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Abstract. We derive analytic bounds on the shape of the primordial power spectrum in the
context of single-field inflation. In particular, the steepest possible growth has a spectral index
of ns − 1 = 4 once transients have died down. Its primary implication is that any constraint
on the power spectrum at a particular scale can be extrapolated to an upper bound over
an extended range of scales. This is important for models which generate relics due to an
enhanced amplitude of the primordial scalar perturbations, such as primordial black holes.
In order to generate them, the power spectrum needs to grow many orders of magnitude
larger than its observed value on CMB scales — typically achieved through a phase of ultra
slow-roll inflation — and is thus subject to additional constraints at small scales. We plot
all relevant constraints including CMB spectral distortions and gravitational waves sourced
by scalar perturbations at second order. We show how this limits the allowed mass of PBHs,
especially for the large masses of interest following recent detections by LIGO and prospects
for constraining them further with future observations. We show that any transition from
approximately constant ε slow-roll inflation to a phase where the power spectrum rapidly rises
necessarily implies an intervening dip in power. We also show how to reconstruct a potential
that can reproduce an arbitrary time-varying ε, offering a complementary perspective on how
ultra slow-roll can be achieved.
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1 Introduction

There has been a recent surge of interest in the possibility that primordial black holes (PBHs)
might constitute a non-negligible fraction of the dark matter in the universe. This was largely
sparked by the question posed in [1] (see also [2, 3]) — whether the order ten solar mass
black holes observed by LIGO [4] could be primordial.1 This is motivated by the fact that
there are several hints for the existence of PBHs [8], for example the progenitor BH spins
of the LIGO detections being consistent with zero in most cases [9–12], which is expected
for PBHs formed during radiation domination [13] (but not matter domination [14]) and
arguably unexpected for astrophysical BHs [15, 16]. This begs the follow-up question — if
these observed black holes are of primordial origin,2 how were they produced and what are
the implications for inflationary model building?

The idea that black holes could be primordial relics (albeit of non-thermal origin) was
first discussed in [20]. Since then, the possibility that they could be produced through
inflationary dynamics has been vigorously investigated, see e.g. [21–39], and [40] for a recent
review of PBHs in the context of the recent observations by LIGO. In order for primordial

1See however [5–7] for an alternative interpretation of the LIGO data.
2For more about a stellar origin of the detected BHs see e.g. [17–19].
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black holes to form, the primordial power spectrum has to grow by about seven orders of
magnitude above the amplitude of PR ∼ 2 × 10−9 observed on CMB scales (we discuss the
uncertainties in this estimate in section 4.3). Growing to such an amplitude on smaller scales
takes time during inflation due to the causality of the underlying background field dynamics,
but to date no one has quantified just how quickly the power spectrum can grow. We
show that at least assuming canonical single-field inflation, neglecting transients, the power
spectrum cannot grow faster than ns − 1 = 4, even allowing for arbitrary and instantaneous
changes in the derivatives of the inflaton field potential. That is, the (inverse) length-scale
k must change by at least an order of magnitude in order for the power spectrum to grow
by four orders of magnitude. This implies that any observational constraint on the allowed
amplitude of the power spectrum which is tighter than the required amplitude to generate
PBHs on a particular scale can be extended over a broader range of scales than directly
implied by the observations, due to the restriction on how quickly the power spectrum can
grow. We also discuss how observational constraints from the CMB, large-scale structure,
spectral distortions and Pulsar Timing Arrays (PTA) all provide constraints on the allowed
masses of PBHs which could have formed.

In the context of PBHs as dark matter (DM), the PBH mass function is important
for determining the fraction of the energy density in DM that could be made up of PBHs
given current constraints on their detection. We therefore investigate whether restrictions
on the primordial power spectrum growth rate have an effect on the PBH mass function
and find that vastly different power spectra produce very similar mass functions. This means
that if one is interested in producing PBHs within a particular range of masses, observational
constraints on the power spectrum will need to be avoided without the slope increasing faster
than k4, and the resulting mass function — which will be largely independent of the power
spectrum — must then also avoid constraints on the allowed fraction of PBHs in dark matter.
Placing analytic bounds on the steepest growth of the power spectrum defines the largest
windows possible for PBH production, and targets for future experiments to aim for.

In section 2 we define the slow-roll approximation and deviations from it, and use
analytical approximations to find the steepest growth of the power spectrum, and discuss its
possible physical basis. We also discuss a dip in the power spectrum that is common to both
numerical and analytical results. Figure 2 shows the steepest growth. In section 3 we look
at the dependence of the mass function on the shape of the power spectrum. In section 4 we
review the relevant observational constraints on the power spectrum and discuss the effect
our bound on the power spectrum has for model-building. Figure 8 shows our “master” plot
of the constraints on the power spectrum across a huge range of scales, and future forecasts
are shown in figure 9. Finally, we present our conclusions in section 5 with various details
deferred to the appendices.

2 The fastest possible growth in power

The simplest models of single-field inflation can be described by the so-called slow-roll approx-
imation. This assumes that the inflaton field’s kinetic energy is very sub-dominant compared
to the potential as it descends it, and is described by the slow-roll parameters:

ε = − Ḣ

H2
=

φ̇2

2H2M2
pl

, (2.1)

η =
ε̇

εH
. (2.2)
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These are the first two terms in the so-called Hubble hierarchy, defined (for i ≥ 1) as

εi+1 :=
ε̇i
Hεi

. (2.3)

For the background to be inflating, ε must be less than unity, and provided it varies slowly as
inflation progresses, the resulting primordial power spectrum is nearly scale-invariant. The
Planck collaboration [41] have measured the amplitude of the primordial power spectrum at
scales sampled by the CMB (k ∼ 10−3 − 10−1 Mpc−1) to be of the order 10−9 and nearly
scale-invariant — consistent with the simplest models of slow-roll inflation. However, CMB
measurements tell us nothing about the power spectrum at scales k � 1 Mpc−1. The tightest
constraints for k & 1 Mpc−1 are disputed, but are certainly orders of magnitudes weaker than
those on CMB scales (however, see [42] for recent claims to the contrary). For k & 107 Mpc−1,
the constraint is PR(k) . 10−2 [43], where we use PR(k) to denote the dimensionless power
spectrum of the comoving curvature perturbation. This means that the power spectrum is free
to grow to around 10−2 on small scales, and such growth would indicate strong deviations
from the standard slow-roll regime. Any peak-like features in the power spectrum are of
topical interest since primordial black holes are produced if the power spectrum is of order
10−2 [43]. In what follows, we analytically derive a steepest growth index of k4 for the power
spectrum in the context of single-field inflation.

2.1 Slow-roll, beyond slow-roll, ultra slow-roll inflation

In order for the power spectrum to grow during single-field inflation, the potential must
become very flat, meaning that ε must decrease rapidly. The quantity that governs this is η,
as can be seen from the Klein-Gordon equation for a minimally coupled scalar field:

φ̈+ 3Hφ̇+
dV

dφ
= 0. (2.4)

When the potential is exactly flat, dV/dφ = 0, so that

− φ̈

φ̇H
= ε− η

2
= 3. (2.5)

Hence the smallest value of η attainable for a monotonically decreasing potential is η = −6.
Through the defining equation (2.2), we see that the fastest ε can therefore decrease is

ε ∝ e−6N , (2.6)

where N is the number of e-folds, and we have used d
dt = H d

dN . The limiting case for a
monotonic potential is an inflection point or an extended period of V ′ = 0. As verified
explicitly through a potential reconstruction exercise in appendix C, we indeed see that
a phase of Ultra Slow-Roll (USR) inflation [44, 45], defined as a phase of constant η =
−6, is attained as one approaches an inflection point, which can also be reasonably well
approximated by a small enough first derivative [31–33, 46, 47].

If the potential is non-monotonic and the inflaton field rolls uphill then an arbitrarily
negative value of η is possible, but the potential needs to be extremely tuned and will have
many transients associated with it (which could end up dominating) [48]. For this reason
we will mainly focus on regimes of η ≥ −6, however, we will show that our result for the
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Figure 1. The behaviour of the backgrounds and perturbations as a function of the slow-roll param-
eter η.

steepest growth of the power spectrum also holds for non-monotonic potentials with η < −6.
Any deviation from η ' 0 goes beyond what has typically come to be known as the standard
slow-roll (SR) approximation, which consists of neglecting the acceleration term in (2.4), a
valid approximation only when η ' 0. However, qualitatively different behaviour for the
mode functions can result from different regimes of η < 0 even as the background remains
approximately de Sitter, with a(t) ∼ eHt. We see this by first recalling the equation of motion
for the curvature perturbation in conformal time

R′′k + 2
z′

z
R′k + k2Rk = 0 (2.7)

where z2 = 2a2M2
plε. In the long wavelength limit we find the general solution

Rk→0 = Ck +Dk

∫ τ dτ ′

a2ε
. (2.8)

The first term is the usual constant super-horizon mode, and the second term ordinarily
decays. However, when ε decays at least as fast as ε ∝ a−3 in cosmological time (i.e. a−2 in
conformal time), the second term no longer decays. That is, for η < −3, one has a grow-
ing super-horizon mode in addition to the usual constant mode, whereas for η > −3 one
has the customary constant mode and decaying mode of standard slow-roll inflation. This
implies that our inflationary background is not an attractor whenever η ≤ −3, and we are
in the peculiar regime of single-field, but non-single-clock inflation. This is because on an
attractor, we only have one linearly independent perturbation that can persist — a local
reparameterisation of the background solution, with the other linearly independent pertur-
bation decaying exponentially. When this is no longer the case, an arbitrary perturbation
can no longer be described as just a local time reparameterisation of the background — the
defining characteristic of the single-clock regime.3 For this reason, we find it useful for the
purposes of the following discussion to classify different phases of η as standard slow-roll ap-
proximation (η ≈ 0), beyond the slow-roll approximation (−3 < η < 0), and non-single-clock
inflation (η ≤ −3) with the limiting case of ultra slow-roll at η = −6. See figure 1 for a visual
representation of these regimes.

Inflationary potentials which have inflection points or sufficiently flat sections have been
studied in e.g. [31–34, 37, 38], and are generally found to be severely tuned if one stipulates
that a peak be produced in the power spectrum with amplitude of order 10−2. In what
follows, we will show that on the way to such a peak, one cannot increase primordial power
arbitrarily fast in k-space. Were we to consider a phase of strictly constant η evolution,

3See [49] for a detailed discussion of this point.
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one can straightforwardly derive a steepest possible growth of PR ∝ k3 (cf. appendix B).
However this is too simple an approximation, as any realistic inflationary background must
eventually exit such a phase. A more careful multi-phase matching calculation demonstrates
a steepest growth of PR ∝ k4. This implies that the generation of primordial black holes due
to peaks in the power spectrum is subject to further model-independent integral constraints
from CMB spectral distortions and pulsar-timing array bounds.

