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Abstract. We set out to bridge the gap between regular black-hole spacetimes and obser-
vations of a black-hole shadow by the Event Horizon Telescope. We explore modifications
of spinning and non-spinning black-hole spacetimes inspired by asymptotically safe quantum
gravity which features a scale dependence of the Newton coupling. As a consequence, the
predictions of our model, such as the shadow shape and size, depend on one free parameter
determining the curvature scale at which deviations from General Relativity set in. In more
general new-physics settings, it can also depart substantially from the Planck scale. In this
case, the free parameter is constrained by observations, since the corresponding curvature
scale is significantly below the Planck-scale. The leading new-physics effect can be recast as a
scale-dependent black-hole mass, resulting in distinct observational signatures of our model.
As a concrete example, we show that two mass-measurements, extracted from the size of the
shadow and from Keplerian orbital motion of stars, allow to distinguish the classical from the
modified, regular black-hole spacetime, yielding a bound on the free parameter. For spinning
black holes, we further find that the singularity-resolving new physics puts a characteristic
dent in the shadow. Finally, we argue, based on the underlying physical mechanism, that the
effects we derive could be generic consequences of a large class of quantum-gravity theories.
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1 Motivation

The true nature of black holes, either those located at essentially all centres of galaxies [34]
or their stellar mass counterparts [122] is an exciting question that brings us to the limit of (if
not beyond) our understanding of the inner workings of gravity. Quantum gravity is expected
to strongly modify the geometry of spacetime in the interior of black holes, where classical
solutions feature singularities. Quantum-gravity effects in black-hole spacetimes have been
explored, e.g. in [11, 22, 24, 25, 67-70, 86, 89, 111, 112, 131, 134]. Moreover, proposals for
singularity-free black-hole-like spacetimes have been made, e.g. in [17, 53, 54, 85]. In these
cases, the metric is strongly modified close to the classical singularity, but effects can persist
even outside the horizon.

The possibility to directly image a black hole with the technique of Radio Very-Long-
Baseline-Interferometry [38-43, 51, 62] is an exciting and promising development in gravi-
tational physics. Zooming in on the horizon, will there be detectable imprints of the fun-
damental quantum structure of spacetime? According to a standard power-counting argu-
ment such signatures are highly suppressed by a power of Mp;/M where M is the mass of
the black hole and Mp; the Planck mass, at least for astrophysically plausible black holes
with masses between several tens to several billion solar masses. So, the conservative answer
would be “no”. Yet, the possibility of quantum-gravity effects at the horizon has been raised,
e.g. in [6, 44, 75, 76, 84]. In particular, for extended objects like black-hole horizons, a sim-
ple power-counting argument based on the local curvature might be misleading. Moreover,
given that singularities plague black-hole spacetimes in General Relativity, some form of new
physics must exist to resolve these, not necessarily being quantum gravity. This motivates us



to explore quantum-gravity inspired models while keeping the scale at which deviations from
(General Relativity) GR set in as a free parameter. However, in order to confront theoretical
models with the data, we first need to know what we are looking for. In the classical case,
the image of a black hole has first been studied, e.g. in [18, 88, 104, 143]. To construct the
quantum analogue, potential consequences of quantum gravity for the spacetime geometry
close to the horizon have yet to be understood even qualitatively.

Game-changing detections of gravitational waves [1] and the groundbreaking observa-
tions of the first image of M87* by the EHT [38-43] now enable observational probes of
the metrics of the most compact objects in our universe. This provides access to a com-
pletely different regime of gravity than the well-tested weak-field regime, e.g. in the solar
system, where GR has been tested extensively [150]. In contrast, both the origin of the de-
tected gravitational-wave signals as well as the radio-emission detected by the EHT lie in the
strong-field regime, where curvature effects become significant. A clear prerequisite for tests
of GR based on EHT observations, as advocated in [30, 45, 61, 92, 93, 95, 120, 121, 152], is
the development of model-predictions from modifications of GR, some of which might be of
quantum origin. Specifically, the observable we focus on is the shape and size of black-hole
shadows, which has become visible in images of horizon-scale structures [38-43]. A black hole
by itself does not emit any light — by construction. It also blocks a significant portion of light
emitted behind the black hole. The resulting darkness contrasts against any otherwise bright
background emission. Moreover, the strong bending of light rays by the black hole generates
a luminous ring of light demarcating the shadow. The shape and size of the shadow can be
calculated given a form of the metric describing the black-hole spacetime. Due to the no-hair
theorem, the mass and spin of the black hole are the only two parameters determining shape
and size of the shadow in GR. In this case, the black-hole shadow is nearly circular in shape
even for rapidly spinning black holes [120]. In alternative theories of gravity, richer structures
are possible [31, 32, 94]. Shadows in modified theories of gravity have been studied for Chern-
Simons gravity [7, 115], in Randall-Sundrum-type braneworld models [8] (also with cosmolog-
ical constant [60]), in Scalar-Tensor-Vector-Gravity [109, 145] and tensor-vector gravity [140],
Einstein-dilaton-Gauss-Bonnet gravity [14, 47], Einstein-Maxwell-dilaton-axion gravity [146],
Einstein-Born-Infeld gravity [13] and conformal gravity [110]. Further, the shadows of super-
extremal Kerr black holes [16] and Kerr-Newman-NUT spacetimes [83] as well as Kerr black
holes with scalar hair [46, 142] have been explored. Regular spacetimes have been studied
in [3, 9, 133, 138]. The shadow of non-commutative-geometry inspired black-hole spacetimes
has been investigated in [147]. As an alternative to separate studies within distinct gravity
theories, one can parameterise a more general metric than the Kerr metric, providing a way
to constrain more than one theory of gravity at the same time [91, 100, 130, 152]. For actual
comparisons with EHT observations, it is necessary to realistically model the dynamics of
infalling matter, e.g. using GRMHD simulations [107].

Until now, no such predictions from asymptotically safe gravity [123, 149] are available
and we set out to close this gap. The theory is based on the well-tested quantum-field
theory framework which can successfully describe the three other fundamental interactions
of nature, and extends it to include gravity. Further, it respects the observational evidence
that the gravitational dynamics can be formulated purely in terms of the metric field by
promoting the metric to a fundamental quantum field. Motivated by this conservative nature
of asymptotically safe gravity, we explore asymptotic-safety inspired black-hole spacetimes
to derive shape and size of the black-hole shadow. The key idea explored in this work
consists in the onset of quantum-gravity effects and resulting modifications of the spacetime



at large curvature scales. As one might expect, Planck-scale modifications of GR cannot be
constrained by the EHT observations.

