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Abstract. We show how to obtain constraints on 8 = f/b, the ratio of the matter growth
rate and the bias that quantifies the linear redshift-space distortions, that are independent
of the cosmological model, using multiple tracers of large-scale structure. For a single tracer
the uncertainties on (8 are constrained by the uncertainties in the amplitude and shape
of the power spectrum, which is limited by cosmic variance. However, for two or more
tracers this limit does not apply, since taking the ratio of power spectra cosmic variance
cancels out, and in the linear (Kaiser) approximation one measures directly the quantity
(1 + B1pu?)?/(1 + Bop?)?, where p is the angle of a given mode with the line of sight. We
provide analytic formulae for the Fisher matrix for one and two tracers, and quantify the
signal-to-noise ratio needed to make effective use of the multiple-tracer technique. We also
forecast the errors on 3 for a survey like Euclid.
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1 Introduction

At the scales at which the cosmological fluctuations are well within the linear regime, and
at small redshifts, all the information on the cosmological model is contained in very few
quantities, such as the Hubble function, the power spectrum of the galaxy density field and
the power spectrum of the weak-lensing shear. A desirable goal of large scale observations is
to derive from this information a measurement of quantities of cosmological interest without
first assuming a particular model, e.g. ACDM. One such quantity is the redshift distortion pa-
rameter:
f

where f = dlogd,,/dloga is the matter growth rate [a(t) is the cosmological scale factor| and
b = 04/0pm is the linear galaxy bias. This quantity enters the linear galaxy power spectrum
in the so-called Kaiser term [1], which converts the real-space spectrum P®) (k) = b2P,, (k)
(P, is the matter power spectrum) into its observed, redshift-space version, P*)(k, ) =
(14 Bu2)2P@ (k), where the angle of the Fourier mode k with the line of sight # is encoded
in p=#-k— [2], see [3] for a review. The quantity 3 is also needed to define the statistics
E, that helps to discriminate between different cosmological models — see, e.g., [4, 5].

If the underlying density field is sampled only by one kind of tracer (galaxies, QSOs,
Lyman-« systems, etc.), the redshift-space distortion factor is degenerate with the amplitude
of the power spectrum, which in turn is limited by cosmic variance. Hence, for a single tracer
the uncertainty on [, as well as many other interesting effects [6], will also be limited by
cosmic variance, even in the limit of infinite signal-to-noise.

A possible way to overcome this limitation has been proposed in [7, 8]: the idea consists
in identifying two (or more) tracers that sample the density field with number densities n; o
and with biases b 2, and measuring the ratios of the spectra of the two tracers. In this case
it has been shown that ratios of spectra can be measured to arbitrarily high precision if the
signal-to-noise ratio (SNR) is arbitrarily high — see also, e.g., [9-13]. This cancellation of
cosmic variance can be used to improve measurements of bias and growth rate [9, 11, 13—
16], as well as primordial non-Gaussianities and horizon-size effects [17-23], and has been
widely studied both in the context of galaxy surveys (e.g., [24, 25]) as well as radio/21lcm



surveys [18, 20, 26, 27]. Since the signal is the power spectrum P;, and in the usual case
of Poisson statistics for the counts of the tracers shot noise is given by 1/n; (where n; is
the mean number count of the tracer i), increasing the SNR=n;P; means observing larger
numbers of the tracers. Of course, if by = by the ratio of the two spectra is unity, and there
is no gain with respect to a single-tracer survey.

The goal of this paper is to derive general estimates of the uncertainties on 3 o without
assuming any particular cosmological model. From (312 one can obviously obtain the bias
ratio by /ba. Notice, however, that without further independent information on b; 2 nothing
can be said about the growth rate f itself.

We use the Fisher matrix formalism to obtain the errors for the power spectra and
the parameters (312 for two tracers by integrating out, in an essentially analytical way, the
anisotropic clustering due to redshift-space distortions. This extends and clarifies several
previous results: e.g., ref. [8] only considers modes along and across the line-of-sight; ref. [14]
computed analytically a Fisher matrix and employed N-body simulations to demonstrate the
gain from splitting a survey into different biased tracers of large-scale structure; ref. [15]
studies how the combination of a galaxy survey and a peculiar velocity survey can constrain
B under some assumptions which we can relax; and ref. [16] obtain independent constraints
on 3, but only after constraining the power spectra. Ref. [24] also performed a Fisher forecast
on f(z) and by 2 for two tracers, assuming standard power spectra and k-independent biases
and growth rate. Finally, we point out that the GAMA survey derived improved constraints
on the matter growth rate by splitting their galaxies into luminosity and color classes [24],
obtaining gains of ~ 10-20 % compared with the single-tracer analysis. We estimated the gain
in the model-independent determination of S and the power spectrum using same number
densities and biases of the tracers in the GAMA survey, and we found an improvement of
~ 15 % in the two-tracer case as compared with the single tracer — although it should be
stressed that the GAMA constraints were obtained under the standard assumptions about
the cosmological model, whereas our constraints are independent of the model.