2.2 Regimes of constant η

As noted above, the power spectrum grows quickly if ε decreases quickly — a process tracked
by the second slow-roll parameter η. In order to determine the fastest possible growth,
we consider regimes where η decreases monotonically from 0 to different negative values.
Finding the behaviour of the power spectrum for instant transitions between different phases
is possible analytically via a matching calculation [50], and stitching together sufficiently
many phases of constant η evolution can approximate a smooth transition. For the purposes
of deriving a steepest growth index, we note that the growth produced by an instant transition
between different phases of constant η will be steeper than the growth produced in a smooth
transition.

As elaborated upon in appendix A, because there are no jumps in the energy momen-
tum tensor of the background between phases of different η, the Israel junction conditions
(see (A.10)) require us to match the curvature perturbation and its first derivatives across the
matching surface [51, 52]. All modes begin in the Bunch-Davies vacuum in the initial phase
of η = 0, after which we match to a phase of constant η < 0, and then again to a terminal
phase of η = 0. We derive analytic expressions for the power spectrum for instant transitions
between 0 and the 6 integer values of η up to the ultra slow-roll regime in (A.26)–(A.28),
the results of which are plotted in figure 2. The duration of each η < 0 phase is chosen such
that the same growth in amplitude is achieved in all six cases, facilitating a straightforward
comparison of the spectral index.

From figure 2, we see that the slowest growth occurs for the integer values η = −1, with
ns−1 = 1 once transients have died down (due to the unrealistic instantaneous transitions4),
and for η = −2, where the growth is given by ns−1 = 2. Since we only expect the previously
decaying mode to start growing once η ≤ −3, the slope of the power spectrum for η > −3 is
determined by the value of η only, and matches the expression given in (B.2). For η ≤ −3, a
qualitatively different behaviour emerges. Since we are no longer in the single-clock regime,
the previously decaying mode starts to grow, and with it, superhorizon perturbations. Here,
the power spectrum has a pronounced dip occurring at scales that exit the horizon a few
e-folds before the time of the first transition, followed by an initial growth index proportional
to k4, after which it settles to the constant-roll growth given in (B.2). The initial phase
of k4 growth is the steepest possible. In all cases of η ≤ −3, the power spectrum begins
to grow before the transition time, which is evidence for superhorizon growth.5 Providing
one adjusts the duration of the η 6= 0 phase such that the final amplitude of the power
spectrum is always the same, the rapid growth lasts longest for η = −6 before reaching a
scale-invariant spectrum. Evidently, the steepest growth is characteristic of the non-single
clock phase. For an inflationary potential where the inflaton field transiently rolls uphill, η

4Note that even smooth but rapid transitions in the inflationary potential can lead to oscillation in the
power spectrum, see e.g. [53].

5In figure 2 the horizon exit scales at the transition times from η = 0 to constant η are (for decreasing
values of η from -1 to -6) k ∼ 10, 104, 105, 3× 105, 6× 105 and 106 Mpc−1.
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Figure 2. Analytical matching from η = 0 to values of constant η between -1 and -6, to a final phase
of η = 0 slow roll. For η ≤ −3 (purple, red, grey and blue lines in decreasing value of η), the steepest
slope of ns− 1 = 4 is achieved after the dip, before relaxing to a shallower slope decided by the value
of η, see (B.2). For η > −3 (green and orange lines), the slope is constant for the whole range of k
that the power spectrum increases for. See the online version for colour figures.

can become arbitrarily negative. However one finds a steepest growth of k4 in this case as
well, demonstrated in figure 3 with a matching from η = 0 to η = −8 and back. We offer an
analytic understanding of this steepest growth in the next subsection.

A more realistic treatment would model the evolution of η as a series of non-zero con-
stant phases of η, with instant transitions between each phase to approximate a smooth
transition between slow roll and ultra slow roll. As expected, we again find a steepest growth
of k4, illustrated in figure 10. We can test a ‘realistic’ example of a smooth transition by nu-
merically calculating the final power spectrum for the inflection point model for the potential
given in [31, 33], with the choice of parameters given in section 4 of [31]. We use CPPTrans-
port [54, 55] to perform the numerical calculation. The red line in figure 4 is the resulting
numerical power spectrum, and the blue line is the analytical result from approximating the
evolution of η in the way shown. As expected, the analytic approximation following from
an instant matching between phases of inflation grows more steeply than the more realistic
(and smooth) potential of [31].

In appendix C, we show how these analytical power spectra might be realised by con-
structing an example potential that smoothly traverses between η = 0 and η = −6 and back.

2.3 Steepest growth and the prior dip in the power spectrum

Inflationary models which include a phase of non-single-clock evolution (i.e. with η < −3)
manifest a significant dip in the power spectrum before a steep rise caused by the growth
of the perturbations on super-horizon scales, see figure 2. This has been observed in many
recent studies [31–33, 38, 47, 56] which have numerically computed the primordial power
spectrum for inflationary models with deviations from the slow-roll approximation. It might
be assumed that this is caused solely by an increase in ε before the rapid decrease, for example

– 6 –
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10 1000 105 107 109 1011
k [Mpc-1]

10-10

10-7

10-4

10-1

(k)

Figure 3. The blue line is the same power spectrum as plotted in figure 2 for 2.3 e-folds of USR
(η = −6). The yellow line is a matching from η = 0 to η = −8 for 1.725 e-folds and back to η = 0.
The spectral index of the power spectrum is ns = 4 initially (after the dip), followed by a brief period
of negative spectral index ns ' −2, before scale-invariance for the final η = 0 phase. The dashed
black line has a k4 slope.

Analytical approximation

Numerical results

1000 105 107 109
k

10-11

10-9

10-7

10-5

0.001

0.100

(k)

Analytical approximation

Numerical results

10 15 20 25 30 35 40 Ν (e-folds)

-6

-4

-2

η

Figure 4. Left-hand plot: numerical results for the potential in [31] are plotted in red and our
analytical approximation is plotted in blue. The analytical approximation involves 3 constant phases
of η from 0 to -6 and back to 0. The right-hand plot shows the piecewise form for η used for the
analytical approximation in blue, with 2.2 e-folds of η = −6. The full numerical evolution of η for the
potential in [31] is shown in red. Note that the units in e-folds have been defined arbitrarily, and we
have chosen to centre the phase of η = −6 in our analytical approximation at the time N when the
numerical η reaches -6 instantaneously.

see ε plotted in figure 2 of [38]. However, on comparing numerical results with the analytical
approximations from section 2.2 for which ε never increases, we show that the dip cannot be
caused by this alone, and that it is actually a generic feature of transitioning from η = 0 to
a regime where the decaying mode starts to grow. Perhaps surprisingly, the dip is located
on scales which exit the horizon while normal slow roll is still taking place. We explain these
features for the particular case of a transition from η = 0 to η = −6 by making an analytical
matching between the two periods. We assume USR lasts for well over an e-folding and
neglect the effects of transitioning out of USR, which is a subdominant effect (see figure 11).
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The expansion of the power spectrum in terms of k/ku, where ku is the horizon scale at
the time when USR begins (see eq. (A.26) for the full expression), is

PR(k)

PR(0)
=

[
1− 4

5

(
k

ku

)2

e3NUSR

]2
+2

(
k

ku

)2

−0.10

(
k

ku

)6
e6NUSR + 0.0075

(
k

ku

)8
e6NUSR + · · ·

(2.9)

where NUSR is the number of e-folds during which η = −6 and we have dropped terms
subleading in eNUSR .6 All higher-order terms, which come in even-powers of k/ku also come
dressed with pre-factors of e6NUSR but with numerical coefficients that are down by an order
of magnitude for each even order. Therefore, for k . ku, terms up to quartic order are an
accurate approximation to the power spectrum. Once k2/k2u ∼ O(10), all of the terms in
the alternating series are as important as each other and this is when the series begins to
conditionally converge to an oscillating function. Solving for k such that the term in square
brackets is zero gives the position of the dip, kdip, as

kdip
ku

=

√
5

4
e−

3
2
NUSR (2.10)

and hence the dip occurs approximately 3
2NUSR e-folds before USR begins. The amount by

which the power spectrum is suppressed at this point is

PR(kdip)

PR(0)
' 2.5e−3NUSR . (2.11)

Finally the rapid k4 growth during the transition to USR will end when the k4 and k6 terms
in (2.9) become comparable, which happens when

k ' 2.5ku, (2.12)

and hence occurs about one e-folding after USR has begun, independently of the duration of
USR (provided NUSR & 1).

Thus far, we’ve arrived at an analytic understanding of the shape of the primordial power
spectrum via a matching calculation, and in particular, its steepest possible growth over an
intermediate range of scales. This begs the immediate question — what is the underlying
physical mechanism responsible for this steepest growth? Several independent arguments
demonstrate a steepest growth of PR ∝ k3 under the assumption that the large scale power
spectrum is a strict power law over all relevant scales. Peebles showed that if the matter power
spectrum is to accurately describe particulate matter over scales of cosmological interest, then
the two-point function for the density contrast δ := δρ/ρ can grow no faster than k4 [57].
This implies that the dimensionless power spectrum for the curvature perturbations can
grow no faster than k3 since ∂2R ∝ δ. As shown in appendix B, one can also derive a similar
strongest possible scaling for the two point function of the curvature perturbation from the
asymptotics of the mode functions. However, none of these arguments apply in the present
context, where we do not assume constant power law behaviour for the primordial power
spectrum, and the steepest growth is only over a limited (and in principle tunable) interval.7

6We note that if USR ends in a different way than an instant transition to constant ε then the numerical
coefficients in the equation above change slightly, but the qualitative picture remains the same.

7We also note in appendix B that in assuming a (possibly distributional) power spectrum of the form
P ∝ kn at all scales, one can show that it is not possible to regulate the short distance divergence of a
spectrum with index n > 4 in four dimensions.
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Although one might suspect causality or unitarity arguments to be at play — or perhaps
conformal symmetry as the system tends towards ε→ 0 — it seems that the bound may be
due to an interplay of causality arguments and energy-momentum conservation, something
we’re currently investigating with a particular view to generalising to the multi-field context.

3 The PBH mass function

Having shown that there are limits to how quickly the power spectrum can grow, one may
expect that this also places a sharp limit on how narrow the mass function of PBHs can be.
In practice this is not the case, for (at least) three reasons: 1) for any given horizon mass,
PBHs form with a spread of comparable masses; 2) the matter power spectrum is less ‘sharp’
than the primordial power spectrum because of the window function relating the two; and
3) PBH formation is exponentially sensitive to the amplitude of the power spectrum, so only
perturbations comparable to the peak amplitude are important.

