
J
C
A
P
0
6
(
2
0
1
9
)
0
0
7

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Constraints on scalar and tensor
spectra from Neff

Ido Ben-Dayan,a Brian Keating,b David Leonb and Ira Wolfsonc

aPhysics Department, Ariel University,
Ariel 40700, Israel
bDepartment of Physics, University of California San Diego,
CA, 92093 U.S.A.
cPhysics Department, Ben-Gurion University of the Negev,
P.O. Box 653, Be’er-Sheva 8410500, Israel

E-mail: ido.bendayan@gmail.com, bkeating@ucsd.edu, d2leon@physics.ucsd.edu,
irawolfsonprof@gmail.com

Received April 10, 2019
Accepted May 16, 2019
Published June 4, 2019

Abstract. At the linear level, the gravitational wave (GW) spectrum predicted by infla-
tion, and many of its alternatives, can have arbitrarily small amplitude and consequently
an unconstrained tilt. However, at second order, tensor fluctuations are sourced by scalar
fluctuations that have been measured in the cosmic microwave background (CMB). These
second order fluctuations generically produce a minimum amount of tensor perturbations
corresponding to a tensor-to-scalar ratio of r ∼ 10−6. Inverting this relationship yields a
bound on the tensor tilt sourced by scalar fluctuations. Since this induced GW spectrum
depends on the scalar spectrum, we derive a new indirect bound that involves all scales of
the scalar spectrum based on CMB observations. This bound comes from the constraint
on the number of effective relativistic degrees of freedom, Neff . We estimate the bound us-
ing current data, and the improvements expected by future CMB experiment. The bound
forces the running and running of running to conform to standard slow-roll predictions of

α, β . (ns − 1)2 where α ≡ dns
d ln k and β ≡ dn2

s
d ln k2

, improving on current CMB measurements
by an order of magnitude. This bound has further implications for the possibility of primor-
dial black holes as dark matter candidates. Performing a likelihood analysis including this
new constraint, we find that positive α and/or β are disfavored at least at 1σ. Even using
conservative analysis, β+ 0.074 α > 8.6× 10−4 are ruled out at 3σ. Finally, using bounds on
the fractional energy density of gravitational waves today obtained by LIGO and the Pulsar
Timing Array, we obtain a bound on the primordial scalar spectrum on these scales and give
forecast for future measurements.
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1 Introduction

A stochastic gravitational waves background (GW), could be produced by a multitude of
physical phenomena on different eons and scales ranging from Early Universe scenarios
through phase transitions to incoherent accumulation of binary black hole coalescence [1–6].
The fractional energy density stored in GW is therefore an invaluable probe of these physical
phenomena. One can probe the energy density of the stochastic gravitational wave back-
ground in several ways in different epochs and on different wavelengths. Cosmic Microwave
Background Radiation (CMB) observations, and specifically the B-mode polarization mea-
surements, have persistently probed GW on the largest possible scales and have tested Early
Universe scenarios, most notably inflation [3, 4]. Such measurements probe the GW en-
ergy density at the time of decoupling. The CMB program is expected to continue in the
foreseeable future improving the accuracy of various cosmological parameters by an order
of magnitude or more [6–9]. More recent measurements on intermediate and small scales
include LIGO and the Pulsar Timing Array (PTA) respectively [1, 10]. Such experiments
probe the energy density of GW today. While these probes are also sensitive to various Early
Universe scenarios, they are mostly expected to detect other physical phenomena such as
phase transitions or other astrophysical phenomena, [1, 2, 10].

Early Universe models based on quantum fluctuations, whether inflation or bounce, pre-
dict a primordial scalar/density spectrum and a tensor/GW spectrum. Our focus henceforth
will be on these spectra and on ways to constrain them. CMB and BAO measurements have
measured the scalar spectrum on scales H0 < k < 1Mpc−1 to be

PS = As

(
k

k0

)ns−1

, As = 2.1× 10−9, ns = 0.965 (1.1)
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and have placed an upper bound on the similarly defined GW spectrum PT = AT

(
k
k0

)nT
in

the form of the scalar to tensor ratio r, [3, 4]:

r ≡ PT
PS
|k0 ≤ 0.06 (1.2)

k0 is the so called pivot scale that somewhat differs from one experiment to the other, but
for our purposes we shall take it to be k0 = 0.05 Mpc−1. In the following, keq = 0.01 Mpc−1

in compliance with Planck 2018 analysis.
Combining LI, PTA and CMB observations, allows us to try and probe not just the

amplitude of the GW spectrum r, but also its frequency dependence or tilt. Such works have
been carried out in e.g. [11, 12], and the future LI and CMB measurements will certainly
improve these constraints.

Large parts of the GW spectrum are inaccessible neither to CMB, nor to LI nor PTA
experiments in the foreseeable future. To probe these parts of the spectrum, one resorts to
indirect probes. In the context of GW, [13] calculated the predicted spectral distortion signal
given a tensor spectrum, while in [11], a likelihood analysis assuming some GW spectrum PT
was carried out. Of specific interest is the fact that GW are relativistic degrees of freedom
and as such, they affect BBN and the CMB temperature anisotropies measurements. The
GW energy density contributes to the number of effective relativistic d.o.f. at the time of
decoupling, Neff . The dependence of Neff on the GW spectrum was derived in [11].