While the specific black-hole spacetimes we analyse are motivated by an approach to
quantum gravity, we take a broader view in which the modifications of GR are not necessarily
tied to the Planck scale. Remaining agnostic about the type of new physics that sources the
singularity-resolving modifications, we derive bounds on the new parameter determining the
size of the deviations from GR.

This paper is structured as follows. We provide an introduction to asymptotically safe
quantum gravity and explain how to set up asymptotic-safety inspired black-hole spacetimes
in the spherically symmetric and axisymmetric case in section 2. We review how to calculate
the shadow of a black hole in section 3 and present our results in section 4, where we also
interpret the physical mechanism underlying the resulting deformation of the shadow com-
pared to the classical case. We further broaden our view beyond quantum gravity as the new
physics that leads to singularity resolution and explain how to constrain a wider parameter
space in our model. In section 5, we summarise our key findings and argue that qualitatively
similar effects could be a generic consequence of a large class of quantum-gravity theories.

2 Black holes in asymptotically safe gravity

Quantum fluctuations of spacetime result in a scale-dependence of the gravitational inter-
actions. Thus, unlike in classical gravity, the Newton coupling is not a simple constant,
but changes as a function of scale due to the impact of quantum fluctuations, just like the
other fundamental interactions of nature “run” as a consequence of quantum fluctuations,
(as for instance in QCD). In quantum field theories, such a scale dependence can termi-
nate in an unphysical infinity, a so-called Landau pole, which implies a breakdown of the
quantum-field theoretic description at the corresponding finite scale and requires some form
of new physics. Under one condition, such poles can be avoided, rendering the quantum field
theory a viable description up to arbitrarily microscopic scales. This condition consists in an
enhanced symmetry, namely quantum scale-invariance: in such a scale-invariant regime, the
dynamics do not depend on the scale, allowing one to zoom in up to arbitrarily small scales
without running into any inconsistencies. The simplest form of quantum scale invariance is
asymptotic freedom, which consists in the absence of interactions in the microscopic regime.
While it plays a central role for the Standard Model of particle physics, asymptotic freedom
cannot be achieved in quantised GR due to its infamous perturbative nonrenormalisabil-
ity [80, 135, 139]. Historically, this result led to the development of alternative descriptions
of quantum gravity, including, e.g. string theory and loop quantum gravity. Yet, just as
for other fundamental interactions, an alternative to asymptotic freedom could exist also
for a quantum field theory of the metric, namely asymptotic safety. In an asymptotically
safe setting, dimensionless coupling strengths become constant beyond the transition scale
to the scale-invariant regime, realising quantum scale invariance in the presence of residual
interactions. For dimensionful interaction strengths, such as the Newton coupling, quantum
scale-invariance implies that they scale canonically with the Renormalisation Group (RG)
scale k. This ensures that the dimensionless counterpart of these interactions (constructed
by multiplication with appropriate powers of k, is constant instead of changing with k) just
as it has to be in a scale-invariant setting, see eq. (2.1) for the Newton coupling.

Thus, the key idea of asymptotically safe gravity [149] is that quantum scale-symmetry
holds beyond a microscopic transition scale, typically assumed to be the Planck scale. This



requires quantum fluctuations to be antiscreening, such that the dimensionless counterpart
of the Newton coupling becomes constant beyond the Planck scale, g(k) = G (k)k? = const.
For the dimensionful Newton coupling, the antiscreening by quantum-gravity fluctuations
results in a fall-off

NOES- (2.1)
beyond the transition scale to the fixed-point regime. Herein g, is the asymptotically safe
fixed-point value. A consequence of eq. (2.1) is an effective weakening of gravity in the far
ultraviolet. Heuristically, this is just what one would expect for a quantum theory of gravity
that is capable of resolving the singularities present in classical gravity.

Compelling indications for the existence of an asymptotically safe regime in quantum
gravity have been found [19, 21, 36, 37, 52, 59, 63, 66, 77, 101, 102, 124], see [117, 127] for intro-
ductions. Unexpected potential implications for particle-physics phenomenology have been
found in [57, 58, 132], for recent reviews containing a discussion of open questions see [55, 56].

The full dynamics of gravity in the far UV in asymptotic safety includes terms beyond
the Einstein-Hilbert action [21, 36, 66, 77]. For the purposes of our paper, we will limit
ourselves to a simplified setting and explore the scale-dependence of the Newton coupling
for black-hole spacetimes as an expected leading-order effect of asymptotically safe gravity.
The effect of a cosmological constant has been explored in [5, 97, 98, 116], where an RG
improvement considering a canonical scaling of the cosmological constant in the fixed-point
regime leads to the reintroduction of a singularity. Yet, an IR value of the cosmological
constant, as required by cosmological observations, is compatible with a vanishing fixed-point
value, such that the cosmological constant might not play a role for the structure of the black-
hole spacetime in the vicinity of the classical singularity, as analysed in [5]. We follow [5]
in constructing RG-improved Schwarzschild and Kerr spacetimes and treat the cosmological
constant as an IR scale that can be neglected in our setting. The impact of higher-order
curvature terms, as expected from asymptotic safety, on the black-hole shadow will be studied
elsewhere [87]. In exploring the impact of a scale-dependent Newton coupling on black-
hole shadows, we make the key assumption that those indications for asymptotic safety in
gravity collected in the Riemannian regime (with the exception of [105]) are applicable to
the Lorentzian regime.

To upgrade the classical black-hole spacetimes to modified, “asymptotic-safety inspired”
black-hole spacetimes, we focus on the scale dependence of the Newton coupling, generated
by quantum fluctuations
— GO
1 + 7y Gokﬁ2 ’

Here, GGy is the classical value of the Newton coupling, and v > 0 is the inverse dimensionless
fixed-point value (y = g; 1), i.e. the square of the inverse transition scale to the fixed-point
regime, measured in Planck units. In a simple approximation, the scale comes out as roughly
the Planck scale, but upgrades including the impact of quantum-fluctuations of matter show
that =1 can vary [52]. k is the Renormalisation Group scale, i.e. an energy scale that can
loosely be interpreted as the inverse resolution scale of the theory: for low k, one probes the
classical regime of the theory, whereas one enters the quantum regime for k2Gy > v~ !. In
other words, v~ ! is the transition scale to the quantum regime in units of the classical Planck
mass, cf. figure 1. For the remainder of this paper, we treat v as a free parameter.