The phenomena of critical collapse [58–60] describes how PBHs of mass M can form
with a variety of masses for any given horizon mass MH according to the relation

M = kMH(δ − δc)γ , (3.1)

where during radiation domination the constants have been numerically estimated as k =
3.3, γ = 0.36, δc = 0.45 (the exact values depend upon the radial profile of the perturbations
being considered but we use the values given here in order to be concrete) [61–64]. From the
expression given in [65], the mass function of PBHs, f(M), is

f(M) ≡ 1

ΩCDM

dΩPBH

d lnM

=
1

ΩCDM

∞∫
−∞

2√
2πσ2(MH)

exp

[
−(µ1/γ + δc(MH))2

2σ2(MH)

]
M

γMH
µ1/γ

√
Meq

MH
d lnMH, (3.2)

where µ ≡ M
kMH

.
Inspired by the observation that we cannot have an arbitrarily rapidly growing power

spectrum, we calculate the resulting mass function f(M) from 4 different power spectra. The
first three grow at different rates towards smaller scales (ns − 1 = 0.1, 0.2 and 4 but then
drop to zero), the fourth is a Dirac delta function and we chose an overall normalisation of
As = 0.15

PR(k) = 0.242As(k/k∗)
0.1 for k < 1.5k∗, 0 otherwise; (3.3)

PR(k) = 0.256As(k/k∗)
0.2 for k < 1.35k∗, 0 otherwise; (3.4)

PR(k) = As(k/k∗)
4 for k < k∗, 0 otherwise; (3.5)

PR(k) = 0.182Asδ(k − 0.83k∗). (3.6)

The prefactors to the power spectra and the scale at which they drop to zero has been
tuned in order to make the position and amplitude of the peak of the mass function as similar
as possible, in order to easily compare the width of the mass function. The power spectrum
dropping instantaneously to zero is unrealistic but unlike an increasing power spectrum, which
cannot grow arbitrarily quickly, there is no theoretical limit to how rapidly the spectrum can
decay. If the potential is discontinuous and drops to zero instantaneously, then once it goes

– 9 –
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k
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10-4

0.001
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0.100

Pζ

Figure 5. The power spectrum on the left and the smoothed variance of the density contrast on the
right for the four models described in the text (the Delta Dirac model is not plotted on the left plot).
The power spectra are zero where no line is shown. The x-axis units are arbitrary.

0.5 1 5 10
1.×10-7

5.×10-7

1.×10-6

5.×10-6

1.×10-5

MPBH

f

Figure 6. The mass function for the 4 power spectra plotted in figure 5, plotted using the same
colour scheme. The arbitrary x-axis units are chosen such that the horizon mass is unity for k = 1 in
the units used for figure 5.

to zero ε becomes 3 instantly, inflation ends and the universe enters kination domination. For
potentials which rapidly switch to a steep negative gradient an arbitrarily rapid transition
to a rapidly growing ε can be engineered, which can make the power spectrum as blue as
required without ending inflation quickly. For more details, see appendix C.2.

The variance of the comoving density contrast at horizon entry (smoothed on a scale
R = 1/k) is related to the power spectrum by

σ2R =

∫ ∞
0

dq

q

16

81

(
qk−1

)4 PR(q)WR(q)2 (3.7)

and we use a Gaussian window function,8 WR(k)2 = e−(kR)2 . The results are shown in
figure 5. Figure 6 demonstrates that the mass function is not very sensitive to how steep

8The influence of the choice of the window function is discussed in [66]. We neglect a transfer function which
suppresses sub-horizon perturbations, because it has a negligible impact when using a Gaussian smoothing
function.
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or spiked the primordial power spectrum was unless it varied very slowly with scale. There
is almost no visible difference in f(M) between a spike which is modelled by a delta Dirac
power spectrum or one growing like k4. More surprisingly, even a slowly changing power
spectrum with spectral index ns − 1 = 0.1 and a cut off generates a mass function which is
not substantially broader than the tightest possible mass function near the peak; compare
the black and red lines in figure 6. Note that the mass functions agree extremely well for
small masses because the power spectra all have a cut-off scale which has been chosen to align
the peaks of the mass functions. The insensitivity of the PBH mass function to the shape of
the power spectrum, due to the degeneracies between the effect of the amplitude and shape
of the power spectrum, mean that the PBH mass function would have to be detected with
very high precision in order to reconstruct the shape of the primordial power spectrum near
the corresponding peak.

4 Observational constraints

Although the primordial power spectrum is tightly constrained on CMB scales (from roughly
k ∼ 10−4 − 10−1 Mpc−1) to be of the order PR ∼ 10−9, there are upper bounds on scales far
beyond those accessible in the CMB through a variety of tracers and indirect probes. Of these,
the constraints most relevant to the present discussion are distortions of the CMB spectrum
from the dissipation of acoustic modes, and bounds from gravitational wave backgrounds
produced by scalar perturbations at second order. At the end of this section we produce a
“master plot” of the key constraints on the power spectrum.

In order to quantify the effect of observational constraints on the allowed number of
PBHs generated, which is quantified by β = ρPBH/ρtot at the time of formation, we need to
know the relationship between the amplitude of the power spectrum and β. In this paper
we have neglected the impact of quantum diffusion of the inflaton field and non-Gaussianity
of the primordial perturbations. In the context of PBH formation, quantum diffusion during
inflation has been discussed subject to the slow-roll approximation by [67] and during USR
with conflicting conclusions about its importance in [47, 68–70].

We have also neglected the impact of any non-Gaussianity of the primordial perturba-
tions. This is despite the fact that one of the main reasons that USR inflation was initially
considered interesting was that it appeared to generate local non-Gaussianity of order-unity
amplitude [71], providing an exception to the statement that single-field inflation generates
negligible local non-Gaussianity [49, 72, 73]. However, Cai et al. have recently shown that
ending USR with a smooth transition tends to erase the local non-Gaussianity [74]. If the lo-
cal non-Gaussianity is not erased or modified by the way USR ends, it has a value fNL = 5/2
for modes which exited the horizon long after USR begins (see [75, 76] for coordinate-choice
issues). fNL ∼ 1 was shown to have a significant impact on the power spectrum constraints
in [77], while the higher-order non-linearity parameters and mode coupling are also impor-
tant [78–80]. The impact of non-Gaussianity on PBH formation during inflection point
inflation was recently considered in [81].

Other uncertainties in relating the amplitude of the power spectrum to the number of
black holes include non-sphericity of the initial density profile [82], the window function used
to smooth the density contrast [66], the background equation of state when modes re-enter
the horizon [64] (the QCD transition can motivate a population of solar mass PBHs [65])
and the shape and sphericity of the initial energy-density profile [83–86]. More broadly, the
general calculation has been questioned recently in [87, 88], with particular uncertainty on
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the critical density threshold δc and more than an order of magnitude uncertainty in the
relation between the horizon and PBH mass. There is not yet any consensus on how to
calculate β(M), given a particular primordial power spectrum.

Conditional on all of the aforementioned caveats, for a non-negligible number of PBHs
to be generated, the amplitude of the power spectrum needs to be of order 10−2 depending
on the mass of the PBH [89]. We will now see the relevant constraints.

4.1 CMB spectral distortions

What we see in the CMB is a snapshot of acoustic excitations in the primordial plasma around
the time of last scattering. Sound waves dissipate energy as they propagate, transferring
energy into heating the ambient medium. Any heat dissipated into the primordial plasma
has the possibility of showing up in the form of µ and y type distortions of the CMB ([90, 91]),
provided they occur in the redshift window between z ∼ 106 and last scattering at z ∼ 103.
The reason for this is that at sufficiently early times, Compton scattering is efficient enough to
rapidly restore thermal equilibrium after any energy injection process. At around z ∼ 106 its
efficiency starts to drop, and distortions of the blackbody spectrum of the CMB can start to
persist if they were initially large enough. The greater the power spectrum is at small scales,
the greater the amount of energy that gets dissipated into the primordial plasma, hence
spectral distortions offer a powerful probe of the power spectrum at scales beyond those
accessible in CMB anisotropies. Of the two varieties of distortions generated by dissipation,
µ-type distortions are sensitive to power at smaller scales. It corresponds to a distortion of
the black body spectrum mimicked by an effective chemical potential µ, given by [92]

µR ≈
∫ ∞
kmin

dk

k
PR(k)WR,µ(k), (4.1)

where the window function Wµ is given by

WR,µ(k) ≈ 2.27

exp

−[ k̂

1360

]2/1 +

[
k̂

260

]0.3
+

k̂

340

− exp

−[ k̂
32

]2 , (4.2)

with k̂ = k/[1 Mpc−1] and kmin ' 1 Mpc−1, below which the power spectrum is tightly
constrained by large scale observations of the CMB.

Measurements from COBE/FIRAS require the µ-distortion to be no greater than 9 ×
10−5 [93, 94]. For a reasonably broad peak with approximately k4 slope, centred on k ∼
105 Mpc−1, the resulting µ-distortion is µ ≈ 9× 10−7. This scale corresponds to larger black
hole masses than those detected by LIGO and even then, the constraint is not under pressure.
The largest possible PBH that can be produced and be consistent with the µ−distortion
constraint has mass ∼ 4 × 104M� assuming that the PBH mass equals the horizon mass
at the time of horizon entry. This is calculated assuming that the amplitude of the power
spectrum is required to reach the current constraints from PBHs, shown by the orange line
in figure 8, which already rules out f = ΩPBH/ΩDM = 1 on a large range of scales. See
figure 8 for a plot of the full µ-distortion constraints. Note that each point of the blue and
purple lines represents the maximum allowed value of As at the scale of the peak, kp, for a
delta function power spectrum PR = Asδ(log(k/kp)) (blue line) and a k4 power spectrum
P = 4As(k/kp)

4 cut off to zero for k > kp (purple line), after having integrated over each to
find the total contribution to the µ-distortion value.
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We note that (4.1) captures only the µ-distortion induced by dissipation of scalar modes.
Tensor modes can also produce dissipation distortions, with a resulting µ-distortion given
by µh ≈

∫∞
kmin

dk
k Ph(k)Wh,µ(k), [95]. However the corresponding window function Wh,µ(k) is

such that the overall distortion is some six orders of magnitude smaller for a nearly scale-
invariant spectrum (independent of the amplitude), although it has much broader support,
and is sensitive to power up to scales approaching k ∼ 105 Mpc−1. As we review in the next
subsection, scalar perturbations can source tensor perturbations at second order, and any
enhancement of the primordial power spectrum at small scales will source enhanced tensor
perturbations at commensurate scales. Although these offer no meaningful constraints with
present day sensitivities, a PIXIE-like survey [96] (with sensitivity to µ-distortions as small as
µ ∼ 10−8) could be sensitive to primordial power spectrum enhancements of up to PR ∼ 10−2

at k ∼ 105 Mpc−1 due to the dissipation from secondarily produced tensors.