Our results will be expressed in terms of the Fisher matrix per unit volume of phase-
space (let us call this the Fisher matriz density), i.e. for a given bin in k and z. In this way,
our results are not only model independent, but also survey independent. For any particular
survey, one has to multiply the matrix by the phase-space volume element to obtain the
final errors. We will give an example based on the Euclid survey [28, 29], but our results
are relevant for any deep survey with large number densities of tracers, and spanning large
cosmological volumes, such as, e.g., J-PAS [25] and SPHEREx [30].

It is worth stressing the importance of deriving results that are independent of a specific
model. Whenever the estimation of a quantity depends on assuming a model or a class
of model defined by some set of parameters, e.g. ACDM, then that estimation cannot be
employed in any other context except for that model. For instance, a measurement of
that assumes ACDM cannot be employed in the statistics E, to test any other model, and
therefore preempts its validity as a test of gravity. The statistics can still be used as a null
test, i.e. to reject models within the chosen class, but not to gauge their merits with respect
to models outside the class. In statistical language, a quantity that is measured assuming
a model can be used to produce frequentist p-value hypothesis tests, or nested Bayesian
model selection within the parameters of the same class of models, but not general Bayesian
model selection.

Being model-independent, our results are conservative: our only assumption is that we
are on linear scales, where the Kaiser approximation is valid — however, the same conclusions



should apply if we abandon the flat-sky (distant observer) limit [31-35]. Given a specific
model with a small number of parameters, one can sum the Fisher matrix over all k— and
z—bins and project the result onto the chosen parameters, obtaining stronger, but model-
dependent, constraints.

Typical values for the bias range from b < 1 for low-mass systems observed through
Ly-a absorption or through the neutral H 21cm line (see, e.g., [36]), all the way to ~ 5 — 10
for very massive halos at high redshifts [37]. Since the matter growth rate f ~ 0.5 — 1 in
the interesting redshift range, 3 is expected to assume values in the range 0.1-2.0. It is
interesting to note that one could include, in addition to halos or galaxies, also voids, which
have negative bias [38].

2 Fisher matrix for multiple tracers

We can derive the Fisher matrix for two or more tracers (e.g., different kinds of galaxies,
quasars, halos of different masses, etc.) starting directly from the density contrast in Fourier
space, rather than from the power spectrum as sometimes done in the literature (e.g. [39]).
Although the result is the same, in standard cosmology it’s the density contrast that is a
Gaussian variable, not the power spectrum.

Let us consider two distinct Gaussian fields at some redshift z, with zero mean, sampled
by distinct “particles” (e.g., two different galaxy populations). Let 412 be their k-th Fourier
coefficient and 712 their number density. For now, we do not have to assume any redshift
distortion. We assume that the only non-zero correlations in a survey of volume V are
(i,j =1,2):

0

9ij
n;

V<(5Z(5;<> = bibjpm +

_ { PN;  (i=]) (2.1)

VPP (i#j)

where (0;0;) = 0, P; are the power spectra as a function of z and E, and N; = 1+1/(n; P;) is the
shot-noise term — from now on the biases b; are absorbed in the power spectra. Notice that
since we assume that the two discrete realizations of the field are formed by distinct particles,
there is no cross shot-noise. However, it should be stressed that halo exclusion effects and
non-linear clustering introduce corrections to the usual Poissonian shot noise, which in reality
may not be well represented by a diagonal matrix ¢;;/n; [10, 40]. These corrections have been
used to improve forecasts [14], and could also be applied to the model-independent approach
that we present here.

