components are thus wholly specified by the
three modes m+ and r±. Jeans instabilities and baryonic pressure forces affect much smaller
scales and won’t be further discussed in the remainder of this work.

2.2 Initial conditions and transfer functions

The linear evolution of the density and velocity contrasts can be easily written in terms the
CDM and baryon linear transfer functions (output from, e.g. CAMB) as

Tδr(k) ≡ Tδb(k)− Tδc(k) and Tθr(k) ≡ Tθb(k)− Tθc(k) (2.11)
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where θb,c(k) ≡ −δ̇b,c(k). It is worth noticing that while the velocity field is gauge dependent,
velocity differences are not. The transfer function for ∇·m+ is simply the present-day matter
transfer function Tm and we can furthermore define

T∇·r+(k) ≡ Tb(k, zi)− Tc(k, zi)

T∇·r−(k) ≡ [(1 + zi)H0]
−1
(
Tθb(k, zi)− Tθc(k, zi)

)
. (2.12)

These three functions specify the solution for the Ψm, Ψr and Ψ̇r at any z < zi. The choice
of zi is somewhat arbitrary but choosing redshifts before the onset of reionization has the
advantage of separating the effects of gravity from Compton drag. This choice also justifies
the normalization in eq. (2.12), since r− is independent of redshift. In the remainder of the
paper we assume zi = 20.

In addition to the above, we will show below that calculating the power spectrum
at some redshift z in the Lagrangian picture requires linear-theory spectra of the relative
displacement at that redshift, which will typically include corrections from Compton drag.
These can be calculated via equations (2.7) and (2.8) to give

T∇·Ψr(k, z) = T∇·r+(k) +Dr(z, zi)T∇·r−(k) +DCD(z, zi)T∇·m+(k). (2.13)

Sample solutions of the equation of motion in eq. (2.6) when Fb is given by Compton drag
with the CMB are shown in figure 1. After reionization most of large scale power in the
relative velocity transfer function, T∇·Ψ̇r

, is provided by the Compton drag, which in turn
affects the evolution of the relative baryon-dark matter density at large scales (see top panels
in figure 1). Figure 1 also justifies the approximations we used to compute the drag forces, as
one can see by the excellent agreement with the full CAMB output. Other non-gravitational
effects like pressure terms (Jeans instability) and radiative transfer effects [41–44], can be
written in a similar form.

Ratios of the transfer functions to the total matter one are shown in figure 2. We notice
that the relative density perturbation is much larger than the relative velocity one, by a
factor of a hundred at least, and the two relative components have the same behavior with
wave-number k at small and large scales. Nonetheless r+ and r− have significant differences
in shape around the BAO scales and therefore will have to be treated separately from the
point of view of the galaxy bias expansion.

3 Lagrangian bias in the two-fluid dynamics

In the Lagrangian approach, galaxy bias is assumed to arise as the response of the overdensity
of galaxies, or the precursors thereof, to the variation of the initial conditions encoded in the
fields {Ψσ(q)} of the various species, and then transported via advection to their present-day
positions x(q, t) = q + Ψg(q, t). Thus, when computing the density of a biased tracer the
number-conservation equation (2.2) is modified to

1 + δg(x, τ) =

∫
d3q Fg[q| {Ψσ(q)}] δD [x− q−Ψg(q, τ)] . (3.1)
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Figure 1. Transfer functions for the relative component from equation (2.13) at z = 1 (left column)
and z = 7 (right column). These transfer functions solve equation (2.8). The top row shows the
transfer functions for ∇·Ψr, i.e. the relative density. The bottom row shows the transfer functions for
∇·Ψ̇r, i.e. the relative velocity divergence. The free-falling (Fb = 0) and Compton drag contributions
are shown separately, the effect of Compton drag on the relative velocity is immediately apparent
even right after reionization (zre = 7.90) at z = 7, whereas the relative displacement is dominated by
the Fb = 0 contribution at all but the largest scales shown. Unlike the Compton contribution, which
is flat at large scales, the primordial (Fb = 0) contributions fall off as k2 towards low wavenumbers,
reflecting the origin of relative perturbations in pre-recombination baryonic pressure forces. At low
redshifts, the solutions to the Lagrangian equations of motion, with initial conditions set at zi = 20,
are in excellent quantitative agreement with the results from CAMB (black dashed lines, barely visible
on the plot as they lie below the purple lines).

The standard picture of (local) Lagrangian bias, outlined above, has been developed in
the 1-fluid case by many authors, see for example [45–53] and [54] for a recent review on
galaxy bias. In this section our focus will be on extending these arguments to the case of
multiple fluids, and in particular to the two-fluid case. In the presence of two fluids, the form
of equation (3.1) raises two questions: (1) the form of the response Fg and (2) whether biased
tracers follow the dark matter, baryons, or a combination thereof. We address these in turn.

3.1 Bias expansion

The initial tracer overdensity, Fg[q| {Ψσ(q)}], is defined to be a functional encoding the
physics of gravitational collapse and galaxy formation at some Lagrangian position q. Since
the galaxy density field is a scalar quantity under rotations, Fg will also be a scalar. We will
assume this functional is local, in the sense gravitational collapse depends only on the value of
the fields within a characteristic patch of size Rh, which then flows coherently on large scales
with Ψg [54]. In the fluid limit, these conditions imply that the system is wholly specified
— albeit in some complex, nonlinear way — by the species overdensities, δσ(q), velocities,
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Figure 2. Relative to total-matter-component transfer function ratios. (Left) Transfer function
ratios between the initial fields m+ and r± defined at z = 20. The so-normalized constant r+, which
roughly corresponds to the relative overdensity mode, is a percent level contribution relative to the
total-matter growing mode m+. The decaying mode r−, which corresponds roughly to the relative
velocity, enters at significantly below the percent level. Note however that our definition somewhat
exaggerates its smallness by “redshifting” it to z = 0. The equivalent ratio for one percent of the
growing mode at z = 3 is plotted for comparison in black. (Right) Transfer function ratios between the
evolved relative and total matter displacements at redshifts z = 2−6. While the relative displacement
is a percent level effect at low redshifts (z = 2), it enters at close to the ten percent level at higher
redshifts (z = 16).

vσ(q), and the gravitational potential,1 Φ(q), at some initial time τi. The condition that Fg
is local — or rather, nonlocal with width Rh — can be equivalently (but more conveniently)
expressed by requiring Fg depend only on the initial fields and their spatial derivatives, with
nth derivatives suppressed by n powers of Rh [54].

In addition to the assumption of locality, the form of Fg is strongly restricted by var-
ious symmetries. General relativity requires that all physical quantities be diffeomorphism
invariant, which in our case reduces to rotational invariance and invariance under generalized
Galilean transformations [55]:

q→ q , Ψσ → Ψσ + n(τ) , Φ→ Φ→ Φ− x · (n̈ +Hṅ) , (3.2)

where n are time-dependent but spatially constant vector fields.