Neff = 3.046 +

(
3.046 +

8

7

(
11

4

)4/3
)

1

12

∫
d ln k PT (1.3)

where Neff = 3.046 is the Standard Model prediction and current 68% confidence level suggest
∆Neff ≤ 0.19. Thus, Neff provides an indirect probe of all scales of the GW spectrum. It
is important to note that as long as r is not measured, (1.3) holds limited promise, as the
amplitude AT and therefore r can be arbitrarily small. Bouncing models, for instance, predict
r < 10−30, and only a handful suggest an observable r [14, 15].

A similar situation of inaccessibility occurs for the scalar spectrum, where we have so
far probed only 8 out of the expected 50− 60 ‘e-folds’ of inflation. This limit is not expected
to improve in the near future, due to built-in non-linearities. Nevertheless, indirect probes
have provided useful indications and constraints on the scalar spectrum [16–21] on scales
beyond primary CMB scales.

The above discussion implicitly assumed full decoupling between the scalar and tensor
modes. It is valid in first order in perturbation theory. However, at second order, scalar
fluctuations act as sources of tensor fluctuations [22–24]. These induced, second order tensor

fluctuations are related to the scalar (first order) spectrum via P
(2)
T ∼ P 2

S . Given the already
measured scalar spectrum (1.1), one is guaranteed a tensor signal at the level of r ∼ 10−6 on
CMB scales. If, in the distant future, such a signal is not measured, we have misinterpreted
our Early Universe paradigm or detected violations of general relativity. Analysis related to
this second order GW spectrum and its phenomenological consequences has recently been
discussed in [25–28]

Given this induced GW spectrum, it can be constrained or measured by LI and PTA
experiments. Furthermore, by adapting (1.3) to the induced spectrum, it will also contribute
to Neff . Due to its functional dependence on the scalar spectrum, LI and PTA provide an
indirect probe of the scalar spectrum on relevant scales. Better yet, Neff will now be sensitive
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to all scales of the scalar spectrum. Hence, we have novel probes of the scalar power spectrum
at scales inaccessible to primary CMB constraints. Moreover this indirect Neff constraint is
based on CMB data alone.

In this paper, we analyze how Neff , LIGO and PTA data constrain the various param-
eterizations of the scalar power spectrum and give forecasts for future experiments that are
the Simons Observatory (SO), Stage 4, SKA-PTA and LISA. Given that Neff will include
an integral over all scales it will be sensitive to enhancements of the spectrum and to the
smallest scales, i.e. the UV cut-off. While each parameterization has limitations, it still uses
a minimal number of parameters and avoiding our conclusions require additional parameters
that make the spectrum more fine-tuned and less plausible. We find that Neff strongly con-
strains deviations from the constant ns spectrum. In particular it forces the running and the
running-of-running to conform to the standard slow-roll hierarchy, α, β . (ns − 1)2. Such a
constraint rules out a large portion of the parameter space allowed by Planck. We further
perform a likelihood analysis including the Neff constraint and find that positive α, β are
disfavored by at least 1σ and β+0.074 α > 8.6×10−4 are ruled out at 3σ. These constraints
rule out certain scenarios for primordial black holes formation (PBH), that have recently
emerged as possible dark matter candidates [29].

The paper is organized as follows, in section 2 we list the different experiments we
are interested in and their forecasts for relevant parameters. In section 3 we reproduce the
major steps leading to the induced tensor spectrum, and the parameterizations of the scalar
spectrum we are interested in. In section 4 we calculate the predicted Neff and the allowed
parameter space. In section 5 we report the results of a likelihood analysis. In section 6 we
discuss constraints on the spectrum due to present day measurements. We then conclude.

2 Relevant experiments

We divide the different experiments into two categories. One category is the CMB observa-
tions that probe the GW energy density at the time of decoupling. Usually it is specified
in terms of r, the tensor-to scalar ratio and wavenumber k. These measurements probe the
GW energy density on largest scales, k . keq. Furthermore, CMB observations also probe
Neff . The second category probes the GW energy density today such as LIGO and PTA.
In these cases, one usually writes down the fractional energy density, ΩGW as a function of
frequency f . These measurements probe much smaller scales with k � keq. In table 1 we list
the different experiments and their forecasted sensitivities. The table allows simple compar-
ison between the different scales and sensitivities. The conversion between frequencies and
wavenumbers is

f =
kc

2πa(η0)
= 1.5× 10−15

(
k

Mpc−1

)
Hz, (2.1)

where we have used c = 3 × 108m/s as the speed of light. The relation between PT and
present day ΩGW is [24]:

ΩGW = 4.2× 10−2rAs

(
k

k0

)nT aeq

a(η0)
. (2.2)