From now on we assume that the spectra are expressed in units of shot noise, so all the
factors of n; — 1, hence n; P; — P;, which are henceforth adimensional. For any given E, the
random variables x, = \/V;{d1, 0}, 2,05 } are distributed as (sum over repeated indexes)

1 1 1
where the correlation matrix is:

0 PNy 0 VPP
PN 0 VP Py 0

0 VPP, 0 PN
VP Py 0 Py Ny 0

Cap = (Taxp) =



The Fisher matrix for a set of parameters 6, in a survey of volume V, is then

14nk2Ay _
Fop=-——7VF,3=VV,F, 24
af 9 (27T)3 af kLap » ( )
where an extra factor of 1/2 in the Fisher matrix accounts for the overcounting of the de-
grees of freedom in the likelihood since 5% = 0_z. We include this factor in the effective

volume in Fourier space, V;, = %, where Ay is the width of the bandpower (shell) k.

In the expression above F is the Fisher matrix per unit phase-space volume, i.e., the Fisher

matrix density:'
]. acab -1 -1 aocd

Fog =< 2.5
2700, e 90, (2:5)
If we take as parameters 6, = {log P, log P>}, we obtain
(N1—4)N2+2N34+1  Ny(N2—2)—2N2+3
— —1)2 —1)2
P 2(N1 No—1) 2(N1 N2 1)2 (2.6)
N (N272)72N2+3 NI(N274)+2N1 +1
2(N1No—1)2 2(N1No—1)2
which can be cast in a more elegant format:
_ PPy 1+P+2R 1-P
Fr=—"-— 2.7
2(1+P)2< 1-P 1+P+§>’ 27)
where
P=P + P (28)
Py
R=—. 2.9
= (29)

The Fisher matrix above, in terms of the parameters § = {log P;,log P,}, can be diagonalized
by projecting onto the new variables © = {log P,log R}. The Jacobian for this change of
variables is

00

leading to:
P2 0
Fo=J'FJ= <<P61>2 PPy ) : (2.11)
2(P+1)

The marginalized relative error (from now on, all errors and variances are meant to be relative
values) on R is therefore
(1+ P)
PPy
and decreases as 2/P, < 1 if P, > P, > 1 (and vice-versa for P;).
In the case of Ny tracers, such that the degrees of freedom are 0 = {log P;,log P,
...,log Py, }, the Fisher matrix density can be written as [13, 41]:

- _ 10;;PP(1+P)+ PP;j(1-P)
Y2 (1+P)? ’

0% =2(VV)™? (2.12)

(2.13)

'We point out that the choice of dataset z, used here implies that the Fisher matrix density and phase
volumes that are used in this paper differ by a factor of 1/2 and 2, respectively, from those used [13, 41]. The
Fisher matrix, eq. (2.4), is of course identical.



21 %9 n(x1073) V(x10°Mpc?) nP(z, k1) (k1) nP(z,ks) ~v(k2)
0.7 0.9 1.90 7.18 19.6 0.13 10.7 0.026
09 1.1 1.71(1.46 — 0.86) 9.02 14.8(12.6 — 7.45) 0.12 8.07(6.89 — 4.07) 0.024
1.1 1.3 1.37(0.83 — 0.44) 10.5 10.0(6.05 — 3.23) 0.11 5.47(3.30 — 1.76) 0.023
1.3 1.5 0.99(0.43 —0.23) 11.6 6.19(2.71 — 1.42) 0.11 3.38(1.48 —0.77) 0.022
1.5 2.1 0.33 39.0 1.55 0.074 0.847 0.015

Table 1. Survey specifications for a Euclid-like survey, evaluated at scales k; = 0.01 h Mpc~! and

ks = 0.05 h Mpc~!. The densities 7 are taken from ref. [29], while the two values in parentheses are
the more recent estimations of the galaxy density from [42], table 2, WISP calibration and HiZELS
calibration, respectively. The power spectrum is taken to be ACDM with Planck values [43], including
non-linear correction.

where P = va ¢ P;. The diagonalized degrees of freedom in this case are found by trans-
forming from the “Cartesian” coordinates 6 into hyper-spherical coordinates ©® — see [13].
The errors on the new “angle” variables (which are simply ratios of spectra) scale in the
same way as was found above for the ratio R in the case of two tracers, i.e., their relative
uncertainties can be arbitrarily small if the power spectra (in units of shot noise) have high
enough amplitudes.

In order to obtain the actual errors for a given survey we must multiply the Fisher
matrix density by the phase space volume factor. For a typical scale of A =100 Mpc/h in a
spherical (full sky) survey of radius L, one has, for a bandwidth Ay, = 27(AN/A\?) ~ 27/ L:
3 A3 A3

~0.042 | (2.14)

2 -1_ <2
7=V =g L3

For A =100 Mpc/h and L = 1 Gpc this factor amounts to ~ 4-107°. In the following we focus
on the Fisher matrix density, so the errors we derive should be multiplied by . Assuming
a survey like Euclid [28, 29] one can compute the v factors for a given scale k = 27/ well
within the linear regime, as reported in table 1. Here, Ay = 27/L in each bin has been
estimated simply by using L = V1/3, where V is the comoving volume of the redshift bin.