Hints that the fall-off of the Newton coupling due to antiscreening quantum fluctua-
tions in the UV could indeed lead to singularity-free black-hole spacetimes have been found

Gn(k) (2.2)



0.50¢1

Z

O 0.10¢
0.05}
0.01— ‘ ‘ —— ‘
1070 1077 10 0.001 0.100 10
k2
Mp?

Figure 1. Running Newton coupling in units of the classical Planck mass for v = 1 (continuous
magenta line), v = 102 (orange dashed line) and v = 10* (red dotted line). The classical regime with
Gy = const and the quantum regime with Gy ~ k2 are separated by the transition scale v~ Mp).

in [5, 24-29, 64, 65, 97-99, 103, 116, 118, 136, 137]. In these works, the key idea is to inves-
tigate an effective metric that should be understood as the expectation value of the metric
in the quantum theory. Starting from the classical metric, e.g. Schwarzschild or Kerr, the
RG-improved metric is constructed following two steps. Firstly, the Newton coupling in the
metric is replaced by its scale-dependent counterpart which encodes the effect of quantum
fluctuations of gravity. Secondly, the Renormalisation Group scale k£ that the Newton cou-
pling depends on is identified with a physical scale of the classical spacetime. This results
in a modified metric, which is a solution to the Einstein equations with an effective energy-
momentum tensor. The interpretation of the latter is that it encodes the quantum-gravity
contributions at an effective level.

We stress that this procedure it not a strict derivation from asymptotically safe gravity.
Instead, it makes two crucial assumptions: (i) The full dynamics of the theory is truncated
to an Einstein-Hilbert term. (ii) Quantum effects are included by taking into account the RG
scale dependence of the Newton coupling, and making the assumption that a physical scale
of a classical black-hole spacetime can be identified with the RG scale. Overall this results
in asymptotic-safety inspired models for regular black-hole spacetimes.

2.1 Improved Schwarzschild spacetime

To upgrade the classical solution by the quantum-induced scale dependence, we identify k
with the curvature scale to some appropriate power. For the classical Schwarzschild case, the
Kretschmann scalar is

48G2 M?
K = % (2.3)
On dimensional grounds, we choose
k2 = K3, (2.4)



with a dimensionless o of order one. It is convenient to choose ov = 48/2 (such choices can
be reabsorbed in the free parameter =), such that

MG

2 _

k* = 3 (2.5)

This results in the following “upgraded” line element
ds® = —f(r)dt* + f(r)"dr? + r2d0?, (2.6)

with
2M 1
f(r) =1- 2MGN(T) =1- M2 ) (27)
T r Pl 1 + ,y <M{4\147.3>

where we have set Gy = M1;12 in the second step, i.e. we work in natural units. Due to the
scale-dependence of G, working in units with Gg = 1, as typically done in GR, is not suited
to our setting. In natural units the gravitational radius is given by ry = M/ Mgl. We measure
all radial distances in units of r,.

Further, we absorb a factor of M? defining

(2.8)

By working with 7, all our results apply to arbitrary ratios of M /Mp;. Here, we already an-
ticipate that in a more general new-physics setting, one possibly needs to explore significantly
larger ~.

With these definitions, the function f(r) in the line element simplifies to

27"2/7"3

r)y=1— —w——5—"—. 2.9
=1 s (29)
Note that the corresponding spacetime is regular and retains a horizon whose location is

given by

1 8)(21/3 _ _ — 1/3
rarfrg=g |4+ Ly 2 (16—27'y+3\/372(—32+27’y)) .
(16—27&+3\/3'32(732+2H))

(2.10)

In the limit 4 — 0, where the modifications are switched off, ry approaches the value of
the Schwarzschild solution, rg — 271y, as expected. In particular, this limit is approached
for M > Mp; at fixed v. The horizon shrinks as 4 is increased, cf. figure 2. For all 7,
the quantum-gravity inspired black-hole solution has a smaller horizon than its classical
counterpart. The difference becomes more pronounced as « is increased, i.e. the onset of
quantum-gravity effects is pushed towards lower curvature scales.

The RG-improved line element takes a de-Sitter-like form for small r, implying a second
zero of f(r) below the outer horizon. As ¥ is increased, the two zeros of f(r) move toward
each other and annihilate at a critical Jeit = 32/27, such that the remaining object no
longer features a horizon [25]. For the remainder of this paper, we focus on smaller values of
¥ < Aerit, where no such drastic modification of the causal structure of the spacetime occurs.
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Figure 2. We show the radial coordinate of the horizon as a function of ¥, see eq. (2.10).

In appendix B we discuss additional features of the shadow in the axisymmetric spacetime,
which occur just before the horizon disappears. For even larger spin or larger 4 the horizon
disappears and leaves behind a horizonless compact object. Understanding simulated EHT-
images for such horizonless spacetimes is an intriguing future question that is beyond the
scope of this work.

2.2 Improved Kerr spacetime

Astrophysically, black holes (supermassive or stellar-mass ones) are formed in non-spherical
systems, either from rotating gas clouds, binary mergers, or violently exploding massive stars.
Observationally, there is growing evidence for non-zero black-hole spin as indicated, e.g. by
measurements of the F'e K« emission line profiles [128, 129]. Independently, the recent LIGO
detections [1, 2] of GWs strongly favour black holes with non-zero spin. More generally, even
if two merging black holes had vanishing initial spins, they would form a Kerr black hole
of spin a ~ 0.697, [119]. Moreover, one of the leading models to explain jet formation, the
Blandford-Znajek mechanism [23] demands non-zero black-hole spin and fuels the jets by
energy extraction from the ergosphere via magnetic fields. Finally, the EHT observations in
conjunction with the jet-power estimates provide indications for a non-zero spin of M87* [42].