4.2 Pulsar timing arrays

Although scalar and tensor perturbations decouple at linear order, if the power spectrum
is sufficiently boosted to generate PBHs a potentially observable amplitude of second-order
gravitational waves (GWs) will be generated [34, 97–108]. This can be intuited as arising
from interactions of the form hij∂iR∂jR. Specifically, the transverse traceless projection
of the spatial part of the ‘stress-tensor’9 of the curvature perturbation can source tensor
perturbations at second order, resulting in an induced contribution to the tensor power of
the form

Ph(τ, k) =

∫ ∞
0

dv

∫ 1+v

|1−v|
duK(τ, u, v)PR(ku)PR(kv) (4.3)

where K(τ, u, v) is a rapidly oscillating kernel whose precise form can be found in
e.g. [100, 108]. Given the convoluted nature of the integrand, many papers in the liter-
ature consider PTA constraints arising from a simple (though unphysical) delta function
power spectrum but we also consider a more physical k4 spectrum with a sharp cut-off. In
figure 7 we plot the GW amplitude for the two power spectra

PR(k) = Aδ(log(k/kp)), (4.4)

PR(k) = 4A(k/kp)
4 for k < kp, 0 otherwise. (4.5)

The factor of 4 is included in the latter power spectrum in order that both power spectra are
normalised as

∫
PR(k)d ln k = A. We also plot the GW spectrum averaged over an efolding

(the dashed lines), because the gravitational wave energy of the delta function power spectrum
diverges at k = 2kp/

√
3. The smoothed spectrum is defined by

Ωsmooth
GW (k) =

∫ ke1/2

ke−1/2

ΩGW(k)d ln k. (4.6)

The amplitude of the smoothed spectra is similar near the peaks, and the key difference is the
different scaling behaviour at small k. The delta function scalar power spectrum produces a
gravitational wave spectrum which scales like k2 while the k4 scalar power spectrum produces
a gravitational wave spectrum which scales like k3 at small k. This means that the constraints
for values of kp larger than the scales which PTA best constrain will differ markedly for the

9By this, we simply mean the symmetric tensor obtained by varying the cubic interaction terms of the
form RRh in the perturbed action w.r.t. hij .
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Figure 7. The GW amplitude today for a delta function power spectrum and one growing like k4 in
red and black respectively, as described in the main text. The dashed lines are the values smoothed
over 1 efolding. The small ‘teeth’-like features of the black line are due to numerical noise and they
don’t affect the power spectrum constraints derived from these curves.

two power spectra. The counterintuitive result that a delta function power spectrum does
not give rise to the narrowest possible GW spectrum has been observed in numerous papers,
e.g. [109, 110]. Since the scalar power spectrum cannot grow faster than k4, a k2 tail in ΩGW

cannot be produced by a narrowly peaked scalar power spectrum. It has been suggested that
including non-Gaussianity in the calculation can mean that a delta-function or very narrow
power spectrum will also induce a k3 tail in ΩGW [111]. However, as we have shown that
the power spectrum cannot grow that quickly, this observable would be indistinguishable
from a k3 tail produced by broader power spectra. We would however expect a turnover
from the k3 tail to a spectrum with broader support on small k if the power spectrum is
made significantly broader, since for a scale-invariant power spectrum one would expect a
scale-invariant gravitational wave spectrum — this requires further investigation. Other
effects of including non-Gaussianities are discussed in [112]. To make the plot, we have used
Ωrad,0h

2 = 4×10−5 in order to evolve the GW amplitude from horizon entry during radiation
domination until today.

There is, however, a discrepancy in the normalisation between various references in the
literature that is most apparent when one tries to calculate the secondary tensor spectrum
produced by a scale-invariant scalar power spectrum. In particular, the results of [97] (quoted
in [106]), [99] and [108] differ, with the latter reference finding a normalisation that is order
10−2 less than the prior references. The precise source of this discrepancy is not immedi-
ately apparent to us. However, it is apparent that the numerical integrations necessary to
arrive at the final answer are sufficiently involved as to make any analytic simplifications
(such as those provided by [108, 113]) advantageous. For this reason, we utilise the explicit
analytic form of the kernel K(τ, u, v) detailed in [108] in what follows — for the purposes
of placing observational bounds, it is also the more conservative choice because it leads to a
lower normalisation of ΩGW than several other references. Using the simplifications provided
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by [108, 113],10 we can also evaluate the secondary tensor perturbations produced by a k4

steepest growth spectrum.

For each frequency, we use the tightest constraint for a stochastic GW background
from various PTA experiments [114–116] in order to plot the power spectrum constraint in
figure 8. We use the unsmoothed GW spectrum induced by the k4 scalar power spectrum
(in order to avoid needing to choose a smoothing scale which depends on the experiment)
and convert from k to frequency space using f = kcs/(2π) where cs = 9.7 × 10−15 Mpc/s.
Over the range of almost two orders of magnitude in k (over 3 orders of magnitude in horizon
mass from ∼ 0.1M� − 200M�, see equation (4.7)) the constraint on the power spectrum is
stronger than the constraint from the non-detection of PBHs, meaning that PBHs will not
form in significant numbers over this range of scales. We have discussed the many caveats
at the beginning of this section. Notice that because the delta function power spectrum
has a slower decay of ΩGW towards small k, the constraints on the power spectrum would
become stronger than the k4 spectrum constraints for scales sensitive to the low-frequency
tail of ΩGW.

4.3 Implications for model building

In figure 8 we produce a new plot of the constraints on the primordial power spectrum on all
scales similar to Bringmann et al. [117], but unlike [117] we do not include constraints from
ultracompact minihalos (UCMHs) since they rely on a WIMP DM scenario. For a discussion
of recent UCMH constraints see [118–121], and mixed scenarios with both WIMPs and PBHs
are discussed in [122–124].

On the largest scales we plot the Planck measurements of the power spectrum [41].
The next relevant constraints on smaller scales come from µ-distortions. Since the power
spectrum cannot grow arbitrarily quickly, it is clear that the power spectrum cannot become
large enough to generate PBHs on scales k < 104 Mpc−1, subject to the aforementioned
assumptions, the most relevant being that the perturbations are Gaussian [125]. Hence there
is no need to also show the y-distortion constraints which affect larger scales. The blue line is
the upper bound on the amplitude for a monochromatic power spectrum, whilst the dashed
purple line is the upper bound on the amplitude for a power spectrum with k4 slope and
immediate drop off. For a constraint on slightly smaller scales than spectral distortions,
see [126].

The black line on scales k ∼ 107 Mpc−1 represents the upper bound due to the PTA
constraints, while the relatively flat orange line represents the PBH constraint. The PBH
constraints are calculated using values of f = ΩPBH/ΩDM from [127] and [128] for PBH
masses between ∼ 10−24M� and 107M�. These combine various constraints from e.g. their
evaporation, femto-lensing of gamma-ray bursts, neutron-star capture, white dwarf explo-
sions, and microlensing. We use δc = 0.45 for definiteness, and we effectively use a delta
function for the window function in translating the variance of the perturbations to the
amplitude of the power spectrum. We also use a one-to-one relation between the density
contrast δ and the comoving curvature perturbation R, which is not realistic. We do not
include constraints from microlensing for masses . 10−10M� due to uncertainties concerning
the wave effect [127]. The slight dip at k ∼ 107 is caused by including the effect of the change

10These references have resulting analytic forms for the kernel K(τ, u, v) that agree up to having taken
different lower limits in eq. (15) in [108] and the corresponding eq. (33) in [113]. The resulting difference will
be negligible whenever the source scalar modes are sub-Hubble. We thank Davide Racco for correspondence
on this matter.
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in the equation of state around the time of the QCD transition [65]. Also note that we use

k

3× 1022 Mpc−1
=

π

tic

(
ti
teq

) 1
2
(
teq
t0

) 2
3
(
g∗,i
g∗,0

)− 1
12

, ti =
10−38(M/1g)

γ
s (4.7)

to convert between k and PBH mass, where ti is horizon entry time of the overdensity, M is
the PBH mass, γ is the fraction of the horizon mass that will collapse to form the black hole
which we take to be 1 given the uncertainty in the literature, teq ≈ 2 × 1012 s is the cosmic
time of matter-radiation equality and t0 ≈ 4× 1017 s is the cosmic time today. We take the
effective degrees of freedom today to be g∗,0 ≈ 3.36 and g∗,i is the effective degrees of freedom
at the time of horizon entry.

In order to reach the current constraint on the number of PBHs (orange line) from the
amplitude of the power spectrum at CMB scales, the growth must begin at k & 103 Mpc−1

in order to avoid constraints from the µ-distortions, since it can only grow as fast as k4. This
is shown by the left-most dotted black line in figure 8. This implies a maximum PBH mass
which can be generated of 4 × 104M� corresponding to k ∼ 7 × 104 Mpc−1. This point is
where the left dashed black line (with k4 slope) crosses the PBH constraint line, and it is also
where the dashed purple line which marks the distortion constraints for a k4 growth crosses
the PBH constraint line. Notice that the blue line (for a delta function power spectrum)
crosses the PBH constraint line at a larger scale k ∼ 4×104 Mpc−1, corresponding to a PBH
mass of 2 × 105M�. The difference between these two masses demonstrates the additional
restriction on PBHs caused by the restriction on the steepest possible growth of the power
spectrum.

Similarly, in order to avoid PTA constraints, the power spectrum growth must begin at
k . 104 Mpc−1 as shown by the right-most dotted black line in figure 8. This assumes that
the power spectrum can drop off instantaneously to PR . 10−3 after the peak to avoid the
PTA constraints — see appendix C.2 for a discussion on this point. For PBHs with masses
larger than those constrained by PTA experiments, the power spectrum is free to grow from
k & 6×105 Mpc−1, as a k4 slope will clear the PTA constraints from this scale, and there are
no severe constraints on the power spectrum on smaller scales. In order to produce PBHs on
a scale k ∼ 106 Mpc−1 and avoid the µ-distortion constraint, the power spectrum needs to
grow at least as steeply as k1.2 on the scales between those two constraints.

Early matter-dominated scenarios are of interest because the lack of pressure means
that PBHs are able to form much more easily and have been considered recently in
e.g. [89, 128–130]. This means that the amplitude of the power spectrum is related to the
number of PBHs by a power law instead of logarithmically as is the case in radiation dom-
ination that we have assumed to plot the orange line in figure 8. One could then question
whether the constraints on the power spectrum change more quickly than the k4 limit. Using
constraints on the power spectrum from [89], we have verified that they do not change more
quickly than k4, and therefore that PBHs of every possible mass can still be generated while
respecting this bound on the power spectrum growth.

