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and Instituto de F́ısica de Part́ıculas y del Cosmos IPARCOS,
Universidad Complutense de Madrid, E-28040 Madrid, Spain

E-mail: cembra@ucm.es, maroto@ucm.es, hectorvi@ucm.es

Received April 25, 2019
Accepted June 3, 2019
Published June 18, 2019

Abstract. One of the fundamental assumptions of the standard ΛCDM cosmology is that,
on large scales, all the matter-energy components of the Universe share a common rest
frame. This seems natural for the visible sector, that has been in thermal contact and tightly
coupled in the primeval Universe. The dark sector, on the other hand, does not have any
non-gravitational interaction known to date and therefore, there is no a priori reason to
impose that it is comoving with ordinary matter. In this work we explore the consequences
of relaxing this assumption and study the cosmology of non-comoving fluids. We show that
it is possible to construct a homogeneous and isotropic cosmology with a collection of fluids
moving with non-relativistic velocities. Our model extends ΛCDM with the addition of a
single free parameter β0, the initial velocity of the visible sector with respect to the frame
that observes a homogeneous and isotropic universe. This modification gives rise to a rich
phenomenology, while being consistent with current observations for β0 < 1.6 × 10−3 (95%
CL). This work establishes the general framework to describe a non-comoving cosmology and
extracts its first observational consequences for large-scale structure. Among the observable
effects, we find sizeable modifications in the density-velocity and density-lensing potential
cross-correlation spectra. These corrections give rise to deviations from statistical isotropy
with a dipolar structure. The relative motion between the different fluids also couples the
vector and scalar modes, the latter acting as sources for metric vector modes and vorticity
for all the species.
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1 Introduction

The isotropy and homogeneity of the Universe on large scales are two foundational assump-
tions of the standard cosmological model, the so-called ΛCDM model. These two assumptions
are usually grouped under the name of Cosmological Principle. All the observational evi-
dence, ranging from the extremely isotropic cosmic microwave background (CMB) [1–3] to
the galaxy number counts and the measured expansion from SNIa [4–6], supports the con-
clusion that the Universe is very nearly isotropic on large scales. However, the notions of
homogeneity and isotropy are inextricably linked with the election of a privileged frame. For
any observer moving with respect to this frame, the Universe would appear anisotropic and
inhomogeneous. This is precisely our situation on Earth.

Starting with the early CMB measurements [7, 8], a significant dipole modulation, much
larger than any other anisotropy, was found. This was readily interpreted as a kinematical
effect: a Doppler shifting effect arising from the relative motion of the Earth with respect to
the CMB rest frame, i.e. a frame in which the CMB looks isotropic. Recent analysis by the
Planck Collaboration [1, 9] explored other kinematical effects, like the violation of statistical
isotropy induced by the observer motion, and reported an independent measurement of our
relative velocity with respect to the CMB frame. This measured velocity can, given the
uncertainties, fully account for the observed dipole, supporting its kinematical origin. Even
if it is mostly kinematical, it may still contain an intrinsic contribution. Some authors have
proposed searches for the intrinsic dipole, e.g. using spectral distortions [10].

A different kind of dipole should appear in the distribution of galaxies, induced by
our motion with respect to the matter frame, i.e. a frame in which the matter distribution
looks isotropic. The origin of the large scale structure (LSS) dipole lies in a combination of
Doppler shifting and aberration effects in the galaxy number counts [11, 12]. Unfortunately,
current observations can only loosely constrain its amplitude and direction, yielding a value
compatible with the CMB dipole [13, 14]. Future surveys like Euclid [15] and SKA [16] will
measure it with unprecedented accuracy.

To complete the picture, we only need to know the relative velocity between the matter
and CMB frames. Concerning this point, ΛCDM contains the underlying assumption, that
usually goes by unnoticed, that both frames coincide. ΛCDM assumes matter and CMB to be
comoving. As we will see in this work, it is possible to relax this condition. The homogeneous
and isotropic Robertson-Walker (RW) metric can be sourced, at the background level, using
non-comoving fluids. Thus, we will show that it is possible to construct a viable cosmological
model for non-comoving fluids, with interesting phenomenological consequences and without
any flagrant isotropy violation.