This strongly motivates us to take a step beyond spherical symmetry, and consider
the asymptotic-safety inspired upgrade of the Kerr spacetime. The classical line element in
Boyer-Lindquist coordinates is given by

A, — a2 sin(6)?2 2 2 4 12)2 _ g2 A sin(6)2
ds? = B =@ sm) o Kdr? + 08 + )" = A SO G 0)2 g2
p T p
2(a* +r? — A,
_ 2a +;2 ) o sin(0)? dt-do>. (2.11)

Herein, the specific angular momentum is given by a = J/M and lies between 0 and 7.
Further, we use

p? =12 +a’cos? 0, (2.12)
A, =712 +a®>—2GNy M. (2.13)
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Figure 3. Left panel: we show the classical location of the outer horizon (dashed lines) and the
quantum-improved case (continuous lines) for v = 0.05 from top to bottom for a = 0.r, (red),
a = 0.5r, (orange), a = 0.7r, (green), a = 0.8r, (blue) and a = 0.957, (magenta). Right panel:
location of the outer boundary of the ergoregion in the same cases.

The corresponding classical Kretschmann scalar which forms the basis for our scale identifi-
cation takes the form
48GEM?
(r2 + a2 cos(6)2)6
To date, all RG improvements of the Kerr solution have used a spherically symmetric scale
identification [103, 116, 125, 126]. Yet the curvature actually only diverges in the equatorial
plane, and accordingly grows in a #-dependent fashion, as one approaches the singularity.
This suggests that singularity-resolving quantum effects should be strongest in the equato-
rial plane. Our curvature-informed RG improvement will therefore exhibit an angular depen-
dence, in addition to the radial dependence, as in the Schwarzschild case. Intuitively speaking,
ingoing geodesics at different angles thus differ in their sensitivity to quantum effects.
Following a dimensional argument, we would again identify

k> :aK(r,G,a)%, (2.15)

and choose o = 48 1/2 for simplicity. However, it is crucial to note that for specific values of
a and 0, the Kretschmann scalar K becomes negative, even outside the horizon. This would
result in an imaginary, and therefore unphysical k2. On the other hand, one would expect
only the magnitude of K to set the relevant scale. This motivates our RG-improvement of
the form

K(r,0,a) = <r6 — 15r%a? cos(0)? + 15r2a’ cos(0)? — a® cos(9)6>. (2.14)

GoM 3
(r2 + a? cos(0)2)3r ’
which corresponds to an identification with the main fraction in the Kretschmann scalar
eq. (2.14), neglecting the #-dependent polynomial. The RG-improved metric outside the
horizon takes the form eq. (2.11) with Gy (k?) and k? as in eq. (2.16). As a consequence of
the RG improvement, the black-hole spacetime is regular. The RG-improved axisymmetric
spacetime reduces to its spherically symmetric counterpart for a — 0, as it should.

As in the Schwarzschild case, the horizon lies at lower values of r. Additionally, it
exhibits a #-dependence that becomes more pronounced as the deviation from spherical sym-
metry grows, i.e. as a is increased, cf. upper panel of figure 3. Due to the fall-off of the
RG-improvement effect with radial distance, the modification to the boundary of the ergore-
gion is smaller, cf. lower panel of figure 3. As a consequence, the ergoregion for the RG
improved black-hole spacetime is slightly larger in volume than in the classical case.

k? = (2.16)



3 Methods

Generating an image of the horizon as seen by a distant observer requires tracing light rays
through the corresponding black-hole geometry. Pioneering first approaches evolved geodesics
forward in time from source to observer and considered radiative transfer from optically thick,
geometrically thin accretion disks [18, 48]. [104] first traced geodesics backwards in time from
observer to source, which, in the case of homogeneous and non-localised sources, is far more
efficient for a typically very localised observer. We will use similar techniques here. More
recently, efficient methods [20, 141] for ray tracing involving both a localised source and
localised observer have also been developed.

3.1 Geodesic equation

In a given spacetime the trajectories of light rays are governed by the null geodesic equation

A2z - 0 dzt dx¥

d\2 M gN d)

(3.1)

where z” is the position of the photon; A is an affine parameter parameterising the photon’s
world line; and I'}, is the metric-compatible Christoffel connection. We implement the
geodesic equation (3.1) as eight coupled first-order ordinary differential equations

dzx” dk?

— =k, —=-TP EkFE". 3.2

dA dA e (3:2)
For the purpose of this paper, I'f,, are given in analytical form and since computation
time is not critical, we use the native numerical integration techniques available in
Mathematica [151].

3.2 Camera setup & image

We position a distant virtual camera far away from the black hole where the geometry is well-
approximated by flat spacetime. We will optimise this distance with respect to precision and
computation time in the following section. The coordinates of the origin of the image plane in
Boyer-Lindquist coordinates are given by (rcam, %, ¢cam). The image plane itself is spanned by
two Cartesian coordinates (z,y). Each point in this image plane can be expressed in Boyer-
Lindquist coordinates (r, 6, ¢) of the black-hole spacetime by the following transformation

=0+ \/(02+a2Z2)1/2, cos =Z/r, tanp =Y/X, (3.3)

where 0 = (X?+Y?+4 7% —a?) /2. Here, (X,Y,Z) are Cartesian coordinates centred
around the black hole. They are in turn related to the image coordinates (z,y) by

X =D coS peam — T SiN Peam , (3.4)
Y =D sin ¢cam + T €OS Gcam , (35)
Z = Tcam c0s(i) + y sin(7) , (3.6)

where D = sin(i)\/12,,, + a® — y cos(i).
All the light rays are initialised perpendicular to the screen in which case their initial
momentum vector can be calculated by differentiating egs. (3.3).



We parameterise the shadow boundary in the x — y image plane by its radial distance
from the origin p(¢) in the image plane as a function of the angle ¢ between the z-Axis and
the radial vector, cf. figure 7. The resulting shadow boundary is determined by bisecting
nested radial intervals for each 1: depending on whether the light ray crosses the horizon
(and metric components in Boyer-Lindquist coordinates diverge), or escapes to large radii,
the outer or inner interval is chosen for the next iteration.

To obtain the intensity distribution generated by a homogeneous background source,
we employ the affine-parameter emissivity approximation [50]. We normalise the resulting
intensity to the image point with the smallest affine parameter.

3.3 Error control

We use the deflection angle ¢ in the equatorial plane as a benchmark value for our error
control. In classical Kerr spacetime this angle can be obtained from an analytical form with
arbitrary precision [90]. In controlling the initial-data error, the discretisation error (due to
a finite stepsize), and the computational errors due to finite numerical precision, we rely on
standardised and well-known error control of the native ODE-solver, i.e. [151].