5 Conclusions

We have shown that the steepest possible growth of the primordial power spectrum is given
by ns− 1 = 4 during canonical single-field inflation, independent of the shape of the inflaton
potential. Such a rapid growth is only possible when the inflaton makes a rapid transition
from “slow-roll” inflation to non-attractor inflation, characterised by an almost exactly flat
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Figure 8. Observational constraints on the power spectrum. The lines at small k are the Planck
1σ and 3σ measurements. On much smaller scales there are only upper bounds; shaded regions are
disallowed. The solid blue line shows the upper bound from µ-distortions for a delta function power
spectrum, PR = Asδ(log(k/kp)), as a function of kp, and the solid orange line shows the PBH upper
bounds, subject to the uncertainties discussed in the main text. The dashed purple line shows the
upper bound from µ-distortions for the steepest growth power spectrum PR = 4As(k/kp)4 which
drops to zero for k > kp, and the solid black line shows the PTA upper bounds for the same power
spectrum. The factor of 4 is included so that it has the same normalisation as the delta function
power spectrum when integrating with respect to ln k. The dashed black lines have a k4 slope.

potential, and remains true even if the potential is not always decreasing.11 In the standard
case of single-clock inflation — implying the curvature perturbation freezes out shortly after
horizon crossing — the power spectrum grows less steeply, and is bounded by ns − 1 < 3. It
would be of great interest to understand whether our bound can be violated in more compli-
cated models of inflation. For example, see [66], which in some cases requires an ad hoc power
spectrum with steepness up to k8 in order to evade power spectrum constraints while gener-
ating PBHs, which our bound implies is not possible in the context of single-field inflation.

We have calculated analytic expressions for the most rapid growth of the power spec-
trum possible, by matching the curvature perturbation between various phases of inflation,
characterised by different rates at which the slow-roll parameter ε decreases. The steep k4

growth arises during times when modes exiting the horizon are affected by both periods of
inflation. We have also provided a way to reconstruct the inflaton potential given an arbitrary
time evolution of the expansion rate during inflation specified by ε(t) in appendix C.

11Note added. As we were preparing this paper, ref. [131] appeared, aiming to derive a lower bound
of η > −6 from causality arguments. However, the matching calculation on which this is based neglected to
impose both Israel junction conditions (A.10), imposing only the continuity of Rk. Furthermore, the correct
causality criteria one should impose is that the commutator of the curvature perturbation at two points should
vanish at space-like separation, trivially satisfied even when matching with an intermediate phase of η < −6.
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Figure 9. Current and forecasted constraints on the amplitude of the power spectrum. The solid
lines are the same as in figure 8, apart from the x-axis which is extended to the smallest scales that
PBHs constrain, corresponding to the horizon scale which generates a PBH that decays during big
bang nucleosynthesis. The dashed lines show forecasted future constraints from a PIXIE-like satellite
for µ-distortions (the dashed blue line assumes a delta function power spectrum while the purple line
has a power spectrum growing at the maximum rate of k4), and the dashed black lines are induced
gravitational wave forecasts for a k4 scalar power spectrum with a cut off, using PTA constraints from
SKA and from the LISA satellite on smaller scales. Shaded regions are disallowed.

Due to the phenomena of critical collapse to form PBHs, the PBH mass spectrum cannot
be arbitrarily close to monochromatic. We have shown that the mass spectrum is remarkably
insensitive to the shape of the power spectrum close to its peak amplitude, with everything
from a gentle growth, ns − 1 = 0.1 to the extreme (and impossible) case of a delta function
power spectrum producing a comparable width for the mass function of PBHs.

In figure 8 we have combined the key measurements and constraints on the primor-
dial power spectrum, showing how on various scales, CMB measurements, CMB spectral
distortion constraints or PTA constraints all force the power spectrum to be too small to
generate PBHs. There does however remain a window between the latter two constraints
which is sufficiently broad such that the power spectrum can grow and produce large PBHs
without conflicting either of those constraints and without requiring the perturbations to be
non-Gaussian.

We plot forecasted constraints on the power spectrum in figure 9. The sensitivity curves
for SKA and LISA are extracted from [132] and do not include the possible degradation
due to astrophysically generated gravitational waves. LISA covers the scales corresponding
to a possible window where PBHs could consist of all the DM, with masses in the range
Mpbh ∼ 10−13 − 10−7M� [103]. Of particular interest is how the gap between future µ-
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distortion constraints assuming a PIXIE-like experiment which can probe µ = 2× 10−8 and
the existing PTA constraints becomes a factor of 2 in k-space, corresponding to less than
an e-folding of inflation, which in practice means constructing a model which grows at the
maximum rate and then decreases again is unrealistic. A more detailed treatment of the PTA
constraint at low frequency would probably completely close the gap, and the addition of
SKA constraints from pulsars does close the gap. The difference of a factor of 8 in k between
where the two different forecasted µ-distortion lines cross the PBH line show how much more
powerful the PIXIE constraint on PBHs becomes once including the maximum growth rate
of the power spectrum. Therefore, PIXIE combined with PTA constraints and the steepest
growth rate that we have derived would be able to rule out the generation of LIGO mass
PBHs, unless the initial perturbations are sufficiently non-Gaussian on the relevant range
of scales. Finally, the combined constraints from the CMB, a PIXIE-like experiment, SKA
and LISA will almost completely rule out Gaussian perturbations being able to generate any
PBHs with masses greater than 10−15M�.

Note added. After submitting the first version of our paper, [133] appeared which deals
with current and future constraints on induced gravitational waves. We would like to thank
the authors for helpful discussions and comments on both of our papers.
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A The primordial power spectrum from matching

It is possible to arrive at an analytic understanding of various features of the shape of the
primordial power spectrum generated by transiting into and out of a phase of ultra slow-roll
(USR) inflation by approximating the evolution of η as a series of phases of constant η,
and matching between these phases. In this appendix, we’ll perform a series of matchings,
culminating in a four-stage matching from η ≡ 0→ −2→ −6→ 2→ 0.

We begin by matching from η = 0 to η = −6 (USR) and back to η = 0. For this we
need the mode functions for inflation for each phase, which are obtained from the equation
of motion for the Mukhanov-Sasaki variable, υk = zR, where z2 = 2a2M2

plε and R is the
comoving curvature perturbation:

υ′′k +

(
k2 − z′′

z

)
υk = 0. (A.1)
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By directly differentiating z with respect to conformal time, it can be shown that

z′′

z
= (aH)2

(
2− ε+

3

2
η +

1

4
η2 − 1

2
εη +

1

2

η̇

H

)
. (A.2)

Equation (A.2) is exact to all orders. Assuming that ε� 1, we can rewrite equation (A.1) as

υ′′k +

(
k2 −

ν2 − 1
4

τ2

)
υk = 0, (A.3)

with a new parameter ν defined as

ν2 =
9

4
+

3

2
η +

1

4
η2 +

η̇

2H
. (A.4)

The solutions for the canonically normalised mode function are of the form

vk =

√
π

2
ei(ν+

1
2)π2
√
−τH(1)

ν (−kτ) (A.5)

in linear combination with its complex conjugate, where H
(1)
ν (−kτ) is the Hankel function

of the first kind.

For a constant η phase, the last term in (A.4) vanishes, and we find that for η = −6 and
η = 0, ν2 = 9/4, with ν = −3/2 corresponding to USR and ν = 3/2 corresponding to SR.
The curvature perturbation is obtained via Rk = v/z with z2 = 2a2M2

plε, and we now find
the mode equations for each phase. For ν = 3/2 (phase 1, η = 0), the curvature perturbation
is given by

R(1)
k = i

H

Mpl

1√
4ε1k3

[
c(1 + ikτ)e−ikτ − s(1− ikτ)eikτ

]
, (A.6)

where ε(τ) = ε1 is treated as constant and c, s are constant coefficients to be found via the
matching, and they should satisfy the Wronskian condition. This needs to be matched to
the Bunch-Davies vacuum in the limit τ → −∞, so the mode equation during the first phase
of η = 0 reduces to

R(1)
k = i

H

Mpl

e−ikτ√
4ε1k3

(1 + ikτ) (A.7)

i.e. c = 1 and s = 0. Using the relation H
(1)
−3/2 = −iH(1)

3/2, and writing ε(τ) during USR as

ε(τ) = ε1

(
a(τ1)

a(τ)

)6

= ε1

(
τ

τ1

)6

(A.8)

where τ1 is the time of transition between η = 0 and η = −6 and the second equality comes
from aH = −1/τ , we find the canonically normalised mode functions during the phase of
η = −6 (phase 2, USR) to be

R(2)
k = i

H

Mpl

(τ1/τ)3√
4ε1k3

[
c1(1 + ikτ)e−ikτ − s1(1− ikτ)eikτ

]
, (A.9)

where τ1 and ε1 are fixed, and the coefficients c1 and s1 will be determined by the matching
from the η = 0 phase, and hence will be in terms of k and τ1.
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The matching conditions between the two phases are given by the Israel junction con-
ditions [51, 52]

[Rk]± = 0,
[
z2R′k

]
± = 0. (A.10)

The first of these is determined by requiring that the metric be continuous across the tran-
sition. The second follows from the equation for the mode function Rk:

R′′k +
(z2)′

z2
R′k + k2Rk = 0, (A.11)

which implies that (
z2R′k

)′
= −z2k2Rk. (A.12)

Integrating the above over an infinitesimal interval around the transition and recalling the
continuity of Rk and z2 results in the second condition in (A.10). So, continuity between

R(1)
k and R(2)

k at τ1 results in the equation

(1 + ikτ1)e
−ikτ1 = c1(1 + ikτ1)e

−ikτ1 − s1(1− ikτ1)eikτ1 , (A.13)

and continuity of the time derivatives R′(1)k and R′(2)k at τ1 requires

k2τ1e
−ikτ1 = c1e

−ikτ1
(
k2τ1 −

3

τ1
(1 + ikτ1)

)
− s1eikτ1

(
k2τ1 −

3

τ1
(1− ikτ1)

)
, (A.14)

which together imply that

s1 =
3 i e−2ikτ1

2(kτ1)3
(1 + ikτ1)

2 (A.15)

and

c1 = 1 +
3i(1 + k2τ21 )

2(kτ1)3
. (A.16)

We see that in the limit τ1k → −∞, that is for modes that are deep within the Hubble
radius at τ1, θk → 0, which means that the corresponding modes are still in the BD vacuum
during USR.