Carrying out the CMB experiments up to Stage 4 will decisively constrain a narrow space
of allowed inflationary models, or will rule out all large field models. Besides specifying the
forecasts for various experiments, we performed a Fisher matrix analysis of cosmic variance
limited (CVL) CMB polarization measurement. The analysis predicts σ(r) = 2.2 × 10−6
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Experimental stage r < ∆Neff ΩGW < Wavenumber Mpc−1 frequency Hz

present 0.06 0.19 1.6× 10−15 0.05 7.5× 10−17

S2 0.035 0.14 9.1× 10−16 0.05 7.5× 10−17

SO 0.006 0.04 1.6× 10−16 0.05 7.5× 10−17

S4 0.0005 0.027 1.3× 10−17 0.05 7.5× 10−17

CVL 2.2× 10−6 3.1× 10−6 5.6× 10−20 0.05 7.5× 10−17

LIGO 6.5× 106 NA 1.7× 10−7 (3− 13)× 1016 20–86

aLIGO 3.86× 104 NA 10−9 (3− 13)× 1016 ∼ 50

PTA 5.01× 104 NA 1.3× 10−9 1.5× 108 10−7

SKA-PTA 50.1 NA 1.3× 10−12 1.5× 108 10−7

LISA 3.86 NA 10−13 (1.5− 15)× 1012 0.001–0.01

Table 1. The forecast of constraints on r and ∆Neff for different experiments. The details were taken
from [6, 8]. The quoted bound on r for the CMB future probes is the forecast for σ(r). The CVL
result is based on a Fisher matrix analysis.

for fsky = 0.8 with no delensing and ignoring beam systematics. Such value seems very
close to the induced second order GW spectrum prediction of r ∼ 10−6, which is close to a
guaranteed signal.

3 Gravitational waves spectrum induced by primordial scalar perturba-
tions

In this section we repeat the main steps in the calculations done in [22–24] and derive an
expression for the contribution of the induced GW to Neff . The bottom line is that we
have an expression for the GW energy density for all times. We start from the background
Friedmann equations:

H2 =
κ2a2

3
ρ(0) , H2 −H′ = κ2a2

2
(ρ(0) + P (0)) , H ≡ ∂η ln a . (3.1)

Here ρ(0) and P (0) are the homogeneous background density and pressure, respectively, and
the prime denotes a derivative with respect to conformal time, η. At linear order in per-
turbation theory, different k-modes in Fourier space are independent. In the absence of an
external source, the mode equation for the tensor perturbation reads, Qk = ahk:

Q′′k +

(
k2 − a′′

a

)
Qk = 0 . (3.2)

This is in contrast to the second order Einstein equations, G
(2)
µν = κ2T

(2)
µν , where different

k-modes mix and scalar, vector and tensor modes are not independent. Instead, there will

be a second-order contribution to the tensor mode, h
(2)
ij , that depends quadratically on the

first-order scalar metric perturbation.
Consider the FLRW metric perturbed up to second order,

ds2 = a2(η)

[
−
(

1 + 2Φ(1) + 2Φ(2)
)

dη2 + 2V
(2)
i dηdxi

+

{(
1− 2Ψ(1) − 2Ψ(2)

)
δij +

1

2
hij

}
dxidxj

]
, (3.3)
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where hij ≡ h
(2)
ij and we have ignored first-order vector and tensor perturbations. The

projected Einstein equations with the tensor T̂ lm
ij are given by [23],

T̂ lm
ij G

(2)
lm = κ2T̂ lm

ij T
(2)
lm . (3.4)

and the mode equation gets a source term:

h′′ij + 2Hh′ij −∇2hij = −4T̂ lm
ij Slm , (3.5)

with

Sij ≡ 2Φ∂i∂jΦ− 2Ψ∂i∂jΦ + 4Ψ∂i∂jΨ + ∂iΦ∂jΦ− ∂iΦ∂jΨ− ∂iΨ∂jΦ + 3∂iΨ∂jΨ

− 4

3(1 + w)H2
∂i
(
Ψ′ +HΦ

)
∂j
(
Ψ′ +HΦ

)
− 2c2

s

3wH2

[
3H(HΦ−Ψ′) +∇2Ψ

]
∂i∂j(Φ−Ψ) . (3.6)

where, w ≡ P (0)/ρ(0), is the equation of state parameter, Φ ≡ Φ(1) and Ψ ≡ Ψ(1). The
Fourier transform of tensor metric perturbations is

hij(x, η) =

∫
d3k

(2π)3/2
eik·x

[
hk(η)eij(k) + h̄k(η)ēij(k)

]
, (3.7)

where the two time-independent polarization tensors eij , ēij are written in terms of the or-
thonormal basis vectors e and ē orthogonal to k,

eij(k) ≡ 1√
2

[ei(k)ej(k)− ēi(k)ēj(k)] , (3.8)

ēij(k) ≡ 1√
2

[ei(k)ēj(k) + ēi(k)ej(k)] . (3.9)

The equation of motion for the gravitational wave amplitude for both h and h̄ reads

h′′k + 2Hh′k + k2hk = S(k, η) , (3.10)

where the source term, S, is a convolution of two first-order scalar perturbations,

S(k, η) = −4elm(k)Slm(k)