Rotational invariance simply requires that only contracted scalar quantities enter the
bias; the restrictions placed on the bias expansion by general Galilean invariance are more
subtle, and it is here that the two-fluid case diverges from the single-fluid case. Under this
symmetry, densities remain unchanged — for instance that at first order δσ(q) = −∇·Ψσ(q)
— while velocities get boosted by a spatially constant amount (leaving ∂v invariant) and the
gravitational potential changes in a spatially linear way (leaving ∂∂Φ invariant). In the single-
fluid regime, where only one set of densities and velocities exist, this directly implies that
velocities can only enter with at least one spatial derivative, and the gravitational potential

1The gravitational potential Φ, while not independent of δm, depends on the total matter density in a
very non-local way. To make our bias expansion local, and be able to truncate the derivative expansion at a
reasonable order, we thus include it as a standalone quantity here.
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can only enter as second (spatial) derivatives and beyond. The single-fluid overdensity, which
is unchanged under the transformation, can enter at any order.

The presence of two or multiple fluids relaxes some of the above restrictions. In par-
ticular, since all particle velocities are boosted by the same amount (n′) under a Galilean
transformation, the relative velocity vr = vb − vc remains invariant and can thus enter the
bias expansion at zeroth order in derivatives. The total matter velocity, vm, on the other
hand, is boosted and can thus still only enter at the derivative level. These two quantities
form an equivalent basis to the individual species velocities and there is no loss of generality
in defining the bias expansion in terms of them. We may similarly write terms involving
species densities, which can enter separately, in the total matter and relative density basis.
In general relativity the gravitational potential is unaffected by the number of species as a
consequence of the equivalence principle, i.e. gravitational interactions are universal. The
full set of physical fields that can enter Fg in the two fluid case is then

Fg = Fg [δσ,vσ,Φ] ≡ Fg [δm, δr, ∂vm,vr, ∂∂Φ, · · · ] , (3.3)

where the dots stand for higher derivative operators. To first order in the fields we can
therefore write2

1 + δg(q) = 1 + b1δm + brδr + bθθr + · · · (3.4)

which is similar to the Eulerian linear theory expression in [16]. This is not surprising,
since at first order q ' x, however we will see below that differential advection can introduce
further terms degenerate with the initial Lagrangian bias terms above, such that the Eulerian
relative-component bias will in general be a combination of these terms.

Finally, since Fg is defined as a functional on the initial conditions which can be chosen
to be sufficiently early that they lie deep in the linear-theory regime, its form can be further
simplified and expressed purely in terms of the initial modes m+ and r±. In the single fluid
case, this restriction leads to the simplification that all bias terms can be written in terms of
spatial derivatives of the total matter displacement m+ ∼ Ψm; this is a direct consequence
that, up to time-dependent constant factors, δm ∼ ∂Ψm, vm ∼ Ψm and ∂∂Φ ∼ ∂Ψ in
linear theory. In the two-fluid case these terms must be supplemented by those involving
the relative modes. Specifically, including the vr dependence requires the inclusion of terms
proportional to r− and including δr dependence similarly requires terms proportional to
∇ · r+. Equation (3.4) can thus be re-expressed as:

Fg(q) = b1δm + b+∇ · r+ + b−∇ · r− + . . . (3.5)

We therefore have a direct correspondence in the bias expansion between the initial modes
expressed in Eulerian and Lagrangian space. Notice that the bias expansion defined above is
complete, in the sense that it contains all possible operators compatible with the symmetries
of the problem. In particular, while r± are defined at a particular initial redshift zi, in the
linear regime this dependence amounts to a simple linear transformation and can be absorbed
into the definition of the bias parameters (appendix A).

Finally, an additional complication arises when halo formation is affected by Compton
drag. As pointed out by [17], by picking out the local CMB rest frame such that the drag force
∝ vb, we lose the gauge redundancy of Galilean transformations. This will in general produce
heretofore forbidden terms such as those proportional to the matter-component velocity vm.

2A list of bias terms up to second order is given in appendix B.2.
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However, the terms thus generated are required by rotational invariance to enter at second
order and beyond. For the remainder of this paper we will thus neglect these contributions,
which are subdominant to the already sub-percent level contributions we study.

Whereas there exists quite a large literature on measuring and predicting, using approx-
imate physical models, the value of the bias parameters in one-fluid scenarios, less attention
has been devoted to the multi-fluid case. From an effective field theory perspective the di-
mensionless parameters should be of order unity, but in reality the actual value of the bias
parameters is tracer-dependent and can be quite a bit larger or smaller. In this work we will
assume, unless otherwise noted, that typical values are given by b+ ' 1 and b− ' 6.8 derived
in [16] using a spherical collapse model. These numbers are consistent with the non-detection
of relative bias effects in BOSS DR12 by ref. [23], who find e.g. b+ = −1.0 ± 2.5 to within
one sigma when fitting for b+, b− and c− (section 4.3) across all redshift bins, with large
systematic biases measured in dark-matter only simulations that had to be subtracted.

3.2 Modifications to tracer advection

Once the initial, biased tracer overdensity is set, the overdensity at later times is set by the
tracer “fluid” advecting from initial (Lagrangian) q to final positions q+Ψg along trajectories
described by the tracer equation of motion

Ψ̈g +HΨ̇g = −∇Φ + Fb, g, (3.6)

where we have included a non-gravitational term, Fb, g, to account for the possibility that
tracers feel non-gravitational forces. Such non-gravitational contributions may arise, for
example, from the Compton drag on the baryonic component of galaxies, or from various
galaxy formation processes. Since such contributions are always local in space and time, we
will assume the above equation satisfies the same symmetries of eq. (3.2), i.e. the force acting
on galaxies depends only on density fields and velocity gradients.

Equation (3.6) can be solved by subtracting the equation of motion of the total matter
displacement (equation (2.6a)) and defining Ψr,g = Ψg−Ψm. Neglecting the baryonic contri-
butions such that the tracers’ dynamics are governed only by gravity, and assuming that the
initial tracer displacements are a weighted average of the baryonic and CDM displacements,
i.e. Ψg,i = Ψm,i + fgΨr,i, this immediately yields the time evolution

Ψg(τ) = Ψm(τ) + fg[Ψr(τ)]CD=0, (3.7)

where the relative displacement is evaluated assuming zero Compton drag. Note that if we
assume that the tracer field is made of objects composed of the same mass fractions of baryons
and CDM as the total matter content of the universe, i.e. with fg = 0, equation (3.7) reduces
to the trajectory of the matter component. Similarly, objects composed purely of baryons or
the CDM will (at the linear level) follow the baryon or CDM displacements, respectively.