3 Model independence and statistical independence

Before proceeding forward, we deem useful to spend a few words to clarify further the concept
of model independence as employed in this paper.

The fact that the Fisher matrix, eq. (2.11), is diagonal implies that the parameters that
enter the total power spectrum are decoupled from those that enter the ratio R. In this case,
the estimation of R is completely independent of any parametrization of P. This fact is at
the core of the multiple-tracer method: although the error on P reaches a limit for large
SNR, R can be estimated to infinite precision for infinite SNR. However, as we will see later
on, the general Fisher matrix for g and P when the Kaiser redshift distortion is included, is
no longer diagonal, neither for the single- nor the multi-tracer case — except in the infinite
signal-to-noise ratio, as also shown in ref. [14]. This means that the assumptions on P (e.g.,
a ACDM spectrum) have an impact on the estimation and on the errors derived for 5. Only
by taking P(k) itself as a parameter is model independence restored, since P(k) is a directly
observed quantity. One can make these considerations semantically more precise. Suppose
we have only two unknown parameters to estimate, A and B. If A and/or B can be directly



estimated from observations, we say they are model independent. In other words, a quantity
is model independent only if it is a statistics. If, on the other hand, the estimation of A
(regardless of whether this is done directly from the data, or by first making assumptions
such as, e.g., that A is independent of k) is independent of the estimation of B, then we say
that A and B are statistically independent. So two quantities are statistically independent if
their Fisher matrix is diagonal. There is no a priori relation between the two concepts. Even
if A is statistically independent of B, one might still need to make assumptions in order to
estimate it from the data, so it would not necessarily be a model-independent quantity. For
instance (8 is a model independent quantity, but f is not, since it requires first the knowledge
of b, or at least some parametrization.

As an obvious consequence of these definitions, the property of being model independent
is not necessarily related to the multiple-tracer technique and does not require a diagonal
Fisher matrix. As we show next, in fact, § is a model-independent quantity also in the
single-tracer case, where, just as for the multiple-tracer case with Kaiser correction, the
Fisher matrix is in general not diagonal.

4 Single-tracer case with Kaiser correction

We now introduce the Kaiser correction B = 1+ Bu?. Here, /3 is supposed to be an unknown
function of z and k, and whenever we refer to it we mean its value in a particular bin of z, k.
We begin with the example of a single tracer. We have the correlation matrix

0 B2?PN
Cab - (BQPN 0 > ) (41)
where now 1
N=1+——. 4.2
+ B2p (4.2)

Averaging the Fisher matrix density over the direction cosine u, we obtain for the variables
{log P,log f3}:

1 2-2(B+1)P 1 )
F=|® (wisrtren +T+8) & (e — T +8) (4.3)

1 2 (B+1)P+1
1 ((6+1)2P+1 —It 8) rozein t I +4

where T; = (2;T) + (2T)* and

arctan <\/% >

T = : (4.4)
VBV ivVP + P
with
_ 5-6iVP
Z1 = W y (45)
2 = 4VP + 5i (4.6)
23 = —;\/ﬁ+%z’(—5+2p). (4.7)



The marginalized relative error on (3 is

2-2(f+1)P
Fropzen T+ 8

2
Uﬁ = 2
2—-2(8+1)P (B+1)P+1 1 2
(it e + T+ 8) (e + T +4) = § (- e + T - 8)
(4.8)
while for P we have
(B+1)P+1
o2 = e s +4
2 =
1 2-2(8+1)P (B+1)P+1 1 2
8 ((P+1)((ﬁ+1)2P+1) +1+ 8> ((6+1)2P+1 + T+ 4) 16 <_(6+1)2P+1 +12 - 8) ?
(4.9)

We find that og diverges for both large and small 3, and has a minimum at 8 ~ 12.31 where
og ~ 1.7. For P > 1 the result is independent of P:

BB+1)

2 __
78 = 28+2(B+1) (/B —2tan"t /B)tan" (\/B) (4.10)
We’ll need also the relative error for P in the same limit,
_ -1
o2 = B(28+3)—3yB(B+1)tan! (V) (4.11)

B+ (B+1)tan—! (\fﬁ) (\/B — 2tan—1 (\/B)) '

