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Abstract. The non-resonant conversion of Cosmic Microwave Background (CMB) photons
into scalar as well as light pseudoscalar particles such as axion-like particles (ALPs) in the
presence of turbulent magnetic fields can cause a unique, spatially fluctuating spectral distor-
tion in the CMB. We use the publicly available Planck temperature maps for the frequency
channels (70-545 GHz) to obtain the first ALP distortion map using 45% clean part of the
sky. The 95" percentile upper limit on the RMS fluctuation of ALP distortions from the
cleanest part of the CMB sky at 15 arcmin angular resolution is 18.5 x 1076, The RMS
fluctuation in the distortion map is also consistent with different combinations of frequency
channels and sky-fractions.
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1 Introduction

Distortions in the blackbody spectrum of Cosmic Microwave Background (CMB) are expected
from several physical effects like thermal Sunyaev-Zeldovich (y-type distortion) in clusters of
galaxies, Silk damping, axions, recombination lines, dark-matter annihilations, dark matter
decay etc. [1-18]. These effects span a wide range of redshifts from z = 2 x 10° to 2z =
0 and are an excellent probe of both the early and the late time cosmic evolution. The
spectral distortions can be spatially isotropic, affecting only the CMB monopole intensity, or
anisotropic with spatial fluctuations in the sky. The CMB spectral distortions arising from
photon-ALPs conversion can also be polarized due to the resonant conversion in the large scale
coherent magnetic field such as that of Milky Way [18] and galaxy clusters. The non-resonant
photon-ALPs conversion due to the small scale magnetic field of Milky Way, galaxy clusters
and voids can produce unpolarized spectral distortion in CMB [18]. The most stringent full
sky observational constraints on the monopole part of the CMB spectral distortions come
from the Cosmic Background Explorer-Far Infrared Absolute Spectrophotometer (COBE-
FIRAS) [19-22] with a 20 upper limit on the y-type distortion of y < 15 x 1075 and on the
u-type distortion of 1 < 9x 1075, The Planck experiment with its multiple channels and wide
frequency coverage, has allowed us for the first time after COBE to study and constrain other
types of spectral distortions near the peak of the CMB spectrum. Since Planck, unlike COBE-
FIRAS, does not have an absolute calibrator, we can only study the spectral distortions which
are anisotropic. The spatially fluctuating y-type spectral distortions have been measured in
clusters [10-17], an upper and lower bound on the average distortions was obtained from
the Planck data in [23] and an upper bound on the anisotropic p-type distortions from non-
Gaussianity [24] was obtained from the Planck data in [25].

In this paper, we study the spectral distortions that can originate from the non-resonant
photon ALP conversion [18] (Axion Spectral Distortion (ASD)) in the presence of stochastic
magnetic fields. This process can induce an unpolarized CMB spectral distortion signal
that fluctuates spatially and has a spectral shape that is different from the other known
spectral distortions. This new scheme enables to probe the existence of ALPs in nature over
a vast range of masses (m, < 107'1eV). ALPs are potential candidates for cold dark matter
and are predicted by string theory scenarios [26]. Several ground based experiments such
CAST [27], ALPS-II 28], MADMAX [29], ADMX [30], CASPER [31] are searching for ALPs.
The method explored in this work is an independent method to detect ALPs using spatially
varying spectral distortion signal in the blackbody spectrum of CMB. Using the frequency



Figure 1. Internal Linear Combination Map of Axion Spectral Distortion (ASD) amplitude P(y — a)
(See eq. (2.5)) for fao, = 0.45 obtained from the six Planck-2015 temperature maps from 70 to 545
GHz. The details are provided in the results section.

spectrum of the ASD signal, we obtain the ASD sky map (shown in figure 1) using the
Internal Linear Combination (ILC) component separation method [32] on multi-frequency
Planck sky maps (70-545 GHz) smoothed to a common resolution of 15 arcmin.

The ASD signal depends strongly on the structure of the magnetic field and inhomo-
geneities in the electron density. We therefore need independent constraints on the 3—D
structure of electron density and magnetic fields to translate the bounds on the ASD into
constraints on Photon-ALPs coupling. We will use simple idealized models of magnetic field
and electron density to derive joint bounds on the Photon-ALPs coupling, magnetic field and
electron density. The polarized spectral distortions in the polarized sky maps from Planck
can be used to provide a bound on the photon-axion coupling strength in a narrow mass
range of ALPs, 10713eV < m, < 107" eV. We leave the analysis of polarized ASD for
future work.