Additionally, there is an error due to the finite radial camera distance. At large distance
Tcam > Tg all investigated black-hole metrics converge to flat space. In this regime, the
dependence of the deflection angle 9 on the radial distance is therefore expected to obey the
functional form

ﬁﬁt(rcam) = 190 - b/rcam . (37)

We fit this function to a series of data points obtained at increasing values of rc,pm, to determine
the parameters 9 and b. Specifying a chosen maximal error AY = Jg¢(rcam) — Yo determines
the required radial distance rcam(A¥). In appendix A, we apply this procedure to fit the
exact known result for Kerr spacetime. The exact form for 6 in the equatorial plane allows
us to also benchmark the required numerical precision. In appendix A, we also demonstrate
the radial distance error control for an explicit deflection angle in the equatorial plane of the
RG-improved spacetime.

Kerr-like spacetimes exhibit three constants of motion: the energy E, the angular mo-
mentum along the black-hole rotation axis Lz, and the celebrated Carter constant Q [33].
We use the conservation of energy and the angular momentum as independent checks of our
numerical error.

4 Results

We have motivated the RG-improved metrics for the spherically symmetric and axisymmetric
case from asymptotically safe gravity. Yet, quantum gravity is just one specific candidate
for new physics leading to singularity resolution. From a more agnostic point of view, the
study of singularity-free, black-hole like geometries should proceed from a vantage point
independent of one specific theory. In the present context, this implies that the parameter
~ is not required to be close to 1, as the scale where modifications set in need not be tied
to the Planck scale. Thus, it is of interest to constrain the resulting, large parameter space
which can most efficiently be done by strong-field observations. Working with ¥ instead of
the original parameter v allows us to investigate the modifications to shape and size of the
shadow in a black-hole mass-independent fashion, as 4 scales appropriately with M, whereas
the magnitude of the effect decreases at fixed v as M is increased.

~10 -
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Figure 4. Coordinate location of the shadow for the spherically symmetric spacetime as a function
of 4. The classical case is 4 = 0.

4.1 Spherically symmetric black-hole spacetimes and their shadows

We first focus on the spherically symmetric case. We observe that the size of the shadow
decreases as a function of 7, cf. figure 4. Intuitively, this is to be expected: in our setting,
quantum-gravity effects lead to a weakening of the gravitational interaction strength. At a
given proper distance to the centre of the black hole, the escape velocity is lowered compared
to the classical case, as an observer leaving the black hole in their rocket experiences less
gravitational pull in the quantum-improved case. Therefore, the “point of no return” for
any infalling observer lies closer to the centre. Accordingly, weaker gravity leads to a more
compact event horizon.

The modifications of the spacetime resemble that of a classical Schwarzschild black hole
of lower mass. This begs the question whether there is a degeneracy between the classical
Schwarzschild solution of mass M and the RG-improved solution of mass M’ < M. Indeed,
this is the case if the size of the shadow is the only observable that is accessible. Yet, a
comparison of the intensity distributions in the two cases already demonstrates that there
are additional differences, cf. figure 5.

The modifications due to RG improvement are not a simple rescaling of a classical
Schwarzschild solution in the form M — M’. Specifically, one can rewrite the RG-improved
metric in the form of the classical Schwarzschild metric with an effective mass that depends
on the radial distance, obtained by rearranging eq. (2.7),

Mg (r) = M (4.1)

147 (3)°

At the horizon, the difference between Mg (r) and M is largest, and the modifications fall
off with »—3. This highlights that the deviation from classical Schwarzschild that we explore
is a strong-field effect: while the deviation is at the level of about 10% close to the horizon
(for 4 ~ 1), it falls off rapidly with increasing radius.

The classical Schwarzschild spacetime and the RG-improved case can be distinguished
via the r-dependence in eq. (4.1). Specifically, one can in principle extract the effective
mass at two different distances from the black hole. For instance, one measurement can be
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Figure 5. Relative intensity difference (within the approximate emissivity scheme) as a function of r,
in units of ry, between the RG improved black-hole spacetime and classical Schwarzschild spacetime
with M’ < M, such that both feature the same shadow size.

extracted from the size of the shadow at distances ~ M. The second could use the Keplerian
orbital periods of nearby stars at distances of > 103M (e.g. the pericentre distance of the star
S2 in the galactic centre [72, 73, 78, 106]). Weighing black holes using the orbital motion of
nearby stars is still possible, even for spatially unresolved orbital motion, via spectral analysis
of emission line profiles of stars or gas in orbit around a supermassive black hole, as done
for M87 [71, 144]. For a classical Schwarzschild spacetime, these results should agree. In the
RG-improved case, the effective mass extracted from the size of the shadow is smaller than
the effective mass extracted at larger radii (for small 7, i.e. effects tied to the Planck scale,
only marginally so). This makes it evident that the modifications of the spacetime are not
degenerate with a classical spherically symmetric spacetime.

For the case of M87*, the combined statistical and systematic error on the mass mea-
sured by the EHT collaboration is roughly 14 % [43]. Stellar-dynamics measurements yield
an error of below 10 % [71], while gas dynamics observations have a significantly higher er-
ror [144] (note that these results are not in agreement with each other). Assuming that the
near-horizon and far-horizon measurements should differ by one o, these accuracies can be
used to constrain 4 < 2. Converted into v, the higher mass of M87* compared to Sgr A*
results in v < 2-10%. This result highlights that modifications tied to the Planck scale will
not be accessible by EHT observations. However, non-quantum, singularity-resolving gravi-
tational physics might very well exist, and EHT observations do provide a way of probing or
constraining the corresponding effects. We also highlight that the constraint 4 < 2 cannot
yet exclude horizon-less objects described by our RG improved metric. Future observations
at higher frequencies and/or in polarization data, see [79] can result in tighter constraints,
potentially ruling out horizonless objects in our setting.

Our result motivate a closer look at Sgr A*, given that at fixed 7, every order of
magnitude in the mass corresponds to two orders of magnitude in the constraint on ~.

For Sgr A*, weak-field mass measurements come from tracking the orbital motion of
stars around Sgr A* [4, 10, 35, 78, 81, 82]. The most recent result provides an accuracy of
0.3%, cf. [4]. Furthermore, let us assume that in the future, EHT will provide a measurement
of the shadow size of Sgr A* with an accuracy of about 6 %, see [95]. In our model, these two
measurements are expected to differ by one sigma for 4 2 0.5. Reinstating the black-hole
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mass explicitly, this still translates into a constraint of v < 10%?. We emphasize again, that
this extraordinarily large number is a consequence of theoretical bias that the scale of new
physics should be the Planck scale. Note that the scale of new physics is actually unknown,
and therefore any constraint on the parameter space is important to achieve. Of course, if
we use a different scale than Mp; as our reference scale, the corresponding expected values
for v can increase dramatically, closing the gap to the observational constraints.