Notice that in order to derive pu and k from observations based on redshifts and angles,
one needs a background cosmological model, usually taken to be ACDM, to estimate H(z)
and the diameter-angular distance D(z). Specifically, if u, is the value obtained assuming
a particular arbitrary reference model, then u depends on the true cosmological model as
w=p-H/(Hya) and k as k = ak,, where [44, 45]

VH?D?2 — H2D2(p2 — 1)
- 412
o 7D (4.12)

This of course renders the results, in general, dependent on the background model. On
the other hand, H and D can be estimated from supernovae and from the scale of the
baryon acoustic oscillations independently of the cosmological expansion. Therefore, provided
one can achieve precise constraints on H and D at the relevant redshifts, then u, k can be
determined in a model-independent way, and the arguments of this paper remain valid.
If instead H and D are not well-measured, then our treatment remains valid only if one
replaces 3 and P with the generalized model-independent observables 3(H/a)? and P(k =
ak,), respectively.

5 Fisher matrix for two tracers

Now we move to the case of two tracers with different biases, so we define B; = 1 + ;u?,
with ¢ = 1,2. The data covariance is identical to eq. (2.3), with the replacement P, — B2P;,
and with N; — 1+ 1/(B?P;), which can then be used in eqgs. (2.5)—(2.6) to derive the Fisher
matrix density for two tracers. Alternatively, we can use directly eq. (2.13), with P; — B?Pi,
arriving at the same expression.

Notice that the determinant of this Fisher matrix is zero by construction, and the reason
is that for each value of k and p there is a complete degeneracy between the amplitude of



the power spectra, P;, and the redshift distortion parameters B;. However, by integrating
over i we are in effect summing the Fisher matrices for the different values of y, which is
what allow us to obtain independent constraints for the power spectrum as well as for j;.
In practice, this means combining the multipoles (¢ =0, 2 and 4) of the redshift-space power
spectrum to extract independent constraints for those quantities.

So far we have assumed that P; and P, are independent. This might be the case in
some applications, but is too general for our scope. In fact, in our case the two power spectra
are just biased versions of the same underlying dark matter distribution, Pj o = ﬁ172b32<5,2n>.

They are therefore related as
2

P2 == Pl%q (51)
2

where g = ng /1.

We could now replace everywhere P, with P; and reduce our degrees of freedom from
four to three parameters. However, we are interested in comparing the results of the scenario
with two tracers with the alternative where we combine both of them into a single one. In
that case it is more convenient to replace both P; and P, by the resulting total spectrum P
as new parameter. The total spectrum can be obtained as follows: first, consider that the
counts of a single (combined) tracer are related to the counts of the two distinct tracers by
n(Z) = n1(Z) + na(&), which leads, through the spatial mean, to 7 = 7y + n2. Then, using
the definition of “local bias”, §; = dny /iy = b1d,,, we obtain the bias of the single tracer as:

_ n1by +n2ba b1+ gb

b = 5.2
n1 + na 1+g¢ (5.2)
so that the density contrast obeys the relation
_ b1 + qba _
oy = ———= 7y, - 5.3
n00m 1+¢ Nom ( )

From eq. (5.3) we recognize that the case of a single (combined) tracer can be related
to the case of two tracers via the variances of the Fourier transforms of the density fields:

VP = \/ﬁPcos2q5,
\oPy = vﬁPSin2¢,

where
cos® ¢ = o (5.6)
14+Y’ ’
Y
Sin2 ¢ = 1_'_7}/ s (57)

with Y = ¢ 81/82. In particular, we can write:

(1+¢)(1+Y?/q)

P+P =P
1+ 2 X (1+Y)2 )

(5.8)

where it is clear that the factor in right-hand-side reduces to 1 when (81 = (9, since in that
case Y = ¢. Indeed, in that particular case egs. (5.4)—(5.5) reduce to v/P; — v/ P cos ¢ and
Py — +/Psin ¢, from where it follows that P, + P» — P.



These expressions can be generalized to N tracers in terms of spherical coordinates: the
variance in the single-tracer case, V7P, becomes the (square of the) radial coordinate, while
the variances of the original tracers are the projections of that radial coordinate into the dif-
ferent axes, according to the angle variables in an /N-dimensional spherical coordinate system.