= 4

∫
d3k̃

(2π)3/2
elm(k)k̃lk̃m

[{
7 + 3w

3(1 + w)
− 2c2

s

w

}
Φk̃(η)Φk−k̃(η)

+

(
1− 2c2

sk̃
2

3wH2

)
Ψk̃(η)Ψk−k̃(η) +

2c2
s

w

(
1 +

k̃2

3H2

)
Φk̃(η)Ψk−k̃(η)

+

{
8

3(1 + w)
+

2c2
s

w

}
1

H
Φk̃(η)Ψ′

k−k̃
(η)− 2c2

s

wH
Ψk̃(η)Ψ′

k−k̃
(η)

+
4

3(1 + w)H2
Ψ′

k̃
(η)Ψ′

k−k̃
(η)

]
. (3.11)
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The particular solution of (3.10) is then derived using the Green’s function:

hk(η) =
1

a(η)

∫
dη̃ gk(η; η̃)

[
a(η̃)S(k, η̃)

]
, (3.12)

where

g′′k +

(
k2 − a′′

a

)
gk = δ(η − η̃) . (3.13)

Evaluating the two-point correlation function results in

〈hk(η)hK(η)〉 =
1

a2(η)

∫ η

η0

dη̃2

∫ η

η0

dη̃1 a(η̃1)a(η̃2)gk(η; η̃1)gK(η; η̃2) 〈S(k, η̃1)S(K, η̃2)〉 ,

(3.14)
and its relation to the power spectrum, is defined as:

〈hk(η)hK(η)〉 =
2π2

k3
δ(k + K)PT (k, η) . (3.15)

Hence, the fractional energy density of the induced GW is then given by

Ω
(2)
GW(k, η) =

k2

6π2H2
t2(k, η)P

(2)
T (k) =

a(η)k2

aeqk2
eq

t2(k, η)P
(2)
T (k) . (3.16)

The power spectrum at horizon crossing therefore scales as follows

P
(2)
T (k) ∝ P 2

S


keq

k
k < keq

1 k > keq

. (3.17)

The transfer function t(k, η) is approximated by

t(k, η) =



1 k < keq(
k

keq

)−γ
keq < k < kc(η)

aeq

a(η)

keq

k
k > kc(η)

. (3.18)

Inserting the transfer function and the induced spectrum gives:

Ω
(2)
GW(k, η) = A

(2)
GWP

2
S(k)f(k, keq, a(η), aeq) (3.19)

f =



a(η)

aeq

k

keq
k < keq

a(η)

aeq

(
k

keq

)2−2γ

keq < k < kc(η)

aeq

a(η)
k > kc(η)

. (3.20)

Numerically it turns out γ ' 3, A
(2)
GW ' 10. The behavior of large k is due to subhorizon

modes that have not settled down yet. It is given by:

kc(η) =

(
a(η)

aeq

)1/(γ−1)

keq (3.21)

– 6 –
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The modes that have not settled down will be our primary interest for two reasons. First,
considering CMB observations and limits on Neff , part of Neff is the integral over all wavenum-
bers of the stochastic GW background. If the GW spectrum is blue, the unsettled modes will
be a dominant contribution to Neff . Second, the GW spectrum today, is directly probed by
LI and PTA experiments. These experiments only probe a limited domain of scales. These
scales again are the ones related to modes that have not settled down.

Punching in the numbers, for CMB we have aCMB ' 3aeq, the relevant kc(ηCMB) '√
3keq and f(k >

√
3keq) = 1/3. Hence k >

√
3keq are the modes of interest when we

wish to determine the effect of second order GW on Neff . For the LI and PTA experiments,
atoday ≡ a(η0) ' 3400aeq, yielding kc(η0) ' 58keq ∼ 1Mpc−1. We shall use it to put direct
constraints on the primordial scalar power spectrum using LIGO and PTA measurements
and provide a forecast for future experiments.

The dependence of Neff on the GW spectrum is given by [11]:

Neff = 3.046 +

(
3.046 +

8

7

(
11

4

)4/3
)

1

12

∫
d ln k PT . (3.22)

Substituting PT (k > keq) = A
(2)
GWP

2
S/3 gives

Neff = 3.046 +

(
3.046 +

8

7

(
11

4

)4/3
)
A

(2)
GW

36

∫ kUV

d ln k PS(k)2 . (3.23)

Using the Planck data [3, 4], we have a bound at 95% confidence level of 2∆Neff ≤ 0.38,
therefore:

I ≡
∫ kUV

d ln k PS(k)2 ≤ 0.18 , (3.24)

while for later CMB experiments right hand side of the bound will improve to I < 0.14 for
S2, I < 0.05 for the Simons Observatory [8], and I < 0.03 for Stage 4. Notice that Neff

allows us to probe indirectly all scales of both the scalar and GW power spectrum. By
considering various forms of the scalar spectrum we can constrain its parameters measuring
Neff . This is one of the major results of this work. For this purpose, we use several common
parameterizations of the spectrum:

PS = As

(
k

k0

)ns(k0)−1

, (const.) (3.25)

PS = As

(
k

k0

)ns(k0)−1+
α(k0)