Early theoretical work concerning non-comoving fluids was mostly developed under the
framework of tilted universes. The term was coined in the groundbreaking work by King
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and Ellis [17]. The authors considered a class of homogeneous models sourced by a single
moving fluid, i.e. models in which the fluid 4-velocity is tilted with respect to the homoge-
neous hypersurfaces. These tilted models produce homogeneous but anisotropic universes.
In a different context, Coley and Tupper [18] analyzed two-fluid cosmological models with
general imperfect and non-comoving fluids. In order to source homogeneous and isotropic
RW metrics, only very special configurations with radial velocities were considered. Later on,
Turner [19] proposed a theoretical mechanism to produce a mismatch between matter and
CMB velocities. In Turner’s tilted universes, the presence of a near-horizon-sized perturba-
tion, remnant of inflation, could introduce a spatial gradient, driving the velocity of matter.
More recently, the analysis of tilted models have been extended to Lemaitre-Tolman-Bondi
and Szekeres space-times [20–22].

The analysis of non-comoving fluids has been extended to dark energy. Given our
fundamental ignorance about the behaviour of the dark sector, it is conceivable that it has
not ever been coupled to ordinary matter and that it does not share the same rest frame.
Following this idea, a model of moving dark energy was proposed in [23]. In this case, for a
dynamical dark energy fluid, even if the matter and CMB frames coincide initially, they differ
at late times. Different models of moving homogeneous dark energy were analyzed in [24, 25],
as well as its possible impact in observables like the CMB quadrupole. The construction of
a fully anisotropic model in which the full dark sector, i.e dark energy and dark matter,
is non-comoving with the CMB and ordinary matter was carried out in [26]. The authors
analyzed a Bianchi I universe in which dark matter and dark energy had different relative
velocities with respect to the frame of ordinary matter and then derived some observables,
like a modified luminosity-distance relation and CMB quadrupole.

From the observational point of view, a signal of the relative motion of the matter and
CMB frames will be the detection of a large-scale bulk flow. In recent years, several works
have claimed measurements of matter flows well in excess the ΛCDM predictions on different
scales and at different statistical confidence levels [27–30]. Although there seems to be a broad
agreement on the direction of the flow, the amplitude is still subject to controversy [28]. Such
flows will be an indication of the existence of a cosmological preferred spatial direction. On
the other hand, detected anomalies in the low multipoles of the CMB temperature power spec-
trum [1], such as the low-multipole allignment and the dipolar or hemispherical anomalies,
also suggests the presence of a preferred cosmological direction [31]. This fact has triggered
the search for mechanisms which could break isotropy while keeping the predictions of the
standard cosmology.

This work builds upon these previous studies, but we will present the first complete
analysis for the evolution of a set of non-comoving fluids, from the early to the late Universe,
both at the background and perturbation level. As we will see later, it is reasonable to
assume that any pair of tightly coupled fluids share the same velocity. Hence, we can expect
that photons, baryons and neutrinos, being in thermal contact in the early Universe, shared
a common rest frame, i.e. a frame in which the plasma looked isotropic. However, there is
no a priori reason to assume the same about the dark sector. The dark sector, regardless of
its composition, may very well possess its own rest frame, with a given global velocity with
respect to the visible sector. The only reasonable assumption is that there is one frame that
observes a homogeneous and isotropic universe, i.e. a RW background. In this paper we take
seriously this possibility and prove, at the background level, that

• If the dark and visible sectors are initially moving with non-relativistic velocities, to
first order in these velocities, it is possible to define a cosmic center of mass frame that
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observes a RW background. Our model only contains one additional free parameter
β0, the velocity of the visible sector with respect to the cosmic center of mass frame
deep inside the radiation era. It is discussed in detail in section 6.1. As we will see
in section 7.1, β0 < 1.6 × 10−3 is a conservative limit to be in agreement with all
observations.

• The subsequent evolution gives rise to relative velocities between all the different com-
ponents of the visible sector, e.g. between baryons and photons, defining each of them
its own rest frame.

While at the perturbation level,

• There appear couplings, of order β0, between scalar and vector modes.

• There is a production of vorticity for all the species and a net production of vorticity
and metric vector modes.

• The transfer function of every cosmological quantity acquires a dipolar contribution of
order β0.