In order to meaningfully talk about a late time power spectrum, we need to end USR,
otherwise the modes grow unboundedly. To model this, we consider a transition from USR
back to a phase of η = 0. In the final phase, the mode function corresponds to the usual
case (A.6) but with constant ε given by ε2 = ε1(a1/a2)

6 = ε1(τ2/τ1)
6, where log(a2/a1) is the

total number of e-foldings of USR:

R(3)
k = i

H

Mpl

(τ1/τ2)
3

√
4ε1k3

[
c2(1 + ikτ)e−ikτ − s2(1− ikτ)eikτ

]
. (A.17)

We therefore need to compute another matching between the mode functions in (A.9)
and (A.17) at time τ2, which is when USR ends, in order to determine c2 and s2 which
will be functions of k and τ2. From requiring continuity of Rk at τ2, we find that

c2 − s2
1− ikτ2
1 + ikτ2

e2ikτ2 = c1 − s1
1− ikτ2
1 + ikτ2

e2ikτ2 (A.18)
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whereas continuity of R′k at τ2 implies

c2k
2τ2 − s2k2τ2 e2ikτ2 = c1

[
k2τ2 −

3

τ2
(1 + ikτ2)

]
(A.19)

−s1e2ikτ2
[
k2τ2 −

3

τ2
(1− ikτ2)

]
,

which gives

c2 = − 1

4k6τ31 τ
3
2

{
9e2ik(τ2−τ1) (kτ1 − i) 2 (kτ2 + i) 2

−
(
k2τ21 (2kτ1 + 3i) + 3i

) (
k2τ22 (2kτ2 − 3i)− 3i

)}
(A.20)

and

s2 =
e−2ik(τ1+τ2)

4k6τ31 τ
3
2

{
3e2ikτ2

(
3 + k2τ22 (3− 2ikτ2)

)
(kτ1 − i) 2

+3ie2ikτ1
(
k2τ21 (2kτ1 + 3i) + 3i

)
(kτ2 − i) 2

}
. (A.21)

The power spectrum for the curvature perturbation at late times (during slow roll
again) is

PR = lim
τ→0−

k3

2π2
|R(3)

k |
2 =

H2

8π2M2
plε3

[c∗2c2 + s∗2s2 − s∗2c2 − s2c∗2] , (A.22)

where
ε3 := ε1 e

−6NUSR (A.23)

is the fixed, final value of ε during the second phase of η = 0, determined by ε1 during the
initial phase of η = 0, and NUSR which is the total number of e-folds of USR. The resulting
late time spectrum is the black line plotted in figure 2 with NUSR = 2.3.

We generalise this matching to go from η = 0 to arbitrary constant η < 0 and back
to η = 0 in order to plot the other lines in figure 2. We do this in the same way as just

described for η = 0 to η = −6 and back to η = 0, but replace the mode equation R(2)
k with

the appropriate solution from equation (A.5) for each value of ν using

ν2 =
9

4
+

3η

2
+
η2

4
=

(
3 + η

2

)2

(A.24)

for constant η. We also note that

ε = ε1

(
a

a1

)η
= ε1

(τ1
τ

)η
(A.25)

during the constant η phase. We then do the matching using exactly the same method as
before, and find that the late time power spectra plotted in figure 2 are finally given by:

PR = lim
τ→0−

k3

2π2
|R(3)

k |
2 =

H2

8π2M2
plε3

[c∗2c2 + s∗2s2 − s∗2c2 − s2c∗2] , (A.26)
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with ε3 = ε1e
−ηNη=const , where Nη=const is set by the duration of the constant η phase and

the coefficients c2 and s2 are given in general by:

c2 =
iπe−ik(τ1−τ2)

8k
13
2
√
−τ1
√
−τ2



√
k5(kτ2 + i)


(
k4τ1H

(1)
η+3
2

(−kτ1) + k3(1 + ikτ1)H
(1)
η+1
2

(−kτ1)

)
H

(2)
η+1
2

(−kτ2)

+

(
−k4τ1H(2)

η+3
2

(−kτ1) + k3(−1− ikτ1)H
(2)
η+1
2

(−kτ1)

)
H

(1)
η+1
2

(−kτ2)



+ k
7
2 τ2


(
k3(kτ1 − i)H(2)

η+1
2

(−kτ1)− ik4τ1H(2)
η+3
2

(−kτ1)

)
H

(1)
η+3
2

(−kτ2)

+

(
k3(−kτ1 + i)H

(1)
η+1
2

(−kτ1) + ik4τ1H
(1)
η+3
2

(−kτ1)

)
H

(2)
η+3
2

(−kτ2)




(A.27)

s2 =− πe−ik(τ1+τ2)

8k
7
2
√
−τ1
√
−τ2



ik
7
2 τ1H

(1)
η+1
2

(−kτ1)H
(2)
η+1
2

(−kτ2) + ik
7
2 τ2H

(1)
η+1
2

(−kτ1)H
(2)
η+1
2

(−kτ2)

+
√
k5H

(1)
η+1
2

(−kτ1)H
(2)
η+1
2

(−kτ2) + ik
9
2 τ1τ2H

(1)
η+3
2

(−kτ1)H
(2)
η+1
2

(−kτ2)

+ ik
9
2 τ1τ2H

(1)
η+1
2

(−kτ1)H
(2)
η+3
2

(−kτ2)−
√
k5k2τ1τ2H

(1)
η+1
2

(−kτ1)H
(2)
η+1
2

(−kτ2)

+ k
9
2 τ1τ2H

(1)
η+3
2

(−kτ1)H
(2)
η+3
2

(−kτ2) +
√
k3k2τ1H

(1)
η+3
2

(−kτ1)H
(2)
η+1
2

(−kτ2)

+ k
7
2 τ2H

(1)
η+1
2

(−kτ1)H
(2)
η+3
2

(−kτ2)

+ k2τ2

(
−
√
k5τ1H

(2)
η+3
2

(−kτ1) +
√
k3(−1− ikτ1)H

(2)
η+1
2

(−kτ1)

)
H

(1)
η+3
2

(−kτ2)

+H
(1)
η+1
2

(−kτ2)

(√
k5(kτ1−i)(kτ2 − i)H(2)

η+1
2

(−kτ1)− k
7
2 τ1(1+ikτ2)H

(2)
η+3
2

(−kτ1)

)



.

(A.28)

We now move on to a more realistic matching, wherein one transitions in and out of USR
with intermediate phases that interpolate between USR and SR.

A.1 SR → η ≡ −2→ USR → η ≡ 2→ SR matching

By now, we see that the matching calculations involve nothing but sequentially solving a
series of linear equations. We now attempt to model two additional intermediate phases to
transition into USR, via a phase of η = −2, and out of USR, via a phase of η = 2.

We match the mode functions given by equation (A.5) for each of the five phases of
constant η, at four successive transition times, and the final power spectrum is given by:

PR = lim
τ→0−

k3

2π2
|R(3)

k |
2 =

H2

8π2M2
plε5

[c∗4c4 + s∗4s4 − s∗4c4 − s4c∗4] , (A.29)

with
ε5 = ε1[(a3/a2)

3(a3/a4)(a2/a1)]
−2 = ε1[(τ2/τ3)

3(τ4/τ3)(τ1/τ2)]
−2, (A.30)
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and the coefficients c4 and s4 given by:

c4 = −
ieikτ4

16k9τ1τ
2
2 τ

4
3 τ

2
4



(2kτ1 − i)(3 + 2ikτ2)
(
2k

4
τ
4
3 + 4k

2
τ
2
3 + 9

)
(kτ4 + 2i)e

−ik(2τ2−τ4)

+ (2kτ2(2 + ikτ2)− 3i)
(
2k

4
τ
4
3 + 4k

2
τ
2
3 + 9

)
(kτ4 + 2i)e

−ik(2τ1−τ4)

+ (2kτ2 + 3i)
(
2k

4
τ
4
3 + 4k

2
τ
2
3 + 9

)
(kτ4(3 + 2ikτ4)− 2i)e

−ik(2τ1−2τ2+τ4)

+ (1 + 2ikτ1)(−3 + 2kτ2(kτ2 + 2i))
(
2k

4
τ
4
3 + 4k

2
τ
2
3 + 9

)
e
−ikτ4 (−2 + kτ4(2kτ4 − 3i))

+ (2kτ2 + 3i)(9 + 2kτ3(kτ3(−7− 2ikτ3) + 9i))(kτ4 + 2i)e
−ik(2(τ1−τ2+τ3)−τ4)

+ (2kτ1 − i)(−3 + 2kτ2(kτ2 + 2i))(9 + 2kτ3(kτ3(−7− 2ikτ3) + 9i))(kτ4 + 2i)e
−ik(2τ3−τ4)

+ (2kτ1 − i)(2kτ2 − 3i)(3− 2ikτ3)(−3 + 2kτ3(kτ3 + 2i))(−2 + kτ4(2kτ4 − 3i))e
−ik(2τ2−2τ3+τ4)

+ (−3 + 2kτ2(kτ2 − 2i))(3− 2ikτ3)(−3 + 2kτ3(kτ3 + 2i))(−2 + kτ4(2kτ4 − 3i))e
−ik(2τ1−2τ3+τ4)



(A.31)

s4 =
e−2ik(4τ1+τ2+τ3+τ4)

16k9τ1τ
2
2 τ

4
3 τ

2
4



(3− 2ikτ2)
(
2k

4
τ
4
3 + 4k

2
τ
2
3 + 9

)
(kτ4 − 2i)e

2ik(3τ1+2τ2+τ3)

+ (2kτ1 − i)(2kτ2(2− ikτ2) + 3i)
(
2k

4
τ
4
3 + 4k

2
τ
2
3 + 9

)
(kτ4 − 2i)e

2ik(4τ1+τ2+τ3)

+ (2kτ1 − i)(2kτ2 − 3i)
(
2k

4
τ
4
3 + 4k

2
τ
2
3 + 9

)
(kτ4(3− 2ikτ4) + 2i)e

2ik(4τ1+τ3+τ4)

+ (−3 + 2kτ2(kτ2 − 2i))
(
2k

4
τ
4
3 + 4k

2
τ
2
3 + 9

)
(kτ4(3− 2ikτ4) + 2i)e

2ik(3τ1+τ2+τ3+τ4)

+ (−3 + 2kτ2(kτ2 − 2i))(2kτ3 + 3i)(−3 + 2kτ3(kτ3 + 2i))(2 + ikτ4)e
2ik(3τ1+τ2+2τ3)

+ (2kτ1 − i)(3 + 2ikτ2)(2kτ3 + 3i)(−3 + 2kτ3(kτ3 + 2i))(kτ4 − 2i)e
4ik(2τ1+τ3)

+ (2kτ2 + 3i)(2kτ3 − 3i)(2kτ3(2 + ikτ3)− 3i)(−2 + kτ4(2kτ4 + 3i))e
2ik(3τ1+2τ2+τ4)

− (2kτ1 − i)(3− 2kτ2(kτ2 + 2i))(3 + 2ikτ3)(3− 2kτ3(kτ3 − 2i))(2− kτ4(2kτ4 + 3i))e
2ik(4τ1+τ2+τ4)


(A.32)

The late-time power spectrum is shown in figure 10. The phase of η = +2 causes a decrease
in power for large k, which we have chosen to return to the small-k amplitude of 2 × 10−9

for the red, yellow and green lines in figure 10, rather than the scale-invariant spectrum
produced by matching straight back to η = 0 as in previous sections, and shown by the blue
line in figure 10. Also notice that the effect of the η = −2 phase is only visible if it lasts
considerably longer than the phase of η = −6, otherwise the k4 growth is dominant on the
scales that the η = −2 phase affects.