We can alternatively think of eq. (3.7) as a bias expansion of the galaxy displacements in
terms of the underlying fields, since Ψm and Ψr are the only two linear operators allowed by
symmetries at lowest order in spatial derivatives. If the tracer flow is purely gravitational, as
assumed above, the equivalence principle further restricts the coefficient of the total matter
displacement — which encapsulates the motion due to the gravitational potential — to be
exactly 1 at all times. However, this restriction can be broken by baryonic contributions
(∝ Fb, g) such as the Compton drag. As seen in the second term on the right hand side of
equation (2.9), the acceleration due to Compton drag generates displacements proportional
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to Ψm; this contribution, on top of the aforementioned gravitational displacements, can lead
to an expansion Ψg = (1 + αCD)Ψm + fgΨr + . . . for some nonzero coefficient αCD due
to Compton drag, where the total-matter coefficient deviates from unity. Consequences of
this modified expansion for the power spectrum are considered at the end of section 4.1 and
in figure 6. Other baryonic forces, such as pressure forces at small scales, can similarly be
included as further terms (Ψg 3 c2s∇δb) in this expansion.

4 Galaxy power spectra in the Zeldovich approximation

4.1 Analytic form

From equation (3.1), the power spectrum at redshifts z for a biased tracer can be computed as

Pgg(k, z) =

∫
d3q eik·q

〈
Fg[q1]Fg[q2] e

ik·(Ψg(q1,z)−Ψg(q2,z))
〉
q=|q2−q1|

, (4.1)

where the subscripts denote quantities evaluated at two points separated by q in Lagrangian
space. It is important to note that the bias functions Fg are evaluated in terms of the linear
modes m+, r± defined at the initial redshift zi. In the Zeldovich approximation displace-
ments are solved to linear order but the full mapping between initial and final times is kept.
This amounts to keeping the displacement correlators exponentiated in what follows [46].
We will adopt the bias expansion in equation (3.5). We evaluate integrals involving Fg by
functional differentiation in the usual manner [46, 47, 56]: we include a term (e.g. λX) in the
exponential for each argument, X, of Fg and evaluate terms like Xn via ∂n/∂λn of exp[λX].

Under the above assumptions our task reduces to evaluating

eiM ≡
〈
exp

(
ik ·∆g(z) + λδm,1δm,1 + λ+,1∇r+,1 + λ−,1∇r−,1 + (1↔ 2)

)〉
(4.2)

with numerical subscripts referring to Lagrangian coordinates, q1 and q2, and

∆g = Ψg,1 −Ψg,2 = Ψm,1 −Ψm,2 + fg(Ψr,1 −Ψr,2) ≡∆m + fg∆r (4.3)

The function eiM can be evaluated using the cumulant theorem as the exponential of the
connected components. The Zeldovich approximation assumes linear dynamics, such that
only quadratic terms survive

eiM = exp

{
− 1

2
kikjA

mm
ij − fgkikjArmij −

f2g
2
kikjA

rr
ij

+ ik ·
(
(λδm,1 + λδm,2)(Umm + fgUrm)

+ (λ+,1 + λ+,2)(Um+ + fgUr+) + (λ−,1 + λ−,2)(Um− + fgUr−)
)

+ (λδm,1λ+,2 + (1↔ 2) ) ξδm∇r+ + (δm,∇r−) + (δm, δm)

+ (∇r+,∇r+) + (∇r+,∇r−) + (∇r−,∇r−)

}
, (4.4)

where we have defined

Aabij =
〈

∆a
i (z)∆

b
j(z)

〉
, Ua±i = 〈∆a

i (z)∇ · r±(q1)〉 , ξab = 〈a(q1)b(q2)〉 , (4.5)

noting that the ∆’s carry an implicit redshift dependence while the other fields do not. For
the total-matter component this redshift dependence is a direct growth factor scaling and
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Figure 3. Correlation functions entering the galaxy power spectrum in eq. (4.7) at z = 1.2. Left panel:
the displacement auto- and cross-correlation functions between the different components. Right panel:
bias-weighted, displacement correlation functions. Correlation functions involving the relative compo-
nent exhibit abrupt features around q ∼ 102 h−1 Mpc, reflecting the baryon acoustic oscillation scale.

we will for convenience take the linear field’s value as evaluated at the observed redshift
δm = −Dm(z)∇ ·m+. The paired parentheses denote terms similar to the preceding except
with the indicated pair of variables. For example, in the third line

(δm,∇r−) ≡
(
λδm,1λ−,2 + (1↔ 2)

)
ξδm∇r−(q) (4.6)

and when the elements of a pair are repeated the term should be divided by a symmetry
factor of two.

Figure 3 shows the different correlation functions entering the above calculation. Since
the correlation function of the different displacements fields, Aabij (q), is a tensor, we can

decompose it as Aabij (q) = Xab(q)δKij + Y ab(q)q̂iq̂j , and the functions X(q)’s and Y (q)’s are
shown in the left panel of figure 3. Clearly the galaxy displacements are dominated by the
total matter component, with the relative terms contributing much less than a % to the bulk
flows. This fact will enable us to treat the terms proportional to fg perturbatively, as they will
be much smaller than one for wavenumbers below the nonlinear scale defined by k2Σ2 . 1,
where the Zeldovich r.m.s. displacement is Σ ∝ Xmm(q →∞). The same conclusions apply
for the bias weighted displacements U(q)’s, shown on the right hand panels in figure 3, where
Um(q)� U±(q).

Working to linear order in the power spectrum we then have that the galaxy-galaxy
power spectrum is given by

Pgg(k) =

∫
d3q eik·q e−

1
2
kikjA

mm
ij

[
1−fgkikjArmij −

f2g
2
kikjA

rr
ij

+2ik ·(b1Umm+b+Um++b−Um−)

+2fgik ·(b1Urm+b+Ur++b−Ur−)

+b2mξδmδm+2bmb+ξ∇r+δm+2bmb−ξ∇r−δm

+b2+ξ∇r+∇r+ +2b+b−ξ∇r+∇r−+b2−ξ∇r−∇r−+O(P 2
L)

]
. (4.7)
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Figure 4. Different contributions to the galaxy power spectrum in the Zeldovich approximation,
eq. (4.7), at z = 1.2. Terms proportional to b+b−, fgb−, and b2− have been omitted as they are
two orders of magnitude smaller than the smallest contributions shown. Many terms, such as those
involving fg and b+, are essentially degenerate.

Figure 4 shows the different contributions to the galaxy power spectrum in the Zeldovich
approximation at z = 1.2. The leading corrections to the total-matter power spectrum come
at the roughly percent level from terms in equation (4.7) linear in r+, i.e. in b+ and fg. These
contributions are essentially degenerate, with differences due to the dynamical evolution of
Ψr in the fg term, as we will discuss in the next paragraph. Corrections quadratic in r+ or
linear in r− enter at roughly the same size four orders of magnitude below the total-matter
contributions.