2 Mechanism

The conversion of the photons (A, Ay) into axions (a) in the presence of external magnetic
field can be expressed by the differential equation [33-35]
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wH+ | 0 A AV, | +10, A, | =0, (2.1)
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where, we have assumed that the photons are propagating in the z-direction and,
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where g, is the photon-ALP coupling strength, w, = [4mane/(me)]'/? is the plasma fre-
quency, m. is the mass of electron, n. is the electron density, m,, is the mass of ALPs, B, , is
the magnetic field along the direction x or y and ny is the density of the hydrogen atoms. We
neglect Faraday rotation. For homogeneous magnetic field and electron density, the above
equation reduces to the simple form [33-35]

s 2
m sin?(Aoscs/2), (2.3)

where A2 . = (A, — A)? +4A%a and s is the length along the line of sight. The mixing angle
6 can be defined as sin(20) = 2A,/Assc. For the case of inhomogeneous magnetic field and
electron density, we need to solve eq. (2.1) along the line of sight, to calculate the probability
of conversion.

It is possible to obtain approximate analytical solutions for Milky Way, galaxy clusters
and voids in the limit of stochastic magnetic fields with electron density changing slowly

compared to the magnetic fields such that the adiabiticity parameter ~v,q = |§${§| < 1[18]
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where Br is the magnetic field transverse to the line of sight in the domain of size d and R
is the typical size of the region being considered (Ry and R corresponds to the typical size
considered for voids and galaxy clusters). In the above equation we have used the value of
magnetic field which are consistent with the recent observations from synchrotron emission
map and rotation measures [36, 37] and for galaxy clusters, the value of magnetic field are
inferred from the Faraday rotation [38].

The above equation shows that the photon-axion coupling strength g., is degenerate
with astrophysical parameters like B, R and d. The change in the intensity of the CMB is
given by
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where, x = hv/(kpTcms), Toms = 2.7255 K and h, ¢, and kp are Planck’s constant, speed of
light and Boltzmann constant respectively. In eq. (2.5), P(y — a,p) = «(p) is the amplitude
of the distortion along the direction denoted by p. The direction dependence of P(y — a,p)
in the above equation arises due to the direction dependence of the magnetic field strength.
All our results will be for this amplitude which varies over the sky while the shape of the
distortion is fixed.

The spatially fluctuating spectral distortions of the CMB can be measured by ex-
periments without an absolute calibrator but having multiple frequency channels, such as
WMAP [39] and Planck [40].

3 Component separation for the axion spectrum

The Planck satellite measured the differential sky intensity in nine frequency channels cover-
ing the frequency range 30-857 GHz. The sky signal is a combination of several components
including Galactic foregrounds (like synchrotron, free-free, AME, galactic dust), CMB, ther-
mal Sunyaev-Zeldovich (tSZ) [1, 2], and Cosmic Infrared Background (CIB). A number of
algorithms have been developed over the past decades to separate the observed sky signal
into different components [32, 41-50].

In this analysis, we consider six frequency channels (70,100, 143,217, 353,545 GHz) to
obtain the sky-map for the ASD signal. Channels below 70 GHz and above 545 GHz are highly
contaminated by synchrotron emission/AME, and dust respectively. So, we only consider
these six channels in this analysis. These six frequency channels are also not completely
clean and are dominated by foreground contaminations in the galactic plane. There are
also point source contaminations of both galactic and extragalactic origin. We will use
the ILC algorithm to separate the axion distortion from other cosmological and Galactic
components [46, 51]. In order to remove the worst Galactic and point source contamination,
we apply a mask on the full sky map and use only partial sky in the analysis. We consider
two different masks having usable sky-fraction fg., = 27% and 45% [25], created specially to
search for new spectral distortions in the Planck data. The masks are publicly available [52].
The 45% mask is shown in figure 1.