Therefore, using egs. (5.4)—(5.5), we can replace Pj o in favour of the total spectrum
P, and use as parameters the reduced set X = {log P,log 31,log B2}, obtaining the matrix
Fo‘f 50 to be averaged over u. Although the ratio ¢ = fa/n; is in principle independent of 5 2,
highly biased populations are expected to be sparser, so small 8 often implies small . For
this reason, in the plots and tables below we assume as an illustrative case that n; = constﬂ?,
so that P, = P». However, the analysis is general.

Averaging over pu we have the Fisher matrix per unit phase-space volume

Ao LT W
Fog = 2/_1 dpF® (5.9)
where o, = 1,2,3. Since Fc(fé) are rational functions, the integrals are analytical, but

extremely cumbersome, so here we display only the numerical results and make the numerical
code publicly available.? The fully marginalized relative errors on 3; are

‘7[231 =(F 2 U§2 = (F )33, (5.10)

and are functions of the fiducial values P, 1, f2 and of ¢ = ng/n;. Obviously, swapping the
values of 31, B2, and for ¢ — 1/q, one has og, <+ 0g,. One could also consider the conditional
(or maximised) relative error

(Ufal)z = (F)™", (5.11)

which gives the best possible estimate of 81, achieved when all the other variables are perfectly
measured (and analogously for 2). Fixing some of the parameters does not imply that we
have infinite signal-to-noise for P (in which case we would have a perfect measurement of
the 3’s as well), but that other data can help constrain some of the parameters, helping to
break degeneracies. Hence, the conditional errors are useful as a limit that can be reached as
auxiliary data sets are included. However, in the following we focus on the more conservative
marginalized error.

In view of the comments in section 3, it is important to notice that F is not diagonal and
that, in particular, the correlations opg,,0pg, do not vanish for a finite SNR. Therefore, any
parametrization of P will influence the estimation of the g parameters. This is why we need
to take the waveband P(k) itself as parameter: being a directly observable quantity, one does
not need to introduce any model to estimate it. The quantities 3; 2 and P(k), although not
statistically independent, are therefore direct combinations of the data, i.e., they are model
independent statistics. In the limit of high SNR, they also become statistically independent
and therefore, in this limit, the cosmic variance uncertainty does not propagate from P to 31 2.

In order to perform a fair comparison between the single- and two-tracer case, we take
b as in (5.2), from which we get the combined j:

(14 q)B1p2
b= Ba+abr (5:12)

2 Mathematica notebook at the link github.com/itpamendola/multipletracers.




whose relative uncertainty can be obtained by propagating the covariance of {log 1, log B2},
with the result:
B305, + ¢ B1og, + 2aB1P207 5,
(B2 + B19)? '
It is this quantity that is compared to the variance (4.8) for a single tracer in all our numer-
ical results.
The limit for large P can be obtained analytically if 81 # (o,

1 VB (B2 + Prg)? (A\/a (T (23)32 - T*Za3/2zb) + 2iy 5152\/Qﬁ|2b|2>

0% = (5.13)

(UET)Q = PA 2 . 53/2
2v/B153 Valg+1) (T\/%zazg - T*\/Zza“zb) —4ify' " Agv/q + 1TT*‘ZCL(|
5.14)
where:
o 1 (Va+1VB152

Za =\/q+ 1, (5.16)
2y =/ BV +iBe (5.17)
A=pi—B. (5.18)

Here we see very clearly the power of the multiple-tracer method: while the single-tracer
variance of ( reaches a constant for large P (see eq. (4.10)), for two tracers it decreases as
1/P, and becomes smaller for larger A. The same (PA)~! trend applies to 0%2 and to ng By
and therefore to ag as well. As can be seen in figure 1, for 85 = 1 this asymptotic expression
performs better than 10% for any P > 30 and 1 < 0.4.

We report in figures 2 and 3 the relative marginalized errors on § and on P as a function
of 81 and as a function of P, respectively. When the two tracers are used in the analysis
we denote the results in solid lines, and when a single-tracer is used the results are shown
by the dot-dashed lines. For the plots as a function of 5; we fixed S2 = 1.0 and used three
values for P: 1, 10 and 100. For the plots as a function of P we again fixed fs = 1.0 and
used three values for 51: 0.8, 0.5 and 0.1. As one can see from figure 2, the two-tracer error
can be significantly better than the single-tracer one, and the advantage increases sharply
for P> 1. These figures represent our main result.