Stronger constraints will be possible if stars on tighter orbits than S2 are found and
especially when a pulsar in orbit around a SMBH is found, as studied in [49]. Further,
observations of the stellar dynamics making use of a forthcoming 39-m telescope are expected
to provide a measurement of the black-hole mass with an accuracy of 0.1% [148]. Specifically,
constraints 7 ~ O(1071) would become available if both measurements could reach a sub-
percent accuracy. In particular, future observations of Sgr A* will thus probe values below
Yerit and distinguish horizon-less objects from black-hole spacetimes within our setting.

Let us contrast our results with observations in the weak-field regime. The gravi-
tational parameter space can be spanned by two parameters, measuring the curvature &
(given by the Kretschmann scalar for Schwarzschild) and the Newtonian potential e (linked
to an observable, namely the gravitational redshift). The highest curvatures probed in con-
trolled laboratory experiments at low Newtonian potential are actually tests of the Newtonian
inverse-square law, see, e.g. figure 2 in [15]. Specifically, following this reference, the absence
of modifications to the inverse square law down to 56 um reached in [96] corresponds to a
probe at £ = 6 - 1072*m =2, This should be contrasted with ¢ ~ 1072°m =2 near the horizon
of Sgr A*. Moreover, we highlight the following point: while tests of the inverse-square law
proceed at very small € ~ 10733 (see [15]), the EHT is sensitive to sources with e ~ 1071, In
the presence of a second scale, set by ¢, an RG-improvement ~ ¢ ¢ could also be motivated.
Accordingly, the strong-field regime should provide a qualitatively different test of the effects
we propose here.

Beyond the specific model we explore here, we expect that the signature of quantum
gravity we find here could be generic for a large class of quantum-gravity theories. For
quantum-gravity effects to resolve the classical singularity, an effective weakening of gravity
at high curvature scales — linked to an effective repulsive force from quantum gravity — is
generically expected. This would imply, that quantum-improved black-hole horizons are more
compact than their classical counterparts. The shrinking of the horizon (and consequently
the shadow) through quantum-gravity effects can also be understood as a consequence of
demanding a de-Sitter-like core in which the classical singularity is resolved. Inspecting the
line element, we observe that a transition from Schwarzschild behaviour at asymptotically
large distances to de-Sitter-like behaviour in the core requires a second zero of the function
f(r) in eq. (2.6). This results in a shift of the horizon to smaller values of r. Accordingly, we
conjecture that most (if not all) quantum-gravity models will feature a (typically not large
enough to be observable) signature of the form we discussed here, namely a more compact
black-hole horizon and shadow. This can be reproduced by changing the one free parameter
of the classical Schwarzschild solution, the mass, to a smaller value. The difference between
physically different quantum theories of gravity lies in the fall-off of the effective mass, which
could be different powers for different theories. Accordingly, a third mass-measurement at an
intermediate distance could in principle distinguish these different theories. In practice, such
differences are of course tiny, unless the curvature scale at which quantum-gravity effects
set in is rather low. Remaining more agnostic about the type of new physics that leads to
singularity resolution, the effective description in terms of a repulsive force (decreased black-
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Figure 6. Classical Kerr shadow (green dotted) for ¢ = 0.97, and RG-improved case (magenta)
for a = 0.97,. Growing values for ¥ = (0.05, 0.1, 0.11) are indicated by smaller to larger dashing,
respectively.

hole mass) remains well-motivated, with 4 ~ O(1) not excluded. This calls for dedicated
efforts to understand the dynamics of infalling and radiating matter in such spacetimes, in
order to bridge the gap to actual EHT-images.

4.2 Axisymmetric black-hole spacetimes and their shadows

At leading order, the asymptotic-safety inspired effect is the same in the spherically symmetric
and axisymmetric case, and consists in a reduced size of the shadow compared to the classical
case, see figure 6. As a consequence of frame-dragging, rays that end up in the prograde
(right) side of the image pass significantly closer to the horizon than those in the retrograde
(left) side of the image. Accordingly, they pass through a regime of larger curvature, where
the differences of the RG-improved and the classical spacetime are larger. Therefore, the
deviation of the RG-improved shadow from the classical shadow is larger in the prograde
(right) side of the image. Furthermore, this effect grows with increasing spin, see figure 7.
As discussed in section 2.2, the black-hole horizon is no longer spherically symmetric, but
instead axisymmetric, in our model. The departure from spherical symmetry is a consequence
of the fact that the curvature increases fastest in the equatorial plane, leading to the most
pronounced shrinking of the horizon in this plane. This feature also affects the shadow, and
can even generate a dent in the shadow if the effects are strong enough, cf. inset of figure 6.
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Figure 7. Classical (thin green) and RG-improved (thick magenta) shadows for various spin-
parameters ¢ = 0.4r, (dotted), a = 0.6r, (dashed), and a = 0.87, (continuous). In all cases
4 = 0.25.

In contrast to the spherically symmetric case, the shadow shape of the RG-improved
black-hole spacetime is no longer degenerate with a classical shadow shape. Adjusting the
two parameters M and a in the classical solution in order to match the two major axes of
the RG-improved shadow results in differences at every other point in the image, cf. figure 8.
These differences are small and therefore difficult to spatially resolve. Yet, we also point out
that comparing the mass at two different radial distances (e.g. extracted from the shadow,
and from Keplerian orbits) still allows to distinguish the classical and the RG-improved
spacetimes, just as in the spherically symmetric case, at least for sufficiently large 7.

Next, we explore the image as a function of the inclination ¢, i.e. the angle between
the black hole’s spin axis and the line of sight, see figure 9. As one decreases i, the im-
age approaches a circle (just as in the classical Kerr case), and therefore the modifications
characteristic of the axisymmetric case become less pronounced.