These masks remove the point source contaminations (tSZ, CO line emission) along
with the most contaminated region of the Galaxy. The Planck frequency sky maps are in the
CMB temperature units (Kcwmp) except for 545 GHz map which has units of MJy/Sr and
which we also convert into Kcyp units [53]. The different frequency channels also have a
finite transmission bandwidth (w, (")) [54]. So in order to extract the signal with a particular
spectrum, we need to convert the spectrum from intensity to Kcyp units in the particular
frequency band by integrating over the transmission function, using the relation [55]

/ /
ATP(v) = ff :ju . >)6;’/V  [in wnits of Kcup), (3.1)
where, I'P!(v) = 8[2 @) and B € {CMB, ASD, y-type distortions (SZ), u-type}. The bandpass
corrected frequency spectrum of the ASD, CMB and SZ are shown in figure 2 along with the
frequency bands used in the analysis.
The observed sky signal at different frequencies (S,,) can be modeled in terms of the
multiple components as

S(p) = Ax(p) +n(p), (3.2)
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Figure 2. Frequency spectrum of the non-resonance photon-axion signal (in blue), y-type distortion
for y = 0.1 (in red) and CMB fluctuation for AT = 1Kpp (in magenta) are plotted in thermodynamic
temperature units (Kcmp) using eq. (3.1). The grey bands indicate the frequency channels used in
this analysis and the central frequency is mentioned in the top.
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here A is the mixing matrix [a1, ag, ..., an| with dimension N x M, where N is the number
of frequency channels and M is the number of components, a; is the spectrum of the "
component, n is the noise at pixel p. The ILC solution for the axion signal with known
spectrum a., is given by the linear combination of the input maps [46, 51]

a=WIS(p). (3.3)

where, W,4(v) = Cglaw(azacglaw)*l and Cg = (SST)! is the covariance matrix of the
data inferred from the masked sky maps. We have subtracted the global mean of unmasked
pixels from each map before performing ILC i.e (S) = 0.

4 Results

Applying the above mentioned component separation method to half ring? maps, we obtain
the half ring ALP distortion maps using 70-545 GHz sky maps of Planck, all smoothed to a
common angular resolutions (15 or 20 arcmin) and combine them to get the half-ring-half-
sum (HRHS) and half-ring-half-difference (HRHD) maps. The HRHS map includes both
signal and noise, whereas the HRHD gives the noise estimate in the HRHS map.

The HRHS map for sky fraction 45% is shown in figure 1. We plot the 1-D Probability
Distribution Function (PDF) in figure 3. There are a significant number of pixels above the
Gaussian HRHD noise PDF making the HRHS PDF broader with a significant positive tail.
All (or most) of the signal is contamination from other components such as CMB, SZ, dust as
well as unresolved point sources. As a result this map is only an upper bound on a-distortion.
For fay = 27% and fgo, = 45% with 15 arcmin smoothing scale, the 95" percentile upper
limits from HRHS maps are 17.3 x 1076 and 18.5 x 1079 respectively. These bounds are

!The angular bracket denotes average over pixels.
?Half ring maps are the Planck maps produced from the first (or second) half of the pointing period.
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Figure 3. The 1-D probability distribution function of the masked HRHS and HRHD maps are

depicted for two fey values. The HRHS maps contain contamination from other components. The
HRHD maps contain only noise and are close to the expected Gaussian distribution.

fexy | smoothing scale (in arcmin) | 70-545 (GHz) of\g | 100-545 (GHz) ofys
0.27 15 10.3 10.7

20 7.9 8.1
0.45 15 10.6 11.1

20 8.1 8.3

Table 1. 08,q in units of 107°.

conservative upper limits on the ASD signal which include contaminations from instrument
noise as well as astrophysical and cosmological signals.

Assuming that the signal is dominated by contamination from other components, we can
put an upper limit to the RMS ALPs distortions, ofyg, after removing the noise contribution,
o8us = (0Brus —0hrup) /2 The upper limits on the ALPs distortion for different resolutions
is shown in table 1.