• There is a violation of statistical isotropy of order β0. Among the different observables
where such an effect could be measured, the easiest to compute is the cross-correlation
spectrum between different scalar perturbations, which acquire a dipolar contribution
of order β0.

In this work we will limit ourselves to LSS observables, letting for a forthcoming work the
analysis of CMB signatures [32]. The structure of the paper goes as follows. Section 2 assesses
the problem of constructing a homogeneous and isotropic universe using non-comoving fluids.
First, only the energy-momentum tensor for a perfect fluid with bulk velocity is considered
in 2.1, where the conditions for isotropy and homogeneity are discussed. Then, the formalism
is extended to imperfect fluids in 2.2, using the kinetic approach, where both background
and perturbations are studied in 2.2.1 and 2.2.2. Section 3 analyzes the dynamics of this
model from the point of view of the Boltzmann equations. The free-streaming term is derived
in 3.1, while the collision term for the photon-baryon plasma is computed in 3.2. The main
evolution equations are presented in 3.3. The usual scalar-vector-tensor decomposition is
performed in section 4, where we describe our approximation scheme. Section 5 contains the
Einstein equations, which are not modified in our case. In section 6, we present a reduced
version of the original system, under our approximation scheme. Sections 6.1, 6.2 and 6.3 are
devoted to bulk velocities, scalar and vector modes, respectively. Finally, section 7 contains
the numerical solution of the aforementioned reduced system and discusses some observables.
Section 8 gathers the main conclusions and presents some prospects for future work.

2 Moving fluids

2.1 Perfect fluid with bulk velocity

2.1.1 Physical setting

Let us consider a perfect fluid with energy-momentum tensor

Tµν = (ρ+ P )uµuν + Pδµν , (2.1)
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in a flat Robertson-Walker (RW) metric

ds2 = a2(τ)
(
−dτ2 + δijdx

idxj
)
. (2.2)

Now we will consider the situation where the fluid possesses a bulk velocity with respect to
the frame in which the metric takes the form (2.2). Parameterizing the four-velocity as

uµ = aγ(−1, vi) , (2.3)

from the normalization condition, uµu
µ = −1, we have

γ =
1√

1− vivi
, (2.4)

where the spatial indices in vi are lowered and raised using δij . With this parameterization
the components of the energy-momentum tensor are

T 0
0 = −ρ− (ρ+ P )γ2v2 , (2.5a)

T 0
i = (ρ+ P )γ2vi , (2.5b)

T ij = Pδij + (ρ+ P )γ2vivj . (2.5c)

Since the non-diagonal components are not zero, this moving fluid cannot act as a source for
the geometry (2.2). Let us show how to construct a valid source for the homogeneous and
isotropic metric (2.2) using a collection of fluids.

Isotropy. For non-relativistic fluids, the only non-diagonal component, to first order in
v, is

T 0
i = (ρ+ P )vi . (2.6)

If instead of a single fluid we have several fluids in relative motion, they can act as a source
for (2.2) if they satisfy

T 0
i =

∑

s

Ts
0
i =

∑

s

(ρs + Ps)vs i = 0 . (2.7)

The physical content of this condition is that of a kind of center of mass frame condition. An
isotropic source can be constructed, to first order in v, out of two non-relativistic fluids if the
net flux of momentum of one fluid is counterbalanced by that of the other fluid. We will see
later that this constraint is conserved in time, so it can be implemented with an appropiate
choice of the initial conditions. In [24] it is discussed how to transform to this frame, starting
from an arbitrary configuration of the fluids.

Homogeneity. Homogeneity is easily implemented when the fluids are at rest, but we need
to be cautious in our context. Consider two observers locally related by a boost

• (τ,x), O frame in which (2.7) is satisfied and the metric takes the form (2.2).

• (τ̃ , x̃), Õ frame moving with respect to O with velocity β.
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In the Õ frame, the transformed coordinates are obtained applying a local Lorentz
transformation

dx̃µ = Λµν(β)dxν , (2.8)

and the metric looks inhomogeneous

ds2 = a2
(
τ(τ̃ , x̃)

) (
−dτ̃2 + δijdx̃

idx̃j
)
. (2.9)

The same applies to other time-dependent quantities like ρ and P . To provide a consistent
source, we will require that the energy-momentum tensor of each fluid is homogeneous in
the O frame, i.e. the frame that observes an isotropic and homogeneous metric, not in the
comoving frame with the fluid.