2
ln k
k0

+
β(k0)

6
ln2 k

k0

, (run) (3.26)

PS = As

(
k

k0

)ns(k0)−1

+B
(πe

3

)3/2
(
k

ki

)3

e−π/2(k/ki)
2
, (bump) (3.27)

PS = As

(
k

k0

)ns(k0)−1 [
1 +

B

As
Θ(k − ki)

]
, (step) (3.28)

PS = As

(
k

k0

)ns(k0)−1
[

Θ(ki − k) +

(
k

ki

)n∗
s(k0)−1

Θ(k − ki)

]
. (bend) (3.29)

Throughout this work we use Planck’s maximal likelihood value of As = 2.1 × 10−9.
Here α is dubbed the ‘running of the spectral index’ and β the ‘running of running’. A

– 7 –
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Stage Si = 2∆Neff

current 0.38

S2 0.28

SO 0.11

S4 0.054

Table 2. The forecast of constraints on 2∆Neff for different CMB experiment stages (taken from [3,
4, 6, 8]).

word of caution is that usually the parameterizations above are limited to CMB scales while
extrapolating them to all scales of inflation might be problematic. However, these param-
eterizations are suitable for a wide variety of models and further modifications mean that
the spectrum and the underlying inflationary model are more complicated and not generic.
Further complications or features of the spectrum can always be found. In such a case, our
main constraint (3.24), can be calculated and used to test the spectrum.

4 Constraining the scalar spectrum using Neff

To a good approximation the integral in (3.24) can be approximated as
∫ kUV d ln kPS(k)2 '

PS(kUV)2/2(ns(k) − 1). It will therefore be very sensitive to continuous rise in power like
with running or a bend, but will be rather insensitive to features localized in k or an increase
in the amplitude but not in the tilt (a step). Due to the sensitivity to kUV, we shall consider
several scenarios, kUV/k0 = 1021, 1024, 1027, 1030. The first corresponds to two decades
beyond LIGO scales and is not theoretically motivated, the second to 60 e-folds of inflation,
the third to 67 e-folds and the last to the Planck scale. In all the following figures, shaded
regions mean they are excluded regions in violation of the Neff measurement by 2σ or more.
The bounds on ∆Neff are given in table 2.

4.1 ns = const.

The simplest case we start with is a constant ns. Since we know that ns ' 0.97, this is a
purely academic exercise. Nevertheless, substituting a constant ns > 1 yields

I ≡
∫ kUV

d ln k P 2
S =

A2
s

2(ns − 1)

(
kUV

k0

)2(ns−1)

, (4.1)

and the resulting constraints are given in figure 1. Selected results are also given in the
following table 3.

4.2 Running spectral index

Next we consider the case of running and running of running, (3.26). Such parameterizations
provide a good fit to the low multipole power deficit [3, 4, 30]. In the case of vanishing β,
there is a simple analytic expression for the integral I:

I ≡
∫ kUV

d ln k P 2
s (α 6= 0, β = 0) =

√
π

2
√
α
A2
se
− (ns−1)2

α erfi

ns − 1 + α ln
(
kUV
k0

)
√
α

 . (4.2)

For β 6= 0 there is no simple analytical expression.
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1.25 1.30 1.35 1.40 1.45

45

50

55

60

65

ns

ln
k
u
v
/k
0

Region of constraints ΔNeff > Si

Figure 1. Although a purely academic exercise, nevertheless it is interesting to see howNeff constrains
the blue scalar index ns values. The different shades of purple correspond to different cosmology
experiments generations, where the most restrictive is S4, and the least is current data. The vertical
axis is the UV scale, which is the upper limit for our integration over PS , to yield the ∆Neff as allowed
by MCMC analyses and other inputs.

Stage log10[kUV/k0] Constrained by ns <

Current

21

24

27

30

1.412

1.347

1.304

1.273

S4

21

24

27

30

1.391

1.326

1.286

1.257

Table 3. Constraints on a constant the spectral index ns as given by different UV cutoffs for current
data and forecasts for S4.

The results for current data and the forecast for S4 experiment for varying kUV/k0 is
given as a function of α with ns = 0.97, β = 0 in table 4. The full results are given in figure 2
for various UV scales and spectral index ns.

Next we consider the inclusion of “running of running”, β. It is further constrained
giving a conservative bound with current data, as presented in table 5. The full results of
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Stage log10[kUV/k0] α Constrained by (at ns = 0.97)

Current

21

24

27

30

0.0178

0.0137

0.0109

0.0089

S4

21

24

27

30

0.017

0.0131

0.0105

0.00855

Table 4. Constraints on the running of the spectral index in case of a fixed running (β = 0), as given
by different UV cutoffs, in the current stage as well as in S4.