An interesting consequence of the advection of biased tracers with |fg| > 0 is the
appearance of relative bias terms even if none were present in the initial Lagrangian bias
expansion. To see this, we can take the low-k limit of eq. (4.7), neglecting for the moment
non-gravitational contributions to Ψr(q), and obtain up to O(P (k))

Pgg(k, z) = (1 + b1)
2 Pδmδm(k)

+ 2(1 + b1)(b+ + fg)Pm∇r+(k) + 2(1 + b1)(b− + fgDr(z))Pm∇r−(k)

+ (b+ + fg)
2P∇r+∇r+(k) + (b− + fgDr(z))

2P∇r−∇r−(k)

+ 2(b+ + fg)(b− + fgDr(z))P∇r+∇r−(k) . (4.8)

We immediately recognize the familiar expression for the Eulerian linear bias, bE1 = 1+b1, and
that the relative density and velocity bias terms get renormalized by terms proportional to
fg. To make further contact with the existing literature employing the Eulerian formulation
of the equations of motion [16, 17], we can identify the relative baryon dark-matter density
perturbation δr with the divergence of r+, δr ≡ ∇ · r+, and the relative baryon dark-matter
velocity divergence θr with the divergence of r−, θr ≡ (1 + z)H0∇ · r−. This implies that
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Figure 5. Comparison of two point functions with (red) and without (black) contributions from
Compton drag. While the differences are small (cf. figure 3), they are non-neglible at large scales.
The contributions from r+ have been subtracted off for ease of comparison.

the bias parameters in [16, 17] associated to the Eulerian fields are bEδr = b+ + fg and

bEθr = (1 + z)−1H−10 (b− + fgDr(z)). Note that the referenced overdensities and velocities are
those defined at the initial redshift zi so should not be directly substituted for their Eulerian
counterparts; for more details about the mapping of bias parameters from some initial time
zi to Eulerian coordinates see appendix A.

A final caveat occurs when the non-gravitational forces on the tracer, Fb,g are nonzero.
The integrated effect of such forces on Ψr,g must then be accounted for. For example, when
dealing with baryons and dark matter, the effects of Compton drag on large scales are non-
negligible. In this case, since the Compton drag force is proportional to the total-matter
displacement, the two-point functions in eq. (4.5) involving ∆r will gain a contribution
proportional to ∆m (figure 5). Such contributions can be non-negligible at large scales
and can dominate in the contributions to the power spectrum proportional to fg at low
wavenumber (figure 6). Importantly, terms proportional to b± are unaffected since they
are related only to the primordial modes r±, breaking the degeneracy between fg and b+.
Since the difference between these terms is proportional to the total-matter component, this
difference can alternatively be absorbed into the total-matter bias bm [17]. Comparisons
of these terms with and without Compton drag are shown in figure 6. Comparing the fg
contribution with and without Compton drag we see, as expected, that renormalizing the
linear total-matter bias b1 to include a contribution proportional to fgDCD(z) (purple dotted
curve) is sufficient to account for the non-gravitational Compton drag contributions.

4.2 Cross-spectra of different tracers and IR resummation

So far we have dealt only with tracer auto-spectra. The situation for cross-spectra is com-
plicated by the non-cancellation of the IR-exponent at small separations, q. For two generic
fluids, X and Y , such that ΨX,Y = Ψm + fX,Y Ψr, the cross spectrum will take the form as
in equation (2.2):

PXY (k) =

∫
d3q eik·qe−

1
2
kikjA

XY
ij

[
· · ·
]
, (4.9)

where the exponentiated two-point function AXY is given by

AXYij (q) =
(
〈ΨX

i ΨX
j 〉+ 〈ΨY

i ΨY
j 〉 − 2〈ΨX

i ΨY
j 〉
)

+
(

2〈ΨX
i ΨY

j 〉 − 2〈ΨX
i (q)ΨY

j (0)〉
)
, (4.10)

and expectation values of point operators are displayed without arguments. Both terms in
parentheses on the r.h.s. of equation (4.10) are well-defined and invariant under generalized
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Figure 6. Comparison of terms involving b+ (blue dashed) and fg with and without Compton drag
(red and black). The two are largely degenerate in the latter case, but with Compton drag the fg
terms are dominated by a contribution proportional to the total-matter power spectrum at large
scales, which can alternatively be renormalized into the matter bias b1, shown separately as a dashed
magenta curve. The left panel shows contributions due to contracting the relative components (fgΨr

or b+∇ ·m+) with the total matter displacement Ψm, while the right panel shows contractions with
the total matter bias b1δm.

Galilean transformations; however the second term vanishes as q → 0 while the first does
not.3 As first noted in ref. [15], this is in contrast to the single-fluid case where Aij had to
vanish at small scales due to Galilean invariance.

In principle, the non-cancellation discussed above will introduce a large scale damping in
the power spectrum at scales proportional to the difference |ΨX−ΨY |2. However, since ΨX,Y

are both expected to have the same coefficient in the total-matter component (i.e. unity) this
difference squared will generically be proportional to (fX−fY )2O(Ψ2

r), and thus is suppressed
by about four orders of magnitude relative to the Zeldovich displacement, Σ2, at the redshifts
with which we are concerned (z < 10). On the other hand, while differential streaming is
expected to damp cross spectra negligibly even if fX is of order unity, as discussed in the
previous section it will still generate an observable effect degenerate with the relative bias b+.

4.3 Higher order bias

Thus far we have not discussed the fact that any perturbative model should be considered an
effective field theory, working up to some scale Λ [57–59]. This forces us to introduce a set of
counterterms that remove the small scale sensitivities of the perturbative calculations. For
instance all the Aij(q) terms contain a zero-lag piece computed at zero separation, i.e. q = 0,
where perturbation theory breaks down. In the single fluid case, this UV-sensitivity is renor-
malized to lowest order in the power spectrum by a counterterm csk

2PZA(k) [29, 60], where
the free parameter cs has to be matched to simulations or data. The same structure of the
counterterms appears in the two fluid scenario: for instance, the Aabij (q) required to calculate
auto and cross spectra feature the same UV-sensitive contributions as q → 0, requiring one
value of cas for each species. In principle, terms in the equations of motion due to the relative
component will add additional UV sensitivities to our predictions; in practice, however, such

3A similar non-cancellation occurs in the modeling of BAO reconstruction, where the cross-term between
the ‘displaced’ and ‘shifted’ fields exhibits the same behavior [33, 35].
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contributions are subdominant in the dynamics of the relative component and negligible for
the total-matter component (appendix B). To the extent that these contributions can be
ignored, then, the two-fluid equations of motion can be renormalized identically to the single
fluid case with one set of counterterms for each species or tracer. As counterterms have minor
impact on BAO scales, and are anyway fitted to the data in both the single and multiple
fluid cases, we do not include them in the Fisher calculation in the next section.

We have equally refrained from discussing bias beyond linear order. As in the equa-
tions of motion, contributions beyond first order in the linear power spectrum proportional
only to the total-matter component can be added consistently as in the single-fluid case,
and we will ignore small nonlinear contributions proportional to one or more powers of
the relative component.4 However, one exception must be made: operators involving the
relative-velocity between the baryon and dark matter squared, which, despite being at second
order in the relative component, can be non-negligible due to their distinct dimensional scal-
ing [11, 16, 18, 22]. Such contributions were the focus of the first studies of bias [11, 18, 22] in
the two-fluid picture, and we will show how their calculation fits naturally into the Lagrangian
framework. For a discussion of other second order bias operators see appendix B.2.