Overall, the new features in the shadow are most pronounced for fast-spinning black
holes viewed from within the equatorial plane, see figure 10. If effects are restricted to the
Planck scale, they of course remain too tiny to be detectable — even though modifications are
actually always present. We stress that v can alternatively be viewed as a parameterisation
of new, singularity-resolving physics which need not be quantum gravity. In that case, ~ is
not tied to the Planck scale, and could be significantly larger.
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Figure 8. Difference in radial coordinate of the parameterised shadow boundary p(1¢)) between the
RG-improved shadow (for M =1, a = 0.997,, and ¥ = 0.008) and the classical shadow at different
mass and spin (M = 1.001435, a = 0.999209r,). The different mass and spin are chosen such as to
result in degenerate points on the major axes at ¢y = 0, 7/2, 7. Every other point on the shadow
boundary lifts this degeneracy.

Apart from asymptotic safety, we argue that the effects we describe here could be uni-
versal consequences of a large class of quantum-gravity theories. Just as in the Schwarzschild
case, one might expect singularity resolution to be tied to an effective weakening of gravity
at high curvature scales. Accordingly, the modifications of the black-hole spacetime decrease
in magnitude with increasing distance from the horizon. For axisymmetric spacetimes, this
has important consequences due to frame-dragging: because of frame-dragging, rays ending
up in the prograde (right) side of the picture probe the spacetime much closer to the horizon
than in the retrograde (left) side, and are much more affected by the modifications. Accord-
ingly, the shadow is more strongly modified on one side only. Thus, a first rather generic
consequence of quantum gravity in spinning spacetimes is that stronger effects are expected
on the prograde side. Next, we argue that a dent-like feature in the equatorial plane of the
image could also be generic: as the curvature in the classical Kerr spacetime becomes singular
only in the equatorial plane, the curvature at fixed radial distance is largest in that plane,
resulting in stronger quantum-gravity effects via eq. (2.16). These render the black-hole
horizon more compact. Thus, the shadow shrinks more on the prograde side of the picture,
and most strongly for ¢ = 0, compared to the classical case. This is expected to result in
a dent-like feature, the extent of which is of course subject to non-universal properties of a
given quantum-gravity theory. While these effects are always present, they remain too tiny
to be detectable for astrophysical black holes, if the scale of the effect is tied to the Planck
scale. An earlier onset of quantum-gravity effects for black holes than expected based on
simple power-counting might change this.

~16 —



2-
)
Z 0
>

—2F

—at

-6 -4 -2 0 2 4
X [rgl

Figure 9. We show the RG improved case (magenta, thick lines) and the classical shadow (green,
thin lines) for a = 0.9, and 4 = 0.11. The angle between the spin axis and the observer is i = 7/8
(dotted lines), ¢ = /4 (dashed line) and ¢ = /2 (continuous line).

Figure 10. We show the intensity image extracted from the affine-parameter emissivity for an RG-
improved (left panel) and classical (right panel), axisymmetric black-hole spacetime with a = 0.97,
and 4 = 0.11. The inset shows a zoom into the prograde (right) side of the image, showing the
characteristic dent-like feature in the RG-improved image.
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5 Discussion

The groundbreaking observations of the Event Horizon Telescope [38-43] have provided us
with a very first image of a black hole. This image opens up a new window into the strong-
field regime of gravity, offering a unique possibility to constrain the fundamental physics of
spacetime. To confront viable theories of quantum gravity, and more generally singularity-free
models, with the observational data now available, resulting features of black-hole shadows
have to be derived. We set out to close this gap for asymptotic-safety inspired black-hole
spacetimes. A key feature of asymptotically safe gravity is the dynamical weakening of the
Newton coupling beyond a critical high-energy scale which is not necessarily tied to the Planck
scale. 'We upgrade classical black-hole spacetimes by incorporating this scale dependence,
assuming that the relevant physical scale is the local curvature scale. Therefore, modifications
are largest close to the horizon and thus our work is one example of the general point that
the shadow size is a powerful test of gravity [95, 120]. In constructing the asymptotic-safety
inspired spacetime, we for the first time take into account the angular dependence of the
local curvature scale in axisymmetric spacetimes, and add to the evidence that the scale-
dependence of the Newton coupling could lead to singularity-resolution.

Let us first highlight the qualitative nature of the resulting effects before commenting on
their size. As a consequence of the weakening of gravity at high curvature scales, the upgraded
spacetimes we explore feature a more compact horizon. Intuitively, this is a consequence of
an effective repulsive force arising due to quantum effects. As our first key result, this leads
to a smaller shadow both in the spherically symmetric and axisymmetric case. In the former
case, the shadow is degenerate with that of a classical black-hole spacetime of smaller mass.
In fact, the asymptotic-safety inspired upgrade of the spherically symmetric spacetime can
be parameterised by a mass function depending on the radial distance. This mass function
approaches the classical mass from below as a function of increasing distance to the horizon.
Therefore, the degeneracy in shadow-size between the classical and upgraded spacetime could
be lifted by using a second observable at different radial distance. Specifically, a second mass
measurement extracted from Keplerian orbits breaks the degeneracy.

Moreover, there is no degeneracy in spinning spacetimes. Due to frame-dragging, rays
arriving at different points in the image plane probe the spacetime at different curvature
scales (i.e. different distances to the horizon). In particular, in the near-extremal black-hole
case, a subset of light rays probe the spacetime arbitrarily close to the horizon, and are
therefore most sensitive to the increased compactness. The latter is most pronounced at the
equator of the spinning black hole. Thus, generically, we find that the asymptotic-safety
inspired effects put a dent into the shadow close to the equator in the image. Naturally, if
quantum-gravity effects are suppressed by the Planck scale, these features are present, but
undetectable for astrophysical black holes.

We argue that the two features (the overall shrinking of the shadow and the dent close
to the equator) ought to be generic consequences of a large class of quantum-gravity theories.
Specifically, we argue that lifting a classical singularity requires an effective repulsive force
from quantum gravity. This leads to a more compact black-hole shadow. In the axisym-
metric case, we expect this to lead to stronger effects on the flattened side of the shadow,
in particular in the equatorial plane. In fact, Loop Quantum Gravity is another example
where indications have been found for an effective repulsive character of quantum effects,
see, e.g. [12], underlying a scenario for regular black holes [68, 69, 108, 131]. These fea-
ture a smaller horizon compared to the classical case, just as in our model. Moreover, a
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non-commutative structure of spacetime has also been argued to lead to a regular black-hole
spacetime with a smaller horizon than in GR [113]. Further, stringy corrections motivate a
similar result [114]. Accordingly, the features we discover here could constitute blueprints
for generic quantum-gravity effects.