Notice that on the tangent space at a given space-time point, we can always define an
orthonormal basis ea given by

ea = eµa
∂

∂xµ
, eµa = a−1(τ)δµa . (2.10)

and the corresponding orthonormal basis in the Õ frame reads

ẽa = ẽµa
∂

∂x̃µ
, ẽµa = a−1(τ(x̃))δµa . (2.11)

Thus, as expected, the two basis are just related by a Lorentz transformation on the tan-
gent space

ẽa =
(
Λ−1(β)

)b
a
eb . (2.12)

To sum up, we can source a flat RW metric (2.2) with a collection of non-relativistic
moving fluids as long as

• We are in the center of mass frame, where

∑

s

(ρs + Ps)v
i
s = 0 . (2.13)

• The energy-momentum tensor is homogeneous in that frame

∂iT
µ
ν = 0 . (2.14)

2.1.2 Evolution

Finally, in this subsection we will analyze the evolution of a perfect fluid with bulk velocity.
Assuming homogeneity

∂iT
µ
ν = 0 , (2.15)

the conservation equation

∇µTµν = 0 , (2.16)

for a flat RW metric in conformal time (2.2) yields the equations of motion

∂0

(
a3T 0

0

)
= Ha3T ii , (2.17)

∂0

(
a4T 0

i

)
= 0 , (2.18)
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where H ≡ ȧ/a is the conformal Hubble parameter and ˙ ≡ ∂0 ≡ ∂/∂τ . As it was antici-
pated, (2.18) proves that the center of mass constraint (2.7) is conserved in time. Writing
explicitly the components (2.5), the equations of motion can be rewritten in terms of vi and
ρ. The equation for the velocity can be expressed as

∂0vi − ∂0 log
(
(1 + w)a4γ2ρ

)
vi = 0 , (2.19)

where w ≡ P/ρ is the equation of state of the fluid. In the absence of interactions, the
velocity does not change its direction, so we only need to follow the evolution of its magnitude.
Combining (2.17) and (2.18), it is possible to obtain

ρ̇ =
(v2 − 3)(1 + w)

1− wv2
Hρ+

ẇ

1− wv2
v2ρ , (2.20)

v̇ =
(1− v2)(3w − 1)

1− wv2
Hv +

ẇ

1 + w

1− v2

1− wv2
v , (2.21)

assuming w 6= −1. It is worth particularizing these results to two kind of fluids.

• Radiation, w = 1/3.

ρ̇ = −4Hρ , (2.22)

v̇ = 0 . (2.23)

The fluid moves with constant velocity and with the usual scaling ρ ∝ a−4.

• Matter, w = 0.

ρ̇ = (v2 − 3)Hρ , (2.24)

v̇ = −(1− v2)Hv . (2.25)

The equations can be solved analitically in this case

ρ =
ρ0

a2
√
v2

0 + a2(1− v2
0)
, (2.26)

v =
v0√

v2
0 + a2(1− v2

0)
, (2.27)

γ2ρ =
ρ0

a4(1− v2
0)

√
v2

0 + a2(1− v2
0) , (2.28)

where v0 and ρ0 are the velocity and density today. If the fluid starts with ultrarel-
ativistic initial conditions, it behaves as radiation γ2ρ ∝ a−4 until the velocity drops
down and it enters the non-relativistic regime. In the non-relativistic regime, to first
order in v, the velocity slows down with the expansion v ∝ a−1 and the density scales
as usual γ2ρ ' ρ ∝ a−3.

Analytic expressions for a generic equation of state w(a) can be obtained in the regime of
small velocities

ρ = ρ0 exp

(
−3

∫
da

a
(1 + w)

)
+O

(
v2
)
, (2.29)

v =
v0(1 + w0)

a4(1 + w)
exp

(
3

∫
da

a
(1 + w)

)
+O

(
v2
)
, (2.30)
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where w0 is the value of the equation of state today. For the particular case w = const., we
have [23, 24]

ρ = ρ0 a
−3(1+w) +O

(
v2
)
, (2.31)

v = v0 a
−(1−3w) +O

(
v2
)
. (2.32)

2.2 Kinetic approach

Non-relativistic particles and the photon-baryon plasma in the early Universe can be well
approximated as perfect fluids, and analyzed using only their energy-momentum tensor.
However, to describe the free-streaming of neutrinos or the details of decoupling, the fluid
approximation is not enough and we must use a more general kinetic approach. In this
section we follow closely the presentation of [33]. For an alternative approach, using covariant
perturbation theory and gauge-invariant variables, see [34].