At second order in the bias expansion we can write

Fg[Ψm, Ψr|q] ⊃ bvσ2vr
[vb(q)− vc(q)]2

σ2vr
= bvσ

2
vr

r−(q)2

σ2r−
≡ c−[r−(q)]2 (4.11)

where σ2vr is the 1-point variance of the relative velocities and σ2r− = (1 + z)−2H−20 σ2vr . As
several authors [11, 16] have pointed out, baryon-dark matter relative velocities can be quite
large at the time when the first halos and galaxies form, which could result in a large value of
bv for their late time descendants. The value of bvσ

2
vr can be as large as 0.01, which will make

this contribution at second order in the power spectrum larger than the b− terms, even on
linear scales. It is however worth remembering that a value of bvσ

2
vr ' 10−5 is also plausible,

which would substantially reduce the importance of this contribution.
To consistently compute the power spectrum contributions due to c− ∼ bv2 we must

go beyond the Zeldovich approximation. Up to 1-loop in Lagrangian perturbation theory
we have to compute 4 new terms to properly include the new bias parameter c−. Beyond
these, terms proportional to c2− can be safely neglected as they are O(P 2

∇r2−
). For the same

reason we drop all the terms proportional to b±c−, as well as contributions of the relative
component to the equations of motion. This leaves us with contributions proportional to c−,
b1c−, b2c−, and bs2c−.

The first of these, proportional to c−, contains a 1-loop contribution and is given by

Pgg(k) ⊃ c−
∫

d3q eik·q e−
1
2
kikjA

mm
ij

(
2ikiUi(q)−

1

2
kikjA

m−
ik Am−jk

)
, (4.12)

where we have defined Am−ij = 〈∆m,i (r−,2 − r−,1)j 〉 and the 1-loop contribution from the

second-order Lagrangian displacement Ψ(2) enters as

Ui(q) ≡
〈

∆(2)r2−,1

〉
= q̂i

∫
dk

2π2
k2Qv2(k)j1(kq) (4.13)

The kernel Qv2 is derived in appendix C.

4A proper accounting of such terms would in addition require solving the relative-component equations of
motion to beyond linear order, which is beyond our present scope.
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Figure 7. Contributions to the Zeldovich galaxy power spectrum from relative velocity bias at second
order. All biases are set to unity except for c−, which is set such that bvσ

2
vr = 0.01 — in this case,

the contributions from bv2 are seen to be quite comparable to those from b+, and moreover exhibit
BAO “wiggles” far more prominently than does the regular ZA contribution.

The remaining terms do not contain loop contributions and follow straightforwardly
from evaluating the second and third cumulants in eq. (4.1) within the Zeldovich approxi-
mation. These are those proportional to the first order bias:

Pgg(k) ⊃ 2iki b1c−

∫
d3q eik·q e−

1
2
kikjA

mm
ij Am−ij (q) U−mj (q) , (4.14)

second order bias:

Pgg(k) ⊃ 2b2c−

∫
d3q eik·q e−

1
2
kikjA

mm
ij Um−i (q) Um−i (q), (4.15)

and shear

Pgg(k) ⊃ 4bs2c−

∫
d3q eik·q e−

1
2
kikjA

mm
ij W s−

ijk (q) W s−
ijk (q), (4.16)

where we have defined the 2-point functions U−m ≡ 〈 r−(q)δm(0) 〉 = Um− and W s−
ijk (q) =

〈 sij(q)r−,k(0) 〉. Details of the above calculation can be found in appendix C.

The contributions proportional to c− and their comparison with the 1-piece in eq. (4.7)
and with the b± ones computed in the previous section is shown in figure 7 for z = 1.2,
assuming bvσ

2
v2r

= 0.01. The c− terms are indeed larger than the b− terms on most scales,
but still subdominant compared to the b+ terms. Notably, the c− terms feature significantly
larger oscillatory features than contributions from b±, with minima that differ from maxima
by more than an order of magnitude.

5 Degeneracies and bias to BAO

Baryon acoustic oscillations (BAO) in the photon-baryon fluid before combination imprint a
characteristic clustering scale in the distribution of galaxies that can be used as a standard
ruler to constrain the cosmic expansion history [61]. In general this method is regarded as
highly robust as it probes very large scales which are largely unaffected by astrophysical
processes. However, relative component contributions to the two-point function also occur
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ponent biases, multiplied by constant factors for ease of comparison. All contributions have promi-
nent features at the BAO scale, reflecting their origin in early-universe acoustic oscillations. (Right)
Derivatives of the power spectrum with respect to these parameters and the BAO scale parameter α
at z = 1.2, with bm = 0.5, b2 = 0.2, b+ = 1, b− = 7 and c−σ

2
r− = 0.01. Despite the fact that all these

templates feature prominent oscillations, they nonetheless possess distinct scale dependence. Note
that some of the derivatives have been multiplied by powers of ten for ease of comparison.

on very large scales and their oscillatory features, although arising from the same physical
process of the standard BAO features in the matter density power spectrum, could bias our
estimates of the distance scale if not properly taken into account [22–24]. Indeed, as shown
in the left panel of figure 8, all the relative component contributions we have considered show
distinct features around the BAO peak.

The extent to which contributions from the relative component can contaminate mea-
surements of the BAO scale can be estimated using the Fisher matrix formalism [62]. The
galaxy overdensity has a covariance that is diagonal in Fourier space and given by the power
spectrum plus shot noise, P̂gg = Pgg(k) + n̄−1; for the parameters {θi}, the Fisher matrix is
given by

Fij = Vobs

∫
d3k

(2π)3
1

2

∂ ln P̂gg(k)

∂θi

∂ ln P̂gg(k)

∂θj
, (5.1)

where Vobs is the observed volume. For simplicity we neglect redshift space distortions and
focus only on the isotropic BAO signal, though we will comment on how our Lagrangian anal-
ysis can be naturally extended to redshift space in the final paragraph. We model the power
spectrum using the two-fluid Zeldovich terms derived above and include matter contributions
up to one loop (see e.g. [52]), including contributions from the quadratic Lagrangian bias b2.
We consider only scales between kmin = 10−2 hMpc−1 and kmax = 0.25 hMpc−1, and fiducial
value of b1 = 0.53 and b2 = 0.2. The number density of galaxies is n̄ = 4.2× 10−4 h3 Mpc−3

and we assume V = 5h−3 Gpc3. These numbers are chosen to be similar to what galaxy
surveys like DESI [2] or Euclid [3] are expected to measure, and in particular are based off
the expected DESI ELG population at z = 1.25 in a bin of width ∆z = 0.1 and 14,000 square
degrees of observation.