0.94 0.95 0.96 0.97 0.98 0.99 1.00

0.008

0.010

0.012

0.014

0.016

0.018

0.020

n
s

α

Region of constraints ΔNeff > Si

Figure 2. The constraints on such a power spectrum are shown above where the purple region
corresponds to kUV/k0 = 1030, orange to kUV/k0 = 1027, green to kUV/k0 = 1024 and red corresponds
to kUV/k0 = 1021. Each internal line is given by restrictions on ∆Neff . These are given by: Si =
(0.38, 0.28, 0.11, 0.054), for the different observational stages.

this study are given in figure 3 where both α and β are allowed to be positive. It is evident
that a case of positive β is heavily constrained to be of the order of (ns − 1)2 for the values
of α currently allowed by CMB analysis.

Finally, the discriminatory power of the method, is best presented by overlaying the
results on top of likelihood contours of existing data. This is depicted in figure 4, taken
from Planck 2015 data with ns = 0.97, kUV/k0 = 1021. Thus, slow-roll hierarchy must be
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Stage log10[kUV/k0] β Constrained by (at α = 0, ns = 0.97) ×10−4

Current

21

24

27

30

11.15

7.53

5.32

3.91

S4

21

24

27

30

10.7

7.2

5.1

3.75

Table 5. Constrains on index running of running (β) at a vanishing index running (α = 0), for
current stage and Stage 4 cosmology.

-0.02 -0.01 0.00 0.01 0.02

0.0000

0.0005

0.0010

0.0015

0.0020

α

β

Region of constraints ΔNeff > Si

Figure 3. An analysis of constraints for the case of running spectral index (α) with running of
running (β). Each color corresponds to a different UV scale cutoff, purple for kUV/k0 = 1030, to 1027,
1024 down to red for kUV/k0 = 1021. The different same color lines correspond to the different CMB
experimental stages S1 − S4.

maintained, and in particular having either α or β ∼ (ns− 1) will violate the Neff bound. So
taking this result at face value means that such runnings cannot explain the low multipoles
power deficit. In [29], the requirement was β > 0.03 for PBHs to be a DM candidate,
and β & 0.002 to produce PBH with mass M > 1015 gr. Here we show that both are in
violation of the bound from Neff . One can further consider higher and higher orders of scale
dependence, such as γ = d3ns/d ln k3. As our analysis shows, any such higher order term
will be constrained more severely, and may not help as well. The only way for PBH to be
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β

Figure 4. Planck 2015 constraints on running α and running of running β. Taking into account the
contribution of 2nd order tensors to Neff , the shaded region is ruled out assuming kUV/k0 = 1021 and
ns = 0.97.

DM is if they were serendipitously produced at some narrow range of wavenumbers, as the
spectrum with a bump suggests. Hence, our result confirms that the only valid models are
the ones where the slow-roll hierarchy is maintained and at most α, β . few × (ns − 1)2 for
positive running.

4.3 Spectrum with a bump/particle production

Let us now consider the possibility if a brief period of particle production during inflation.
Such a scenario produces a spectrum with a bump at the relevant wave number, (3.27). In
such a case, Neff is sensitive to the amplitude of the particle production, but insensitive to
the wavenumber, i.e. the e-fold of inflation where it occurred. The only exception being if the
bump is at the ki ' kUV scale. Since the standard spectrum gives a negligible contribution
to Neff , the constraint is basically the integral over the feature. One can actually perform
the integral analytically, and the leading term is given by the following:

I ≡
∫ kUV

d ln kPS(k)2 '
(e

3

)3
B2 ' 0.74B2 (4.3)

which corresponds to

B < 0.55, current; B < 0.16, S4 (4.4)

Hence, it is not placing strong bounds on single particle production events. An example of a
square feature was numerically integrated and the results are presented in figure 5.
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Figure 5. A square feature over the standard PS where the UV cutoff is at kUV/k0 = 1030 and the
horizontal axis is the initial k where the feature starts. For reference kstart = 1 means kstart/k0 = 20.
The different panels correspond to the thickness of the feature in k-space, from ∆k = 1 (upper
left panel) through ∆k ∈ {2, 4} to ∆k = 8 (bottom right panel). As can be seen from the graph,
the ‘thickness’ of the square feature is dominant over the ∆Neff as recovered from the different
experimental stages.

4.4 Scalar spectrum with a step feature

A spectrum with a step can occur for instance if there are several periods of inflation. To
limit the number of free parameters, we assumed that only the amplitude has changed while
the spectral index remains the same before and after the step (3.28).

I ≡
∫ kUV

d ln k P 2
S '

B2

2(ns − 1)

((
kUV

k0

)2(ns−1)

−
(
ki
k0

)2(ns−1)
)

(4.5)
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Figure 6. The step function is located at ki = 20k0, and what is shown are the constraints for
different experimental stages (S1-S4), at the step amplitude vs. underlying ns.

Since the spectral index is still slightly red, the constraint here is weak. Basically B .
10−2 − 10−1 depending on wavenumber where the step occurs (ki). A prototypical example
is depicted in figure 6.

4.5 Scalar spectrum with a bend feature

The bend parameterization provides a reasonable approximation to models with non-
monotonic slow-roll parameter ε, such that r & 0.01 while the field excursion is still small,
∆φ ≤ 1 [31–33].