The phase-space of the system is described by

• Three positions xi.

• Three conjugate momenta Pi. These conjugate momenta are defined as the spatial
components of the four-momentum

Pµ ≡ mdxµ

dλ
, PµPνg

µν = −m2 , (2.33)

where dλ ≡
√
−ds2 is the proper time and the spatial index i has been lowered with

the full metric gµν .

The number of particles per unit of phase-space volume is

dN = g∗f
(
τ, xi, Pj

) d3x d3P

(2π)3
, (2.34)

where g∗ is the number of internal degrees of freedom, e.g. the number of helicity states, and
f is the phase-space distribution function. In the kinetic approach, the energy-momentum
tensor can be defined as [33]

Tµν =
g∗

(2π)3

∫
d3P (−g)−1/2PµPν

P 0
f(τ, xi, Pj) , (2.35)

where g is the determinant of the metric gµν . In a cosmological setting, the next step would be
to particularize these definitions to a RW metric (2.2) and then to study perturbations over
the metric and the distribution function. We will split the discussion in two parts. Since our
main modification with respect to standard comoving cosmology concerns the definition of the
unperturbed distribution function, we will focus on the background in the next section 2.2.1.
Section 2.2.2 contains the complete treatment of perturbations.

2.2.1 Background

Starting again with the metric

ds2 = a2(τ)
(
−dτ2 + δijdx

idxj
)
, (2.36)
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and denoting the momentum as

ε ≡ −P0 , (2.37a)

qi ≡ Pi , (2.37b)

such that qi ≡ qi, we obtain from the mass-shell condition (2.33)

ε2 = m2a2 + q2 . (2.38)

We introduce again two related frames.

• O, frame in which the metric takes the form (2.36).

• Õ, frame moving with respect to O with velocity β.

The local Lorentz transformation (2.8) that connects both frames yields

ε̃ ≡ Λβε = γ(ε− q · β) , (2.39a)

q̃i ≡ Λβq
i = P ijqj − γεβi , (2.39b)

β · q̃ = γ(q · β − εβ) . (2.39c)

We have defined

P ij ≡ δij + (γ − 1)β̂iβ̂j , (2.40a)

γ ≡ (1− β2)−1/2 , (2.40b)

where β̂i is a unit vector along β and every spatial index has been lowered or raised with δij .
Next we consider a homogeneous distribution function in the O frame

f(τ,x, q) = f0(τ, q) . (2.41)

With this distribution function, we can define the usual fluid quantities

ρ ≡ a−4g∗

∫
d3q

(2π)3
ε f0 , P ≡ a−4g∗

∫
d3q

(2π)3

q2

3ε
f0 ,

Qi ≡ a−4g∗

∫
d3q

(2π)3
qi f0 , n ≡ a−3g∗

∫
d3q

(2π)3
f0 ,

Πij ≡ a−4g∗

∫
d3q

(2π)3

(
qiqj

ε
− q2

3ε
δij
)
f0 , V i ≡ a−3g∗

∫
d3q

(2π)3

qi

ε
f0 , (2.42)

that represent the usual energy, momentum, shear tensor, pressure, number and velocity
densities of the fluid. To relate this set of quantities with those computed in the boosted Õ
frame, we can either use their tensorial character under local Lorentz transformations or the
fact that f transforms as a scalar

f̃0(τ̃ , x̃, q̃
)

= f0

(
τ(τ̃ , x̃), q(q̃)

)
, (2.43)

where, from now on, we will denote f̃0(τ̃ , x̃, q̃
)

just as f̃0(τ, q̃). With this property and the
Lorentz-invariant volume element we can write, for instance,

Q̃i = a−4g∗

∫
d3q̃

(2π)3
q̃i f̃0(τ, q̃) = a−4g∗

∫
d3q

(2π)3

(Λβε)(Λβq
i)

ε
f0(τ, q) . (2.44)
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Using this procedure, one can obtain