A.2 Peak amplitude sensitivity to late times

The amplitude of the peak of the power spectrum depends on how ultra slow roll finishes.
How η transitions back to 0 from a phase of η = −6 can shave off power from the peak. For
example, if we set τ1 = τ2 in the matching calculation from section A.1, then we can plot the
power spectrum for constant phases of η from 0→ -6→ 2→ 0 so as to focus on the transition
out of USR. In figure 11 the power spectrum is plotted for 6 different durations of η = 2 —
all other parameters are kept the same — with the different spectra being normalised such
that the large scale amplitude is 2 × 10−9. There is almost a factor of 2 difference in the
peak amplitude between no η = 2 phase and 1 e-folding of η = 2 following ultra slow roll.
However, the amplitude of the power spectrum is unaffected any further by increasing the
duration of the η = 2 phase beyond 1 e-folding. While this is unlikely to have significance
in terms of avoiding power spectrum constraints, it may have a large effect on the predicted
number of PBHs produced, since the mass fraction is exponentially sensitive to the amplitude
of the power spectrum. Note that this is for a sharp transition in η, and the effect may not
be present for a smooth transition. This was investigated for the bispectrum in [74], where
it was found that local non-Gaussianity is erased during a smooth exit from ultra slow roll,
but that it can survive a sharp transition.
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Figure 10. Four power spectra involving different matchings between constant η phases. The blue
line is the same as the blue line plotted in figure 2, matching from η = 0 to η = −6 for 2.3 e-folds
and back to η = 0. The yellow line is a matching from η = 0 to η = −6, then to η = 2 and back
to η = 0. Notice that the peak amplitude decreases slightly when the positive η phase is included
— we comment on this further in appendix A.2. The green line is a 5-phase matching from η = 0
to η = −2, then η = −6, then η = 2 and back to η = 0. The η = −2 phase does not decrease the
slope of the power spectrum because the phase of η = −6 affects the scales that exit before the onset
of the η = −2 phase, however it does cause the dip to occur at a larger value of k, and for the peak
amplitude to be reduced. The red line is the same set-up as for the green line, but with a longer
duration of η = −2 and shorter duration of η = −6 so that the k2 growth is visible before the onset
of the k4 spectrum due to USR.

B The steepest constant η spectrum

If we consider the toy situation of an epoch of inflation defined by a constant, but non-zero
η < 0 without matching to another epoch of inflation, we can arrive at simple bounds on how
fast the power spectrum can grow given a constant ν and ε � 1. In this case, the general
solution to the mode function corresponding to the Bunch-Davies vacuum is given by (A.5).
If the late-time limit is taken directly without matching to any other phases, then

PR ∝ k3−2ν , (B.1)

and the spectral index is given by

ns − 1 = 3− |3 + η|, (B.2)

which gives a scale-invariant spectrum for η = 0,−6 and the strongest possible positive
scaling is ns − 1 = 3 for η = −3.

The steepest possible growth follows from setting η = −3 ⇔ ν = 0 but because both
modes are important in this case, the approximation (B.2) overestimates the actual slope,
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Figure 11. Analytical power spectra with 4 phases of constant η: 0, -6, 2, 0. The only difference
between the lines is the duration of the η = 2 phase. The longer the phase of η = 2, the less power
at the very peak of the power spectrum, showing that how ultra slow roll ends has an effect on the
amplitude of the peak. Notice that the spectra quickly converge to the amplitude for longer than 1
e-fold of η = 2, the blue and yellow lines are hidden beneath the green line.

with the complete late time solution being

PR ∝ k3

(
1 +

4

π2

(
γ + ln

(
k

2ke

))2
)
, (B.3)

ns − 1 = 3 +
8
(

log
(

k
2ke

)
+ γ
)

π2

(
4
(
log

(
k

2ke

)
+γ

)2

π2 + 1

) , (B.4)

where γ = 0.5772 and ke = (aH)e is the value of k when this period of inflation at the
boundary of USR ends (meaning that the decaying and growing modes are both important),
assuming that the curvature perturbation freezes out afterwards. The correction to the k3

scaling in (B.3) comes from the “decaying” mode which scales as

Rdecaying ∼
∫
dN

a3ε
∝
∫
dN ∼ N = log(k/ke). (B.5)

The solution (B.3) agrees with [48] in the limit ln(k/ke) � 1. The potential giving rise to
this growth rate of the power spectrum in the limit ε→ 0, is

V = M4e
3
8
φ2

M2
Pl . (B.6)

which can be calculated by using φ′ ∝
√
ε ∝ e−3N and the equation of motion (2.4).
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However, (B.3) implies a weaker bound than the k4 steepest growth index for single-field
inflation shown via a more realistic matching calculation in appendix A. A complementary
perspective is obtained by reconsidering the what a power spectrum with a constant growth
index implies in position space. In order to do this, we consider the following form for the
power spectrum

PR ∝ kne−αk, (B.7)

which needs to be regulated for certain values of the index by a non-zero α which we take
to zero at the end of the calculation. We recall that the position space two-point function of
the curvature perturbation at late times is given by Fourier transform∫

d3k

(2π)3
ei
~k·~x|Rk(0)|2 = 〈R(~x, 0)R(0, 0)〉 (B.8)

where

PR = lim
τ→0−

k3

2π2
|Rk(τ)|2, (B.9)

and therefore

〈R(~x, 0)R(0, 0)〉 ∝ lim
α→0

∫
d3k

4π
ei
~k·~x kn−3e−αk. (B.10)

For n = 0 we recover the usual logarithmically divergent position space correlation function
(an artefact of us working in the strict dS limit). For n > 3 we find

〈R(~x, 0)R(0, 0)〉 ∝ lim
α→0

∫
d3k

4π
ei
~k·~x kn−3e−αk ∝ 1

|x|n
. (B.11)

Therefore, asking why a power spectrum with a constant index n can’t have an index greater
than n = 4 is the same as asking why the position space two-point function for the curvature
perturbation can’t diverge in the coincident limit faster than the fourth power of the distance
between the two operators. The reason for this boils down to dimensional analysis. In a mass
dependent regularisation scheme (i.e. regulating divergences with a hard cut-off Λ), the more
divergent a correlation function is in position space, the greater the power of divergence in
momentum space. Two-point functions that diverge as the inverse square of the distance
require counterterms proportional to Λ2. Since our theory has no other UV mass scale, one
cannot have a dependence on the r.h.s. of (B.11) where n is greater than 4, since this would
require a counterterm that goes as Λn>4, which is not possible in four dimensions. However,
this does not completely account for the steepest growth shown in appendix A, since for any
finite α, the spectrum cuts off and the corresponding divergence is automatically regulated,
invalidating the above argument. Although causality and analyticity arguments have been
invoked in different contexts to argue for a particular bounds on the growth index of various
cosmological perturbations,12 none of these appear to apply to our present context. The
physical origin of the steepest growth index over a finite range of modes that we’ve uncovered
is still something we’re investigating.

12In the context of density perturbations produced from a causal collapse process in a non-inflationary
context, Traschen and Abbott have derived a minimum growth index of k4 [134]. For primordial magnetic
fields, Durrer and Caprini have shown that the two-point function must scale at least as k2 at large scales [135].
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C On the background potential

In the first part of this appendix, we show how one can reconstruct a potential having
specified an arbitrary time-dependence for ε. Note that this is a much simpler problem
than reconstructing the inflaton potential (more generally, action) from CMB data, a process
that is necessarily hamstrung by a variety of degeneracies [136–138]. Our goal is simply to
show that one can in principle design a potential assuming a minimally coupled scalar field
with a canonical kinetic term to reproduce an arbitrary time-dependent profile for ε. In the
second part of this appendix, we show how one cannot engineer an arbitrarily abrupt end to
inflation in terms of e-folds without introducing additional hierarchies that will be radiatively
unstable.

C.1 Reconstructing V from ε

We begin with the equation of motion for a minimally coupled scalar φ, switching to e-folding
number N as the time variable

H2 d
2φ

dN 2
+

(
3H2 +H

dH

dN

)
dφ

dN
+
∂V

∂φ
= 0. (C.1)

Given that H dH
dN = Ḣ, one can use the Friedmann equations 3H2 = ρ, Ḣ = −(ρ + p)/2M2

pl

to obtain

3H2 +H
dH

dN
= 3H2 + Ḣ =

ρ− p
2M2

pl

=
V

M2
pl

. (C.2)

Furthermore the Einstein constraint equation becomes

H2 (3− ε) =
V

M2
pl

. (C.3)

Inserting these relations into (C.1) results in the equation of motion

d2φ

dN 2
+

[
dφ

dN
+
M2

pl

V

∂V

∂φ

]
(3− ε) = 0 (C.4)

or
dε

dN
= − (3− ε)

[
2ε+

dφ

dN
∂φV

V

]
(C.5)

where we have used ε = (dφ/dN )2

2M2
pl

. So far, the above relations are exact. We now presume

that ε� 3 so that the above can be approximated as13

dε

dN
= −6ε+

d log V −3

dN
. (C.6)

Using the definition of ε and (C.6) we find

φ(N ) = φ∗ ±Mpl

∫ N
N∗

dN ′
√

2ε(N ′), (C.7)

V (N ) = V (N∗) exp

[
−1

3

∫ N
N∗

dN ′
(
dε

dN ′
+ 6ε

)]
, (C.8)

13Note that one can straightforwardly generalise the above derivation to the case of multi-field inflation,
where the final equation (C.6) would also result.
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giving us φ and V as functions of N determined entirely by the evolution of ε that we take
as an input. It remains to figure out what V is as a function of φ. To do this, we observe
that if

V (N ) =
∑
n=0

cnfn[φ(N )] (C.9)

where the fn are some complete basis of functions,14 and if we know V (Ni) and φ(Ni) for
0 ≤ i ≤ m discrete values, then if we demand than V (φ) truncate at some finite order
m, we have a system of m + 1 linear equations in m + 1 unknowns which will be possible
to invert given the presumption of monotonicity of φ and linear independence of the basis
functions, allowing us to calculate the coefficients ci for 0 ≤ i ≤ m, thus reconstructing an
approximation to the potential to order m. For a limited enough field excursion it suffices
to truncate to some small finite order e.g. at m = 6 for a monomial basis: the typical order
to which we need to know the potential in order to have a handle on the η problem (see for
instance, the treatment in [32]).