To quantify the potential impact of the relative component on standard BAO analyses,
we will compare two models of the power spectrum within the Fisher formalism: the “correct”
model M1, which is a function of all total-matter and relative component biases, and the
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nested “standard” model M0, wherein the relative component biases are set to zero (i.e.
b±, c− = 0). The observed power spectrum is in addition a function of the BAO scaling
parameter α such that

Pgg(k, z, α,M) = α−3Pgg

(
k

α
, z,M

)
. (5.2)

The derivative of the baseline galaxy power spectrum with respect to the parameters is shown
in figure 8. These templates all show oscillatory features of roughly the same frequency as
the BAO scale but exhibit distinguishable scale dependence. For reference, applying eq. (5.1)
returns sub-% error on the BAO scale, with σα = 0.9%, for the standard analysis using M0.

We can now compute the systematic shifts in α that would be incurred by neglecting
the relative component, i.e. by fitting to M0. For convenience, we will split the parameters
in M1 into θ = (φa, ψσ), where φa with Latin indices are the BAO scale and total-matter
parameters and ψσ with Greek indices are the relative component biases, such that M0 is
given by θ = (φa, ψσ = 0). In this language the shift in α and b1 due to using the standard
model can be calculated to first order as [63]

δθa = −(F0)
−1
ab Gbσδψσ, a, b = α, b1, σ = b±, c−. (5.3)

Here F0 and G are respectively diagonal and off-diagonal blocks of the full Fisher matrix
F = F (θ0) calculated at the best fit parameters θ0 for the full model M1, such that F0,ab = Fab
and Gbσ = Fbσ, and δψ is the deviation of ψ in the standard cold dark matter only model
M0 from M1, i.e. δψ = −ψ0.

As a simple first example, we consider a toy-model Universe in which the only relative
contribution is b+. Figure 9 compares the “true” power spectrum, P1(k), assuming b+ = 5,
with best fits to the power spectrum in a dark matter only universe P0(k), described by the
model parameters M0, where the values of α, b1, b2 are shifted from their true values according
to equation (5.3). Different values of the maximum wave number kmax included in the Fisher
calculation are shown with different lines. For kmax = 0.1hMpc−1, we find a significant
departure in phase between the two models, compared to higher limiting wavenumbers, as
evident from the phase of the residual in the bottom panel. Beyond kmax = 0.15hMpc−1

there are sufficient BAO wiggles that the phase of the residuals are essentially locked. We
caution that the same exercise repeated with both matter and relative terms in the Zeldovich
approximation can lead to wide swings in the BAO scale δα as a function of kmax. This can
be understood as follows: at k & 0.1hMpc−1, b+ contributes both oscillatory behavior
and a broadband shape identical to the total matter component. The latter is essentially
an amplitude change and can be roughly cancelled by a shift δbm, which it is thus fixed
independently of kmax. This then requires δα to shift with kmax as more oscillations are
included until the oscillations in r+ relative to m+ are damped at large k (figure 2). This
broadband effect is ameliorated by including nonlinear terms for BAO measurements, but
the partial degeneracy of b+ with the power spectrum amplitude likely implies that ignoring
two-fluid effects may affect measurement of the amplitude of the power spectrum (though
this effect will also be partially mitigated by redshift-space distortions).

The same formalism can be applied to more realistic bias models. In the upper left panel
of figure 10 we consider the case when the observed power spectrum contains nonzero values
b± and c− = 0, and forecast the shifts in α due to the wrong assumption of b± = 0. Due to
the small size of the b− contributions (see figure 4), we expect shifts in BAO inferred distances
to be dominated by b+, and this is indeed what we find, contours of constant δα are almost
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Figure 9. (Top) Best fit power spectra using the total-matter-component-only model, M0, for a
universe where b+ = 5 with varying maximum fitted wave numbers kmax. (Bottom) Residuals of
the above fits, compared to expected errors (∆ ln k = 0.06), shaded in gray. Fitting over too narrow
a range (kmax = 0.1hMpc−1) results in a highly biased phase, while fits using larger wave number
ranges covering more than one BAO wiggle are essentially in phase. The remaining oscillating residuals
significantly exceed the expected error and are due to lack-of-fit for the oscillations in the relative
component.

independent of b− even when |b−| = 10. On the other hand, we see that values of b+ ∼ 5
shift the measured α by up to 0.4%, close to half of the error on α expected when using M0.

However, the physics behind the relative components is quite well understood and can
be easily included in Fisher forecasts or power spectrum analyses. Indeed, as seen in fig-
ure 8, the templates for the various relative biases and α have distinct shape and could be
distinguishable depending on the noise level of the measurements. The upper right plot in
figure 10 shows the increase in σα induced by marginalizing over b± in universes where b±
and bv are not necessarily nonzero.5 The total loss of constraining power is modest, with less
than 10% worse error bars even after marginalizing over two extra parameters. In both the
computations of the shifts in α and the increase of σ(α), the volume of the survey does not
enter, and the final results depend only on the shot noise levels.

In the lower set of plots in figure 8, we repeat the same exercise described above includ-
ing c− as an extra free parameter. Since b− is irrelevant for the final results we set it to zero

5The nonzero b±,v produce shifts in the measured α, bm when using M0, which must be taken account
when computing σα. To first order, the shifted Fisher matrix is given by F0.

– 19 –



J
C
A
P
0
6
(
2
0
1
9
)
0
0
6

5.0 2.5 0.0 2.5 5.0
b +

10

5

0

5

10

10
3

c
2 r

% shift in 

0.5
0.4
0.3
0.2
0.1

0.0
0.1
0.2

5.0 2.5 0.0 2.5 5.0
b +

10

5

0

5

10 ( )1/ ( )0

1.224
1.232
1.240
1.248
1.256
1.264
1.272
1.280
1.288
1.296

b +
10

5

0

5

10
b

% shift in 

0.40
0.32
0.24
0.16
0.08

0.00
0.08
0.16

b +
10

5

0

5

10 ( )1/ ( )0

1.032
1.038
1.044
1.050
1.056
1.062
1.068
1.074
1.080

Figure 10. (Top Left) Shift in measured α when neglecting relative component biases as a function
b± in the absence of c−. While b− contributes negligibly, b+ = 5 produces a shift up to a 0.4%. (Top
Right) Ratio of error bars in α when marginalizing over b± vs. when they are kept fixed at zero,
such that the best-fit value of α is biased in the latter case. In the latter case the forecast takes into
account the shift away from the true value due to incorrect model assumptions. (Bottom Row) Same
as the above, but with c− added as a nonzero parameter in M1. We have set the true b− = 0 for
convenience but marginalize over it to calculate uncertainties. While even c−σ

2
r− = 0.01 contributes

only a tenth of a percent to the shift in α, the error bars are inflated relative to the top row by up to
twenty percent. We assume kmax = 0.25hMpc−1 throughout.

(but still marginalized over it). We find that b+ and c− are anti-correlated, with larger shifts
compared to the b± case, but δα/α ≤ 0.5% in all cases. Marginalizing over the extra param-
eter c− results in a 20–30% increase in σ(α), which is still benign for BAO constraints. Our
results therefore advocate for the implementation of relative component biases, at least of b+
and c−, in standard BAO data analysis of the galaxy power spectrum or correlation function.