ρ̃ = ρ+ γ2
(
βkβlΠ

kl − 2βkQ
k
)

+ γ2β2(ρ+ P ) , (2.45a)

Q̃i = γP ij
(
Qj − βkΠkj

)
− γ2βi

(
ρ+ P −Qjβj

)
, (2.45b)

Π̃ij =

(
P ikPjl −

1

3
γ2βkβlδ

ij

)
Πkl − γ

(
βiPjk + βjP ik −

2

3
γδijβk

)
Qk

+ γ2

(
βiβj − 1

3
β2δij

)
(ρ+ P ) , (2.45c)

P̃ = P +
1

3
γ2
(
βkβlΠ

kl − 2βkQ
k
)

+
1

3
γ2β2(ρ+ P ) , (2.45d)

ñ = γ(n− V jβj) , (2.45e)

Ṽ i = P ijV j − γβin . (2.45f)

It is important to stress that the preceeding relations hold as well if the quantities are defined
with the full distribution function f , instead of using just the background part f0, and we
will make use of them when we study perturbations.

There remains the question of how to describe the moving fluids of section 2.1 in terms
of a distribution function. We will describe the different constituents of the universe with an
unperturbed distribution function that satisfies

f0(τ, q) = f̃0(τ, q̃) . (2.46)

That is, the distribution function is homogeneous in the O frame, i.e. the frame that observes
a homogeneous and isotropic universe, and isotropic in the Õ frame, i.e. the frame comoving
with the fluid. This parallels the discussion in section 2.1 and allows us to describe a fluid
moving with velocity β. The condition (2.46) is the main physical assumption in our work.
For instance, applying it to a black-body spectrum for massless particles, using (2.39) we
obtain the usual boosted distribution function

f̃0(q̃) =
1

e q̃/T̃ − 1
=

1

e q/T (q) − 1
= f0(q) , T (q) ≡ γ

(
1− q · β

q

)
T̃ . (2.47)

If the distribution function satisfies (2.46) we have

Π̃ij = 0 , Ṽi = Q̃i = 0 , (2.48)

so we are indeed in the comoving frame with the (perfect) fluid. In this case, the relation
between both sets of fluid variables is

ρ = ρ̃+ γ2β2(ρ̃+ P̃ ) , (2.49a)

Qi = γ2βi
(
ρ̃+ P̃

)
, (2.49b)

Πij = γ2

(
βiβj − 1

3
δijβ2

)
(ρ̃+ P̃ ) , (2.49c)

P = P̃ +
1

3
γ2β2(ρ̃+ P̃ ) , (2.49d)

n = γñ , (2.49e)

V i = γβiñ . (2.49f)
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Using the definition of the energy-momentum tensor (2.35), we can write its components as

T 0
0 = −ρ = −ρ̃− γ2(ρ̃+ P̃ )β2 , (2.50a)

T 0
i = Qi = γ2(ρ̃+ P̃ )βi , (2.50b)

T ij = Pδij + Πi
j = P̃ δij + γ2(ρ̃+ P̃ )βiβj . (2.50c)

These expressions agree with the ones obtained for a perfect fluid (2.5). Both approaches are
equivalent at this level. To first order in β we have

T 0
0 = −ρ̃ , (2.51a)

T 0
i = (ρ̃+ P̃ )βi , (2.51b)

T ij = P̃ δij . (2.51c)

The full energy-momentum for a collection of fluids is homogeneous, as it was imposed
in (2.46), and it is also isotropic, to first order in β, if the velocities of the fluids satisfy
the constraint ∑

s

(ρ̃s + P̃s)β
i
s = 0 , (2.52)

which is the same condition obtained in (2.7). It is clear from (2.50b) that a similar constraint
can always be imposed, to all orders in β, to achieve T 0

i = 0 but this is not enough to source
a RW geometry. Already to second order in β, (2.50c) contains a quadrupolar anisotropy
that cannot be compensated by the other fluids. In this case, we should go one step further
and consider a Bianchi universe. However, for the values of β that we will consider, this
quadrupole lies well below the observed value [24]. Therefore, in this work we will restrict
ourselves to first order and a RW background.