I ≡
∫ kUV

d ln k P 2
S '

A2
s

2(ns + n∗s − 2)

k
2(ns+n∗

s−2)
UV

k
2(ns−1)
0 k

2(n∗
s−1)

i

. (4.6)

Since the integral is dominated by kUV we get a similar behavior to a constant ns > 1
depending on ki and kUV. An example of the results for ki

k0
= 20 is presented in figure 7.

5 Likelihood analysis

The analysis in the previous section used (3.24) in a strict mathematical sense. However, a
proper estimation of cosmological parameters, requires a likelihood analysis allowing several
parameters to vary with proper priors. We have seen that the bound is most useful in
constraining the running α and the running of running β. We therefore ran a CosmoMC
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Figure 7. The bend is located at ki/k0 = 20, and what is shown is the constraints for different
experimental stages (S1-S4), at the bend amplitude vs. underlying ns. This is done for kUV/k0 ∈
{1021, 1024} (upper row, left to right) and kUV/k0 ∈ {1027, 1030} bottom, left to right.

analysis allowing the variation of α, β and we considered spectral tilts ns = 0.95, 0.97 and
various cut-offs kUV/k0 = 1021, 1024 corresponding roughly to two decades beyond the LIGO
band and 60 e-folds of inflation respectively.

Our likelihood analysis uses data from BICEP2, Planck, HST, BAO and the
KECK/Planck cross correlation analysis [3, 4, 34]. In addition to the base CosmoMC soft-
ware distribution [35], we created an additional likelihood module to calculate ∆Neff as a
function of our running parameters,

∆Neff(α, β) =

(
3.046 +

8

7

(
11

4

)4/3
)
A

(2)
GW

36

∫ kUV

d ln k P 2
S,run(k;α, β), (5.1)
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Figure 8. Top panel: 68% and 95% confidence level contours of α, β taking into account the bound
on 2∆Neff ≤ 0.46 for ns(k0) = 0.95 and kUV/k0 = 1021 (top left), kUV/k0 = 1024 (top right). Bottom
panel: same as top panel with ns(k0) = 0.97. S4 is expected to improve the constraints on Neff by an
order of magnitude to 2∆Neff ≤ 0.04.

where PS,run is the one defined in (3.26). In the absence of a closed form solution to the inte-
gral for ∆Neff , we precomputed a grid of values for different inputs of α, β that are then used
in the MCMC analysis. The likelihood plots corresponding to each pair of (ns(k0), kUV/k0)
are plotted in figure 8. They are the results of running our modified version of CosmoMC with
its own precomputed grid of Neff values. We use spacings of ∆α = 4× 10−4,∆β = 2× 10−5

and compute Neff(α, β) using bilinear interpolation for generic values of α, β.

It is clear that both parameters are severely constrained with α, β < 0.002. This is over
an order of magnitude improvement compared to Planck bounds, and in accord with standard
slow-roll predictions of α ∼ (ns−1)2 and β ∼ (ns−1)3. Taken at face value, the results again
disfavor PBH dark matter models that require β > 0.002 [29]. On the more general level,
while the bound does not preclude features in the primordial power spectrum, it certainly
weakens the case for a continuous feature while localized features in some small domain of
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ns(k0) kUV/k0 parameter 68% u.l. 95% u.l. 99.7% u.l.

0.95 1021 β + 0.074 α 3.8× 10−4 7.7× 10−4 8.6× 10−4

0.95 1024 β + 0.063 α 2.1× 10−4 5.0× 10−4 5.5× 10−4

0.97 1021 β + 0.067 α 2.1× 10−4 5.1× 10−4 5.7× 10−4

0.97 1024 β + 0.059 α 1.2× 10−4 3.6× 10−4 4.1× 10−4

Table 6. Upper Limits on combinations of α and β obtained from our CosmoMC likelihood distri-
butions.

Experiment As k (Mpc−1)

LIGO < 7.6× 10−3 3× 1016 − 1.3× 1017Mpc−1

PTA < 5.8× 10−4 ∼ 1.5× 108Mpc−1

Table 7. Current constraints on the primordial scalar power spectrum from current GW observations.

Experiment As k (Mpc−1)

aLIGO < 5.8× 10−4 3× 1016 − 1.3× 1017

SKA-PTA < 1.8× 10−5 ∼ 1.5× 108

LISA < 5.8× 10−6 1.5× 1012 − 1.5× 1013

Table 8. Forecasted constraints on the primordial scalar power spectrum from future GW observa-
tions.

wave-numbers k are still plausible. Combining the analysis of this section and the previous
one, we can place upper limits on linear combinations of α and β for each distribution. Table 6
summarizes the 68% 95% and 99.7% upper limits for each distribution shown in figure 8.
The most conservative analysis (3σ) gives the following bound β + 0.074 α < 8.6 × 10−4.
It would be interesting to include the LIGO data in a future likelihood analysis, potentially
strengthening these bounds.