These constraints are obtained by only using the frequency spectrum of the ASD signal
and without assuming any model of electron density and magnetic field. However, in order
to convert these constraints into constraints on photon-axion coupling strength g,,, we need
a model of the turbulent electron density and magnetic field of our Galaxy. A further compli-
cation is that these constraints are for the fluctuations of the ASD (RMS) i.e. fluctuation of
probability of conversion defined in eq. (2.4) and not the average ASD. With the assumption
that the fluctuations in the signal are of the same order as its average value [36], we can
translate the 1 — of,;g bound on ASD into a bound on g,.. For a typical ofyg S 107°

translates into a bound on photon axion coupling of g a < 1079 GeV~! for Milky Way using

~
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Figure 4. The angular power spectrum D; = (I 4+ 1)C; /27 for HR1 x HR2 for two different masked
sky mask (fay = 0.27 and 0.45).

eq. (2.4). The 1 — ofyg bound obtained from the CMB maps on P(y — a) does not alter
with the change in the magnetic field model and depends only on the spectral shape of the
ASD signal. However, in order to relate the constraints on P(y — a) with g,a, we require a
model of the magnetic field. The measurements of the galactic magnetic field are made with
about 25% — 30% error-bars [36, 37]. So, our bound of g, can vary within the uncertainty of
the magnetic field. The current particle physics bounds from the CERN ALP Solar Telescope
(CAST) is gya < 6.6 x 10711 GeV ! at 95% C.L. [27]. The bound obtained from the Planck
data provides an independent but a weaker bound than the current bound from CAST.

We can also calculate the angular power spectrum of the ASD map providing up-
per bounds on ALPs distortion fluctuations on different angular scales. We calculate the
cross-power spectrum of the half-ring maps using PolSpice [56, 57] with the mask apodised
by a 30 arcmin Gaussian [25]. The power spectrum D; = I(I + 1)C;/2n, where C; =
> ailRLa«HR2 /(9] 4+ 1) and, «yy, is the spherical harmonic transform of the ALP distor-
tion map, is shown (after correction for the effects of mask and beam [57-60]) in figure 4.
The Gaussian error-bars on D; are the analytical estimates obtained using PolSpice [56, 57].

5 Conclusion

In this paper, we provide the first observational constraints on the non-resonant photon-
ALP conversion (or Axion Spectral Distortion (ASD)) using Planck data. The ASD can be
created in the Milky Way when the CMB photons travel through the turbulent magnetic field
in the galactic halo and get converted to light spin-0 particles such as light axion particles
(mqg < Ecmp) or light scalars. Since both the stochastic magnetic field and the electron
density have large fluctuations, the induced spectral distortions will vary on the sky creating
a spatially fluctuating unpolarized spectral distortions. The unpolarized ASD has a unique
spectral shape different from CMB and other known spectral distortions signal such as y-
type distortions.



Using six frequency channels (70,100, 143,217,353,545) GHz of the Planck satellite,
we obtain the sky-map for the ASD using the ILC algorithm. In order to minimize the
contaminations, we mask the most contaminated sky with two different masks having the
unmasked sky fractions 27% and 45%. The sky map of the ASD is shown in figure 1. These
maps are dominated by the residual contaminations from other components. Hence, we can
only provide upper limits on the ASD shown in table 1. These are robust constraints on the
fluctuation of probability of conversion from photon to axion. We expect the fluctuations
of ASD on the sky to be of the order unity since the stochastic magnetic fields as well as
the electron density have large fluctuations in our own Galaxy as well as outside it where
we expect larger contributions from the directions of the nearby voids and smaller distor-
tions from other directions. We can therefore assume that average distortions from our own
Galaxy and nearby voids is of the same order of magnitude as the RMS fluctuations. Under
this assumption the upper limit of 10.6 x 1075 can be translated into combined limits on
GvaBr using eq. (2.4). A future data-driven model of the galactic magnetic field in future will
allow making more precise statements. Future experiments such as Simons Observatory [61],
Simons Array [62], Adv-ACT [63], SPT-3G [62] and proposed missions like CMB-S4 [64],
LiteBIRD [65], CMB-Bharat, PIXIE [66] and PICO [67] will improve these constraints sig-
nificantly. Future CMB experiments having more frequency channels will play a crutial role
in removing the contamination from CMB fluctuations and the galactic foregrounds. For
Planck number of frequency channels is the main limitation. In particular we are limited by
foreground contamination and not by the detector noise. Lower detector noise and higher
angular resolution than Planck will also play an important role to reduce the noise in the
recovered ASD maps and improving the constraints on g,,. The polarization data of Planck
(and also of ground based experiments), is capable of imposing constraints on the resonant
photon-axion conversion [18], which can directly constrain the photon-axion coupling g
given a model of the Galactic magnetic field. We will address the polarized ASD in a future
analysis by using the Planck-2018 polarization data.
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