Within quantum gravity, the most natural scale for the departure from GR to set
in, is approximately the Planck scale. Yet, this is based on simple dimensional analysis,
and need not hold in a fully dynamical theory. Widening our scope, we point out that
singularity-resolution is physically necessary, but need not be tied to quantum gravity, and
could be a consequence of new classical physics. Any modification that is equivalent to a
repulsive force and thus leads to a de-Sitter-like core, will generically lead to a more compact
horizon [53, 54, 74, 85]. In this more general case, the typical scale of modifications becomes
a free parameter and our work captures the expected imprints of these modifications on the
black-hole shadow. We sketch how observations of the EHT combined with measurements of
Keplerian orbits will allow to constrain the free parameter, and motivate an exploration of
modified black-hole spacetimes of the form we study here.

To conclude, we highlight that we have computed the shadow for spacetimes which i)
feature a horizon, ii) are regular due to a physical mechanism motivated by quantum gravity
and iii) are expected to be compatible with the recent groundbreaking observation of the
EHT collaboration for the quantum-gravity region of parameter space.

The work presented here serves as a natural stepping stone for a more advanced model
that takes into account actual synchrotron emission of relativistic electrons in a turbulent
plasma around the black hole as expected for the two main EHT sources Sgr A* and M&7*.
The behaviour of the plasma can be obtained from General Relativistic Magnetohydrody-
namical simulations in the upgraded metric, similar in spirit to [107] yielding four-velocities,
densities, temperatures and magnetic field strengths and structures. These predictions then
allow evaluations of the synchrotron emissivity enabling to predict images from such models
that will carry imprints of the upgraded black-hole spacetime and a direct comparison to
data taken by the EHT thereby probing or constraining deviations to GR.
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A Error control in Kerr spacetime

Here, we demonstrate how to obtain the minimal required radial distance and numerical pre-
cision given a desired error-tolerance in the deflection angle in Kerr spacetime. As a point of
reference, we choose the outermost image point (x,y) = (1074, 0) within the equatorial plane.
Within the latter, the deflection angle is exactly calculable with arbitrary precision [90].
Therefore, we use it as a benchmark test for the required numerical precision. Figure 11
shows how the numerical results (blue points) and the exact result (red continuous) develop
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Figure 11. Deflection angle error AY = Jg¢(rcam) — ¥, where 9 is the exactly calculable deflection
angle, as a function of radial camera distance rcam at fixed Nprecision = 10720 (left panel) and as a
function of numerical precision Nprecision at fixed radial camera distance rcam = 106 Ty (right panel)
for a = 0.99 74 in classical Kerr spacetime. Blue points show explicit numerical data points. For the
radial distance, we also show the fitted function (red dashed), cf. eq. (3.7).
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Figure 12. Numerical data (blue connected points), fit (red-dashed) and fitted value ¥y, cf. eq. (3.7)
(red continuous) for the deflection angle in RG-improved Kerr spacetime with a = 0.97; and ¥ = 0.11
at an impact parameter corresponding to the outermost image point (x,y) = (10,0) in the equatorial
plane. The plot shows the dependence on the radial distance r¢am at fixed precision Nprecision = 10720,

with increasing radial distance and numerical precision. In both plots, we explicitly show
how the error convergence stalls due to dominance of the respective other error. In practise,
we avoid this by choosing both a large enough camera distance and numerical precision at
the same time. Assuming that both errors do not significantly change for the RG-improved
metric, we require a maximal error of the deflection angle AY¥ = 0.001 and therefore use
Team = 10% rg and Log[Nprecision) = —20 throughout all computations. Since the functional
form, cf. eq. (3.7), is known, we can test the convergence in radial distance in RG-improved
Kerr spacetime explicitly, cf. figure 12.
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Figure 13. Horizon for the classical and RG-improved Kerr spacetime (left panel) and the RG-
improved shadow boundary (right panel) in the equatorial plane for a critical 4 = 0.010242 (a =
0.9974) just before the horizon disappears.

B Features of the shadow for near-critical ~

Close to critical 4, the horizon and the resulting shadow image develop additional distinct
features. Such features are non-generic in the sense that they only appear for 4 close to
Yerit- In the near-critical (¥ & Jqit) regime, the dent in the RG-improved horizon at 0§ = 7/2
becomes very pronounced, cf. left panel of figure 13. This leads to a more pointy appearance
of the dent-like feature in the shadow boundary at b = 0. Loosely speaking, the horizon
takes on the appearance of two largely but not fully overlapping spheres (while remaining
differentiable at # = 7/2). Further, it results in two sets of distinct, novel features at two
intermediate image angles, e.g. for a = 0.997, and ¥ = Juit = 0.010242, these occur at
Yerit, 1 R %ﬂ' and Vet 2 = %UW, cf. right panel of figure 13. These secondary features are
a consequence of three different regimes for near-horizon null geodesics, cf. figure 14. For
1 > terit,1 the light rays closest to the horizon probe the entire horizon. At || = erit, 1,
the null geodesics transition from wrapping around the entire horizon to wrapping around
roughly half of the horizon. Loosely speaking, they probe just one of the two spheres that
make up the horizon. Accordingly, the shadow diameter grows significantly at |¢| & ¥qrit, 1.
In other words, a smooth, step-like feature appears in the shadow for || = it 1. As the
dent in the shadow is rather prominent for 4 & Jgit, it can “trap” trajectories that exist
for |¢| < tperit, 2. As shown in figure 14, these mainly wrap around the dented region of the
horizon, and cover a significantly smaller interval in the affine parameter in exploring other
parts of the horizon. Accordingly, these probe the smallest values of r of all trajectories, and
therefore arrive at values closer to the origin in the image plane.

For less extreme cases, i.e. ¥ < Jerit, these features in the shadow-boundary become less
pronounced. Nevertheless, traces of these features remain present in the shadow boundary.
This can for instance be seen in figure 8 at ¥ = 0.4.

We stress that we do not consider such features universal, in the sense that they can
depend on the RG improvement that is used. The existence of the dent in the horizon and
shadow, however, is robust.
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Figure 14. Marginally stable light-like trajectories in the RG-improved black-hole spacetime (thick
red lines) for an extreme 5 = 0.010242 (a = 0.997,) just before the horizon (transparent surface)
disappears. The left panel shows an image angle 9 > tcri¢, 1. The middle panel shows an image angle
WYerit, 1 > ¥ > Yerit, 2. The right panel shows an image angle ¢ < s, 2.
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