6 Constraints and forecast from other gravitational waves experiments

The absence of stochastic GW at LIGO and PTA scales allows us to place direct constraints
on the fractional energy density stored in GW produced from scalars, and hence on the
primordial power spectrum. For this we do not need to integrate over the spectrum, as we
can place direct bounds on the GW or scalar amplitude at each wavenumber. Notice that
these bounds do not depend on parameterization, but rather a strong bound on the amplitude
of the power spectrum at these scales. Using the expressions (3.19), (3.20) and the fact that

aeq/atoday ' 1/3400 and A
(2)
GW ' 10 we have

Ω
(2)
GW(k, η0) =

P 2
S(k)

340
, k > 58 keq (6.1)

Given the bounds from LIGO and PTA, as well as future constraints from LISA, SKA and
aLIGO we can constrain the primordial power spectrum, PS . Using (2.1) the current LIGO
and PTA measurement are specified in table 7. Notice that these bounds are already better
than ones obtained by the absence of primordial black holes. Forecasted constraints assuming
no detection appear in table 8.
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Analysis ns α β

PL2018, ns, α 0.9641 -0.0045 N/A
PL2018 ns, α, β 0.9647 0.0011 0.009

This paper 0.97 0 0.0004

Table 9. Most likely scalar spectra form the Planck 2018 analysis with running, and possible running
of running. Additionally the third row contains one of the models recovered from this analysis, which
is on the cusp of the 68% CL once the Neff bound is included. This shows that our analysis further
constrains the scalar spectrum while compliant with the Planck data.

Figure 9. The map of the scalar power spectrum constraints by current and expected data. The
dashed lines represent PPS allowed models. The red dash is the Planck 2018 analysis with ns =
0.9641, α = −0.0045, where the blue dash is ns = 0.9647, α = 0.0011, β = 0.009. The black dash is one
of the least constrained models that are still allowed by our analysis with ns = 0.97, α = 0, β = 4·10−4.

These results combined with a compilation of other probes of the power spectrum are
given in figure 9, where we used [27, 28]. In the figure there are also a few examples of
possible spectra. The dashed red one corresponding to negative running α, and most likely
spectrum parameterized in Planck 2018, hence no detection is expected in any future probe.
The dashed blue corresponds to a detectable spectrum in LIGO in the future, also most
likely from Planck 2018. However it is in discord with the Neff bound, assuming integration
up to at least kUV/k0 = 1021. Finally, the black dashed curve corresponds to positive β,
but does not violate the Neff bound, and cannot be observed by planned experiments, even
considering second order contributions. The details of these models are given in table 9.

Regarding the specific parameterization of α and β the LIGO constraint is again the
strongest yielding β = 0, α ≤ 0.018 and α = 0, β ≤ 0.0013 from current constraints, and
β = 0, α ≤ 0.015 and α = 0, β ≤ 0.0011 with design sensitivity. However the integral
constraint from Neff is stronger for higher kUV. The PTA bound on α, β is also of relevance,
as it involves extrapolation only up to k ∼ 108Mpc−1 rather than k ∼ 1016Mpc−1. In such
case β = 0, α < 0.056 and α = 0, β < 0.0077. Future constraints will improve the bounds to
β = 0, α < 0.041 and α = 0, β < 0.0057. This is an independent bound on α, β and is an
improvement compared to existing bounds on the running of running, β.
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7 Discussion and conclusions

The joint analysis of CMB, PTA and LI experiments that involves scales separated by orders
of magnitude shows a great promise in unravelling the mysteries of the Early Universe. We
have taken a modest step towards a joint analysis by considering the constraining power
of these upcoming experiments on the scalar primordial power spectrum. Since a scalar
primordial power spectrum has been observed, an inevitable consequence is the existence of
a tensor power spectrum sourced from the interaction between scalar and tensor fluctuations
at second order. This sourced tensor spectrum exists independently of the Early Universe
paradigm that reigned, and is constrained in principle by CMB, PTA and LI observations.
Considering the basic prediction of r ∼ 10−6 on CMB scales, our analysis shows that a cosmic
variance limited CMB experiment with partial sky coverage and no delensing may be able
to detect it. This calls for a more accurate estimate of the theoretical prediction, as well as
a more detailed analysis of the systematics of such experiment.

Furthermore, this sourced spectrum is a function of the primordial scalar spectrum.
Hence by considering CMB, PTA and LI observations and the relation between the scalar
and sourced tensor spectrum, we can constrain the scalar spectrum in a way that has not
been considered before and on length scales inaccessible to known probes.

We have demonstrated that considering the contribution of the sourced tensor spec-
trum to Neff yields an integral bound on the primordial scalar spectrum. The strength of
the bound is parameterization dependent. Barring additional features in the spectrum, it
forces the running α to conform to standard slow-roll results of α ∼ (ns − 1)2, that is an
order of magnitude better than primary CMB constraints. Moreover, the running of run-
ning is further constrained to be β < 0.002 . (ns − 1)2. S4 experiments are expected to
improve these bounds. Finally, we derived a direct bound on the amplitude of the primordial
scalar spectrum using LIGO and PTA current measurements, as well as forecasts for future
measurements. This direct bound is, to our knowledge, the best bound on these scales, and
improves bounds based on the absence of primordial black holes by more than an order of
magnitude. The results presented here strengthen the case of “vanilla type” inflation without
additional features.
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