Finally, in figure 11 we investigate the detectability of the two-fluid effects in the same
setup. On their own, both b+ and c− become 1σ detectable at the upper end of our explored
parameter ranges, shown as the red lines in figure 11. However, once all three relative
bias parameters are marginalized over, the black set of curves in figure 11, neither will be
detectable within our fiducial volumes, with c− in particular at 0.1σ, well out of reach even
if all the DESI redshift bins are combined.
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Figure 11. Constraints on b+ and c− in our fiducial setup if only each respective parameter can
be varied (black), and if all relative parameters are simultaneously marginalized over (red). Notably,
when the full model is taken into account detecting the relative velocity effect (c−) will require up to
ten times more signal to noise.

6 Conclusions

The large scale structure of the universe, whose formation is dominated by the dynamics of
gravitational collapse, is one of the premier probes into fundamental physics. At subleading
order, the presence of multiple particle species, broadly categorized into cold dark matter,
baryons and neutrinos, with distinct properties beyond their shared gravitational attraction,
can present additional features in this structure, which will become increasingly important as
future surveys push to higher precision. In particular, relative perturbations between baryons
and cold dark matter are prominent at the same scale as baryon acoustic oscillations and
have the potential to cause systematic biases in future BAO measurements.

In this paper, we develop the Lagrangian formalism to calculate the clustering of biased
tracers in the presence of multiple fluids, focusing specifically on the two-fluid scenario with
dark matter and baryons. The Eulerian description of two-fluid dynamics has been studied
extensively in the past and we make contact with previous work as appropriate throughout
the text. LPT includes an automatic resummation over long-wavelength bulk flows and is
thus able to accurately capture the shape of BAO features for biased tracers. In addition,
LPT naturally maps bias terms from their initial Lagrangian positions to advected Eulerian
positions, in contrast to Eulerian theory in which advective terms must be put in by hand,
thereby simplifying the treatment of bias as responses to linear initial perturbations.

The presence of two fluids introduces terms beyond those encountered in traditional
single fluid cosmological perturbation theory, with modifications in both the bias expansion
and tracer advection. In the former, the generalized Galilean invariance that restricted the
bias to contain only second derivatives of the gravitational potential in the single fluid case,
allows terms including relative overdensities and velocities between different species. In the
latter, initial relative displacements between various species are preserved under free fall and
present an additional source of bias. Large scale non-gravitational forces such as Compton
drag induced by the CMB can introduce additional corrections. We formulate modifications
to tracer bias and advection in terms of three initial modes, constants of motion in the linear
equations of motion, which roughly correspond to the initial total-matter displacement field
and the relative displacement and velocity fields between dark matter and baryons.
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We explicitly calculate the galaxy auto-power spectrum in the Zeldovich approximation
within this formalism. Cross correlations between the relative modes introduce eight terms
linear in the power spectrum — however, those quadratic in the relative component are sup-
pressed by four orders of magnitude relative to the single fluid terms at low redshifts relevant
for the next generation of galaxy surveys. Comparing to the Eulerian result explicitly to first
order in the power spectrum, we find that the Eulerian relative component bias corresponds
to linear mixtures of the Lagrangian bias, with modifications to the tracer advection entering
both the Eulerian relative overdensity bias and the Eulerian relative velocity divergence bias.
We then take up the calculation of cross spectra, finding a large scale damping due to an IR
noncancellation in the relative component that is nonetheless negligibly small on perturba-
tive scales. We also briefly discuss higher order corrections to the equations of motion in the
presence of two fluids from an effective theory point of view, and perform an example one
loop calculation for the relative velocity effect (∝ v2

r).
We conduct an exploratory analysis into whether two-fluid effects can cause systematic

biases in measurements of the BAO scale. Taking the example of DESI ELGs at z = 1.25,
we show that while ignoring two-fluid effects can lead to systematic shifts in the measured
BAO scale as large as half a sigma, properly marginalizing over these effects induces less
than ten percent loss in precision for a wide range of bias values. Since the scale dependence
of the underlying physics is well understood, these results advocate for including two-fluid
terms at linear order in future analyses. The dominant relative bias term (∝ b+) does not
fall quadratically with the growth factor like the total-matter contributions, and we therefore
expect the relative bias signal as a fraction of total power to scale with redshift as D−1+ (z)
and become proportionally more significant for surveys (such as the proposed Stage II 21-cm
survey [5]) at higher redshifts. Studies of more highly biased tracers such as DESI quasars [2],
for which the total-matter contributions are correspondingly larger, will on the other hand
be less influenced by the relative bias for similar reasons.

While the Lagrangian picture is a natural playground for their study, in this paper we
have opted not to study redshift space distortions (RSD). We note, however, that of the two
relative components, r+ is dominant but stationary while r− is so small as to be essentially
negligible — two-fluid impacts should thus have a relatively small impact on RSD. However,
as noted in the previous section, since the dominant relative component contribution b+ is
somewhat degenerate with the overall power spectrum amplitude, it is possible that two-fluid
effects could hinder the accuracy of fσ8 measurements beyond the percent level. We will
return to this issue in future work.
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A Redshift dependence and size of the of bias parameters

The bias expansion in equation (3.5) has an implicit dependence on the initial redshift zi
that must be taken into account to reach consistent conclusions. Since the initial conditions
mix at most linearly, no information can be lost by choosing one initial time τi over another;
for example, the sensitivity of halos to the relative velocity divergence after reionization,
which contains a contribution from the total matter overdensity (eq. (2.9)), can be directly
accounted for by calibrating the bias parameter for δm at an earlier redshift.

As a simple example we consider the redshift dependence of the relative components in
the sourceless (Fb = 0) case. If we set our initial time at τ ′i instead of τi we will get

Ψr(τ) =
(
− r+ + r−Dr(τ

′
i , τi)

)
+ r−Dr(τ, τ

′
i) ≡ −r′+ + r′−Dr(τ, τ

′
i). (A.1)

Re-expanding Fg at τ ′i thus yields

Fg(q) = b1δm + b′+∇ ·
(
r+ − r−Dr(τ

′
i , τi)

)
+ b′−∇ · r′− + . . . (A.2)

Since b′ and b apply to the same field configurations at different times, they must yield the
same initial overdensity Fg — this requirement can be satisfied by enforcing the differential
equations

db+
dτ

= 0,
db−
dτ

=
b+
a(τ)

. (A.3)

Intriguingly, the presence of a relative overdensity bias can “generate” a relative velocity bias
at later times. This can be understood as follows: the relative overdensity at late times is a
linear combination of the relative overdensity and velocities at earlier times. Similar, though
more complicated, versions of this relation hold when Fb ∝ m+, in which case mixing of all
three initial fields must be taken into account.

B Beyond linear order

B.1 Equations of motions

In this appendix we derive the equations of motion beyond linear order in the two-fluid
scenario, and show that the nonlinear contribution of r± to the total-matter component are
quadratically suppressed, and that the nonlinear relative component is always sourced by at
least one component of r±.