As we can see both from figure 3, as well as from eq. (2.11), the relative error on P
reaches a constant value for large P, contrary to (3, which expresses the well-known fact
that the multi-tracer technique does not cancel cosmic variance for the observable P — see,
e.g., [13]. However, as figure 3 shows, with the inclusion of redshift-space distortions one
can improve the measurement of P in the two-tracer case compared with a single tracer for
any P larger than ~ O(1). For large P, in fact, the two-tracer limit is exactly 1, while for
a single tracer we have the expression eq. (4.11), which yields values around 1.5-1.6 in the
range € (0.1 —1).

In figure 4, finally, we display the regions in the space (log,q P,logo 1) in which the
relative marginalized error for the combined tracers is smaller than the corresponding single-
tracer case by the indicated percentage. As is already clear from the previous plots, the
multi-tracer gain increases with larger P, as well as for larger differences in 5’s — in fact,
in addition to halos or galaxies, including voids (which have negative bias) further improves
the multi-tracer gains [38]. It is instructive to compare our results for the relative gain of
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Figure 1. Ratio of the exact result and the P >> 1 approximation of eq. (5.14) for 2 = 1 and
B1 = 0.1 (top curve, green in the color version), 0.5 (middle curve, red), 0.8 (bottom curve, blue).
The dot-dashed horizontal lines mark the 10% level.

the multi-tracer analysis in a model-independent way with those of, e.g., ref. [14], who first
highlighted the advantage of this method for measuring the matter growth rate, but assumed
an underlying model (ACDM). Our results should also be compared with those obtained for
the GAMA survey [24], in particular figure 14 of that paper. The final result of ref. [24] was
an improvement of ~ 10 — 20 % for that data set using the multi-tracer analysis, but the
Fisher forecast of that paper is consistent with our findings — even if in our case we did not
have to assume a cosmological model.

From the numerical and analytical formulae, we can draw several interesting conclusions:

e For our choice of ¢, the two-tracer error on the combined S is smaller than the single-
tracer one for all P (which in our notation is the signal-to-noise ratio). The advantage
becomes significant for P 2 10. For instance, if 51 = 0.1, 82 = 1, the error is halved
(with respect to single tracer) for P 2 10, close to the typical Euclid value (see table 1).

We explored the full parameter space log P, logf1,log 82 and ¢ within the range
1072,10% with 10° random points, and in all cases we found a positive gain of the
two-tracer method versus the corresponding one-tracer one; we conjecture therefore
that the two-tracer method is indeed always advantageous.

The single-tracer error on 3 reaches a constant value for P — oo, see eq. (4.10). For
the two-tracer case, og — P~Y2 for P — oo: this shows how multiple tracers beat
cosmic variance.

For all realistic cases [Py € (1 — 100) and 51 ~ 2 € (0.1 — 1)] the relative error on
B per phase-space unit is of order unity (more exactly, between 1 and 5). For Euclid,
one should multiply the errors by the  factors listed in table 1. As an example,
table 2 gives the exact values for a realistic choice of bias and compares them with the
single-tracer case.

- 11 -
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Figure 2. Marginalized relative errors o (left) and op (right) as a function of 8;. Here we fixed
B2 = 1.0 and took the values P = 1 (top curves, blue in color version), 10 (middle curve, red), and
100 (bottom curve, green), and assumed that the number densities of the tracers scale as fi; o /32.
The full curves correspond to the two-tracer marginalized relative error of the mean 3, as given by
eq. (5.13); the dashed curves correspond to the single-tracer case, where we combined the two tracers
into a single one. As expected, for f; = B3 = 1 the single- and two-tracer cases coincide. Here and
in the following plot, the errors should be multiplied by the appropriate phase space volume factor
— see tables 1 and 2 for the case of the Euclid survey.

10

5t

AR L L R R R L

0.5+

0.1

1 10 100 1000 1 10 100 1000

Figure 3. Marginalized relative errors og (left) and op (right) as a function of P. Here we fixed
B2 = 1.0 and took the values 8; = 0.8 (top curves, blue in color version), 0.5 (middle curve, red), and
0.1 (bottom curve, green). As in the previous figure, the number densities of the tracers are assumed
to scale as 7i; oc 32. The full curves correspond to the two-tracer marginalized relative error, and the
dashed curves correspond to the single-tracer case.

e The error for P reaches a constant value for large P both for the single- and the
two-tracer case. The two-tracer asymptotic value is however roughly 60% smaller, see
figure 3, right panel.

e More results can be obtained by running the publicly available code (see footnote 2)
which gives the relative errors per unit phase-space on P, 81, 82 for one and two tracers,
combined or separate, and for any number density ratio q.