However, for simple enough time dependence for ε one can explicitly perform a direct
reconstruction. We first match a phase of constant ε slow roll to a phase of USR. First, note
that using the definition dε/dN = εη, (C.8) can be recast as

V (N ) = V∗ exp

[
−1

3

∫ N
N∗

dN ′ε (η + 6)

]
. (C.10)

Therefore, it is clear that during USR, V (N ) remains constant as inflation progresses. Fur-
thermore, during constant ε slow roll, ε(N ) ≡ ε0 and η = 0, so that during this phase

V (N ) = V∗e
−2ε0(N−N∗). (C.11)

Picking the + branch of the solution (C.7)

φ(N )− φ∗ = Mpl

√
2ε0(N −N∗) (C.12)

we find that we can straightforwardly invert φ for N , resulting in the potential

V (φ) = V∗e
−
√

2ε0
Mpl

(φ−φ∗)
, (C.13)

which is consistent with the fact that the only constant ε attractors are given by exponential
potentials. Next, we note that during USR, the argument of (C.10) vanishes identically, so
that the potential during this phase has a constant value set by the value at the end of the
constant SR epoch —

V (N ) = V∗e
−2ε0(N1−N∗) = const. N > N1. (C.14)

Similarly, given that ε(N ) = ε0e
−6(N−N1) during USR, we find from (C.7) that

3(φ− φ1)√
2ε0Mpl

= 1− e−3(N−N1) (C.15)

14E.g. fn = φn or fn = enλφ for some fixed λ etc. In general, the convergence of the reconstructed potential
to the true potential will depend greatly on choice of basis functions adopted, and the range in field space one
wants the approximation to be valid.
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with φ1 given by (C.12) evaluated at N1. The only way some polynomial function of the
above can result in a constant is if it were itself a constant. Hence the reconstructed potential
that transitions from slow roll to USR is a piecewise potential that glues an exponential
potential to a constant. This is not particularly physical, so we can try to suitably smooth
the transition from SR to USR.

We now reproduce a potential that can mimic the matching calculation done in the
previous appendix. Namely, from η = 0 slow roll to η = −2 → η = −6 → η = +2 back
to η = 0 slow roll. When η = 0 → η = −2 at N = N1, we can repeat the steps above for
N > N1 to find

V (N ) = V (N1)e
2ε0
3 [e−2(N−N1)−1] (C.16)

and similarly for the field profile,

φ− φ1
Mpl

√
2ε0

= 1− e−(N−N1). (C.17)

Substituting the above into the exponent of (C.16) results in

V (φ) = V (φ1)e

(φ−φ1)
2

3M2
pl

−
√
2ε0

2(φ−φ1)
3Mpl . (C.18)

Note that from (C.17) the field can only asymptote to φ − φ1 =
√

2ε0Mpl, in which case
the potential goes to zero smoothly. From the previous discussion, we see that to match to
η = −6 is to splice this potential to a constant piece at N = N2. To subsequently match
from this phase to η = +2 at N3 results in (for N > N3)

V (N ) = V (N3)e
− 4ε2

3 [e2(N−N3)−1] (C.19)

during which time the field evolves as

φ− φ3 = Mpl

√
2ε2
[
eN−N3 − 1

]
(C.20)

so that the potential this corresponds to is given by

V (φ) = V (φ3)e

−2(φ−φ3)
2

3M2
pl

−
√
2ε2

4(φ−φ3)
3Mpl (C.21)

with

ε2 = ε0e
−2(N2−N1)e−6(N3−N2). (C.22)

Finally, one would like to match to a slow roll phase again, where

V (φ) = V (φ4)e
−
√

2ε3
Mpl

(φ−φ4)
(C.23)

with

ε3 = ε0e
−2(N2−N1)e−6(N3−N2)e2(N4−N3) (C.24)
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ϕ/Mpl
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Figure 12. The reconstructed potential (C.25) for N1,N2,N3,N4 = 10, 14, 18, 34 respectively, with
φ∗ = 0 and ε0 = 0.01. Note that the field range over which USR occurs (φ3 − φ2 ' 0.0009Mpl) is
parametrically much smaller than the phases where η = ±2, so as to effectively appear as an inflection
point in the above plot.

Therefore we summarize that the piecewise continuous potential that reproduces the match-
ing η = 0→ η = −2→ η = −6→ η = +2→ η = 0 is given by

V1(φ) = V∗e
−
√

2ε0
Mpl

(φ−φ∗)
φ < φ1, η = 0 (C.25)

V2(φ) = V1(φ1)e

(φ−φ1)
2

3M2
pl

−
√
2ε0

2(φ−φ1)
3Mpl φ1 < φ < φ2, η = −2

V3(φ) = V2(φ2) = constant φ2 < φ < φ3, η = −6

V4(φ) = V3e

−2(φ−φ3)
2

3M2
pl

−
√
2ε2

4(φ−φ3)
3Mpl φ3 < φ < φ4, η = +2

V5(φ) = V4(φ4)e
−
√

2ε3
Mpl

(φ−φ4)
φ4 < φ, η = 0

with ε2 and ε3 given by (C.22) and (C.24), and where the fixed field intervals in terms of the
number of e-folds of the different phases as

φ2 − φ1 = Mpl

√
2ε0

[
1− e−(N2−N1)

]
(C.26)

φ3 − φ2 =
Mpl

3

√
2ε0e

−(N2−N1)
[
1− e−3(N3−N2)

]
φ4 − φ3 = Mpl

√
2ε0e

−(N2−N1)e−3(N3−N2)
[
e(N4−N3) − 1

]
.

We plot the reconstructed potential below for specific values of the Ni:

C.2 The quickest possible end to inflation

Having demonstrated a steepest possible growth for the primordial power spectrum, one
might wonder about the complementary question — how quickly can it fall off? An accurate
estimate for this can be inferred from rephrasing the question as how quickly inflation can
end, or transition to another phase of inflation. To understand this, we first recall (C.4), but
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now generalise to multi-field inflation

d2φa

dN 2
+

[
dφa

dN
+
M2

pl

V

∂V

∂φa

]
(3− ε) = 0 (C.27)

where φa denotes coordinates in some general field space. For simplicity, we assume a flat
field space metric (and so accord no significance to raised or lowered indices) although this
can be straightforwardly generalised. The slow-roll parameter ε is now defined as

ε =
1

2M2
pl

dφa

dN
dφa
dN

. (C.28)

Multiplying (C.27) by dφa/dN results in the analog of (C.5)

dε

dN
= − (3− ε)

[
2ε+

dφa

dN
∂aV

V

]
. (C.29)

We now consider the situation where over some interval, ε increases monotonically from some
initial ε0 � 1 to εf = 1 over an interval ∆Nend. Application of the mean value theorem of
calculus15 then implies that ∣∣∣∣ dεdN

∣∣∣∣
int

&
1− ε0
∆Nend

∼ 1

∆Nend
(C.30)

at some intermediate Nint. Inserting the r.h.s. of (C.29) into the above, assuming ∆Nend � 1
and applying the triangle inequality results, after some manipulation, in the lower bound

Mpl

∣∣∣∣∇TVV
∣∣∣∣
max

&
1

3
√

2∆Nend

(C.31)

where ∇TV is the tangential derivative of the potential with respect to the trajectory, defined

as ∇TV := T a∂aV and T a := dφa

dN

/(
dφb

dN
dφb
dN

)1/2
. In the single-field case, it reduces to the

more familiar expression

Mpl

∣∣∣∣V,φV
∣∣∣∣
max

&
1

3
√

2∆Nend

. (C.32)

Therefore, if we would like inflation to end in ∆Nend � 1 e-folds or less, we necessarily
require the gradient of the potential along the trajectory as inflation ends to be bounded
from below according to (C.31). Although classically we are entitled to make the transition
out of inflation as sharp as we desire, one cannot make it arbitrarily sharp without introducing
additional hierarchies that will be unstable under quantum corrections, since these corrections
spoil the flatness of the potential away from the transition, in effect ending inflation earlier and
restoring the smoothness of the transition. Nevertheless, from (C.31) we see that a transition
that lasts an order unity fraction of an e-fold can easily be accommodated without introducing

15Recalling that if f and f ′ are continuous functions on the interval [a, b], then there exists some point

c ∈ [a, b] such that f ′(c) = f(b)−f(a)
b−a . Since f ′ is also continuous, f ′(c) must lie between the minimum and

maximum of f ′ in the interval [a, b]. That is

min
a≤x≤b

f ′(x) ≤ f(b)− f(a)

b− a = f ′(c) ≤ max
a≤x≤b

f ′(x).
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additional hierarchies, and for the purposes of our discussion, justifies any approximation that
cuts off the primordial power spectrum at some fixed comoving scale.

For completeness, we illustrate the considerations above with a concrete example. Con-
sider the following prototype potential for a rapid exit from inflation

V (φ) =
V∗
2
e−γφ/Mpl (1− Tanh [µ(φ− φ∗)/Mpl]) . (C.33)

When γ � 1, one has power law inflation in the region φ � φ∗. At φ = φ∗, there is a
transition (that can be made arbitrarily abrupt as the dimensionless parameter µ → ∞).
Requiring the transition to last less than 1/100th of an e-fold requires for example µ to be
at least of order 102 through (C.31), which would imply that the hyperbolic tangent is an
operator expansion in odd powers of effective operators with very large Wilson coefficients:

L ⊃ µnφn

Mn
pl

; µ ∼ 102, ∆Nend ∼ 10−2. (C.34)

Calculating loop corrections to the potential (C.33) expanded around φ∗ for µ ∼ 102 would
result in a deformation of the inflationary part of the potential. If one were to try and ap-
proximate it close enough to φ∗ as an exponential, one would find an effectively renormalised
γ that is no longer � 1. On the other hand, requiring ∆Nint ∼ 10−1 is possible for values of
µ ∼ 1, resulting in a renormalisation group improved potential where the hierarchy γ � 1 is
preserved. We stress however that the bound (C.31) is completely general and can be applied
to multi-field inflation as well.
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