The Lagrangian equations of motion at higher order can be found by taking the real-
space divergence of both equations in (2.3). To do so we make use of the identities

1 + δa(x, t) =
∣∣∣∂xa
∂q

∣∣∣−1 = J a(q, t)−1 (B.1)

∇xa · V =
[∂xa
∂q

]−1
ij

∂Vi
∂qj

=
[
δij + Ψa

i,j

]−1
Vi,j , (B.2)

where the negative powers in the second line denote matrix inverses, to account for the
coordinate transformations between Lagrangian coordinates q and the fluid trajectories for
each species xa = q+ Ψa, as well as the standard matrix identities (I +A)−1 = I −A+A2−
A3 +O(A4) and det(I + A) = 1 + Tr[A] + 1

2(Tr[A]2 − Tr[A2]) +O(A3). We will neglect the
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effects of Compton drag, which affects the relative displacement at a few percent level even
at late times and on linear scales and thus enter into our final power spectra at the same
order of magnitude as the relative component squared, and assume potential flow.

The above equations imply that the Lagrangian equations of motion for the fluid dis-
placements of a species a at nth order takes the generic form

DΨ
(a,n)
i,i = −

n−1∑
m=1

F (a,n−m)DΨ(a,m) +
3

2
H2Ωm

∑
a′

wa′
(J − 1

J

)(a′,n)
, (B.3)

where the superscript (a, n) denotes the species and order of each term, the derivative op-
erator D is defined such that DX = X ′′ + HX ′, and the F (a,n)’s are kernels composed of
displacements of the species a at order n and below. Switching to the total matter and
relative components, we have

DΨ
(m,n)
i,i = −

∑
a′

wa′
n−1∑
m=1

F (a′,n−m)DΨ(a′,m) +
3

2
H2Ωm

∑
a′

wa′
(J − 1

J

)(a′,n)
(B.4)

DΨ
(r,n)
i,i = −

(
n−1∑
m=1

F (c,n−m)DΨ(c,m) −
n−1∑
m=1

F (b,n−m)DΨ(b,m)

)
. (B.5)

We can derive some elementary properties of these equations without solving for their par-
ticular forms using symmetry arguments. Noting that the r.h.s. of (B.4) is symmetric under
species index exchange (b ↔ c) while (B.5) is antisymmetric, we can conclude that (1) the
first relative contribution to the total matter EOM at each order must be of order O(r2±),
and all subsequent contributions suppressed by further even powers of the linear relative
component and (2) the relative component is always sourced by at least one power of r±,
since the total matter component is even under this swap while the relative component is
even. Note that (1) implies that the dynamics of the total-matter displacement are affected
by the relative component only at the percent-of-a-percent level, and (2) implies that the
nonlinear relative displacement is never less suppressed in r± than the linear solution. A
similar result occurs in Eulerian theory, as described in [15].

For completeness, the explicit second and third order equations of motion for the relative
component are, up to first order in the linear relative perturbation

DΨ
(r,2)
i,i = Ψ

(r,1)
j,i DΨ

(m,1)
i,j

DΨ
(r,3)
i,i = Ψ

(r,1)
j,i DΨ

(m,2)
i,j + Ψ

(m,1)
j,i DΨ

(r,2)
i,j + Ψ

(r,2)
j,i DΨ

(m,1)
i,j

−
(
Ψ

(r,1)
j,k Ψ

(m,1)
k,i + Ψ

(m,1)
j,k Ψ

(r,1)
k,i

)
DΨ

(m,1)
i,j , (B.6)

which are in-line with the symmetry arguments outlined above. The equations of motion for
the total matter component at second and third order can be similarly verified to be simply
the equations of motion in the one-fluid case to this order in the relative component.
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B.2 Biasing at second order

Below we list all contributions to the bias expansion up to second order in the initial fields
omitting derivative corrections:

Fg = b1δm + bδrδr + bθrθr

+
1

2
b2δ

2
m + bs2sijsij + bδmδrδmδr + bδmθrδmθr + bvr∂δm(vr)i ∂iδm + bs ∂v∂i(vr)jsij

+ bv2rv
2
r + . . . . (B.7)

In the main body of this paper we consider relative bias terms up to first order in the power
spectrum, since even these represent only percent level effects, with the exception of the
relative velocity effect ∝ v2

r , which has a distinct scaling. As noted in the text, we note
that the presence of Compton drag can introduce additional terms due to loss of gauge
redundancy; we refer readers to the extensive discussion in [17].

C Relative velocity bias terms

In this appendix we provide details for the contributions of the relative velocity bias bv2 at
O(P 2) to the galaxy power spectrum. These contributions require the calculation of two new
2-point functions, the one-loop correlation between matter displacements and the squared
relative velocity, and the correlation function between the shear field sij and the relative
velocity. We describe these in turn.

The second order solution to the total-matter displacement (correct up to first order in
the relative component) is given by

Ψ
(2)
i (k) =

1

2

3

7

i ki
k2

∫
d3p

(2π)3

[
1−

(
(k − p) · p
|k − p||p|

)2
]
δm,0(p) δm,0(k − p), (C.1)

and more simply the “normalized” relative velocity at first order is given by

r−,i(k) =
−i ki
k2

(
∇ · r−

)
(k). (C.2)

From this we can calculate the two-point function

〈Ψ(2)(q) r2−(0)〉 =
3

7

∫
d3k

(2π)3
eik·q

(−i ki
k2

) d3p

(2π)3[
1−

(
(k − p) · p
|k − p||p|

)2
]
p · (k − p)
p2(k − p)2

Pδm∇r−(p)Pδm∇r−(k − p), (C.3)

which can be simplified to give

〈Ψ(2)(q)v2r,0(0)〉 = q̂

∫
d3k

(2π)3
eik·qQv2(k), (C.4)

where the kernel is defined as

Qv2(k) ≡ 3

7

∫ ∞
0

dr Pm−(kr)

∫ 1

−1

dx

4π2
r (x− r)(1− x2)
(1 + r2 − 2rx)2

Pm−

(
k
√

1 + r2 − 2rx
)
. (C.5)
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Next, the shear-velocity correlation function W s−
ijk is given in Fourier space by

W s−
ijk (q) = i

∫
d3k

(2π)2
eik·q

(
kikjkk
k4

− 1

3
δij
kk
k2

)
Pm−(k) ≡ W̃ s−

ijk (q)− 1

3
δijU

m−
k (q), (C.6)

where in the last equality we have split W s−
ijk into a totally-symmetric piece and a familiar

piece proportional to Um−. The former can be decomposed into scalar components

W̃ s−
ijk (q) = A(q) q̂iq̂j q̂k + B(q) (q̂iδjk + q̂jδki + q̂kδij), (C.7)

with the scalar components defined as spherical Bessel transformations:

A(q) =

∫
dk k

2π2
j3(kq) Pm−(k) (C.8)

B(q) = −
∫
dk k

2π2
1

5

(
j1(kq) + j3(kq)

)
Pm−(k). (C.9)
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