6 Projecting over parameters

So far we have been trying to be as model independent as possible. In practice, one has often
a model with a finite number of parameters, so one needs to project the Fisher matrix onto
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Figure 4. Contour plot of the error gain, d, = og(2tracers)/oz(1tracer) — 1, labelled by the percent
gain (e.g., 10% means §, = —0.1). We assume (5 = 1.

21

22

v(k1)og

one tracer

v(k2)os

v(k1)og

two tracers

v(k2)ogs

0.7

0.9

0.6

0.12

0.29

0.058

0.9
1.1
1.3
1.5

1.1 0.57(0.57 — 0.58) 0.11(0.11 —0.12) 0.27(0.29 — 0.35) 0.053(0.057 — 0.070)
1.3 0.57(0.57 —0.58) 0.11(0.11 —0.12) 0.27(0.33 — 0.41) 0.054(0.066 — 0.081)
1.5 0.57(0.58 —0.60) 0.12(0.12 —0.12) 0.29(0.39 — 0.48) 0.058(0.078 — 0.095)
2.1 0.43 0.087 0.28 0.057

Table 2. Forecasts of errors for a Euclid-like survey, same specifications as in table 1. In each redshift
bin, we fix 81 = f(2)/b(2), where f(z) ~ Q%5 is the ACDM growth rate and b(z) ~ 0.7z + 0.7, as
in [42], table 4, WISP calibration, and 82 = 31/2. Notice that the power spectra listed in table 1 are
now multiplied by b(z)2. First two columns: redshift bins. Third and fourth column: relative errors
for 3 for a single tracer, at k; = 0.01 h Mpc~! and ky = 0.05 h Mpc~!. Last two columns: same for
the two-tracer case.

the parameter set. Suppose for instance that ;2 are independent of k£ and parametrized by
a number of parameters p; (for simplicity, we assume the same parametrization for both 3’s),
B1,2 = B1,2(z;p;). Then the Fisher matrix densities for the shell at redshift z can be summed
over the k bins

Fap(2) = D77z k) Fag (6.1)
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Defining now as 6, = (log P, log 31, log B2) the old set of parameters, and by 05 = (log P, p;)
the new one, we project over 65 and finally sum over redshift slices z;, and obtain,

Fag =33 J(z)oaF(2)er I (2i),5 (6.2)

i OT
where the Jacobian is:
00, (1)321 agl !
J(zi)as = 30, == . % % (6.3)
Op1 Op2 2=z

In this way the parameters p; can be constrained much more stringently than the values
of 1,2 in any given (z,k)-bin. The resulting constraints will now obviously depend on the
chosen [ parametrization, but would still be independent of the cosmological model.

7 Conclusions

We have shown that using two or more tracers of large-scale structure (e.g., galaxies of
different types) it is possible to measure the redshift distortion parameter 3 in each k- and
redshift-bin in a model-independent way, with an accuracy that is not limited by cosmic vari-
ance.

Here, model independent means that the constraints on the band power spectra P o and
on the redshift distortion parameters 812 do not depend on the background expansion rate,’
nor on the evolution of perturbations, nor on the initial conditions, and therefore apply to
any cosmological model in the linear regime. We have found that if the SNR is much larger
than unity (of the order of 10 or more, depending on 3), the § parameters for two tracers can
be estimated with significantly more accuracy compared with the case of a single (combined)
tracer, thereby allowing an accurate estimate of the bias ratio b /by for two species. Based
on extensive numerical evidence, we conjecture that the two-tracer approach is always more
constraining than the single-tracer one. Numerical results for any combination of parameters
can be easily obtained by running a publicly available code (see footnote 2).

Although our computations were performed in the context of the galaxy power spectrum
in the flat-sky (or distant observer) approximation, where the effects of redshift distortions
are encapsulated in the Kaiser term (1+ 3p2)?2, the result should remain valid also in full-sky
surveys such as Euclid (as long as we stay in the linear regime), where the same signal would
be found in the ratios of the angular power spectra of the different tracers.

In addition to the redshift distortion parameters (5, by comparing the redshift-space
distortion pattern of different tracers we can also measure the velocity dispersion of galaxies
in collapsed structures — the “Fingers-of-God” effect [46]. In particular, the scale-dependent
signature of redshift distortions in the non-linear regime might be especially useful to dis-
entangle these parameters from the shape of the spectrum as well as the growth rate in
the linear regime. We are now exploring this new window into the small-scale clustering in
redshift space.

3At least as long as one has a good estimation of the Hubble function and the angular-diameter distance
through supernovae and BAO, as we discussed at the end of section 3.
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