In section 6.1 we analyze in detail the evolution of the different fluids. It is important
to stress here that, in our scenario, we will assume that all the components of the visible
sector shared a common velocity in the early Universe, since they were in thermal contact.
Then, the constraint (2.52) completely determines the evolution of the momentum of the dark
sector. This leaves us with only one additional free parameter (β0) over standard ΛCDM,
i.e. the initial velocity of the visible sector in the cosmic center of mass frame.

2.2.2 Perturbations

Our starting point now is a perturbed flat RW metric

ds2 = a2(τ)
(
− (1−A)dτ2 + 2Bidτ dxi + (δij +Hij)dx

idxj
)
. (2.53)

Reparameterizing the momentum as

P0 ≡ −aE + δP0 , (2.54a)

Pi ≡ a
(
δji +

1

2
Hj
i

)
pj , (2.54b)

from the mass-shell condition (2.33) we obtain

E2 = m2 + p2 , (2.55a)

δP0 =
1

2
AaE + apiB

i . (2.55b)
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These expressions can be regarded just as redefinitions but they have a very simple phys-
ical interpretation in terms of the vierbein (2.11). Our choice of momentum, Pµ = e a

µ pa,
corresponds to a choice of vierbein with components

e 0
0 = a

(
1− 1

2
A

)
, (2.56a)

e 0
i = 0 , (2.56b)

e i
0 = aBi , (2.56c)

e ji = a

(
δij +

1

2
H i
j

)
. (2.56d)

With these definitions, pi are the momenta measured by a locally inertial observer at a fixed
spatial position. It is convenient to work with a closely related set of variables defined as

qi ≡ api , ε ≡ aE . (2.57)

As we will see, written in terms of qi, the Boltzmann equation in section 3 does not contain
a zero-order term. We perturb the phase-space distribution accordingly

f(τ,x, q) = f0(τ, q) + δf(τ,x, q) , (2.58)

and define the corresponding perturbed fluid variables

δρ ≡ a−4g∗

∫
d3q

(2π)3
ε δf , δP ≡ a−4g∗

∫
d3q

(2π)3

q2

3ε
δf ,

δQi ≡ a−4g∗

∫
d3q

(2π)3
qi δf , δn ≡ a−3g∗

∫
d3q

(2π)3
δf ,

δΠij ≡ a−4g∗

∫
d3q

(2π)3

(
qiqj

ε
− q2

3ε
δij
)
δf , δV i ≡ a−3g∗

∫
d3q

(2π)3

qi

ε
δf . (2.59)

The components of the perturbed energy-momentum tensor are

δT 0
0 = −δρ+BiQi , (2.60a)

δT 0
i = δQi +

1

2
AQi +

1

2
Hj
iQj , (2.60b)

δT ij = δPδij + δΠi
j −BiQj +

1

2

(
Hk
j Πi

k −H i
kΠ

k
j

)
. (2.60c)

Expressing the background quantities in the Õ frame

δT 0
0 = −δρ+ γ2(ρ̃+ P̃ )Biβ

i , (2.61a)

δT 0
i = δQi +

1

2
γ2(ρ̃+ P̃ )

(
Aδji +Hj

i

)
βj , (2.61b)

δT ij = δPδij + δΠi
j − γ2(ρ̃+ P̃ )Biβj +

1

2
γ2(ρ̃+ P̃ )

(
βiHk

j βk − βjH i
kβ

k
)
. (2.61c)

It is easy to show that, to first order in β, once we apply the center of mass condition
(2.52), every metric variable cancels out and does not appear in the definition of the total
energy-momentum tensor.
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Non-relativistic limit. We end this section with an aside about the non-relativistic (NR)
limit (q/ε� 1). In the next sections only massless (photons and massless neutrinos) and NR
particles (baryons and cold dark matter) will be taken into account. In particular, we will
only keep the first NR order, neglecting the pressure and sound speed of baryons.

Although this kind of approximation is standard, we must be careful when taking the
NR limit in a moving frame. The proper way to account for this limit is to take it in the
frame comoving with the fluid, i.e. Õ. To first NR order we have

δΠ̃ij ' 0 , δP̃ ' 0 . (2.62)

However, in the O frame, using (2.45), it can be seen that we do have pressure and
anisotropic stress

δP ' 2

3
γ2βkδQ̃

k +
1

3
γ2β2δρ̃ , (2.63a)

δΠij ' γ
(
βiPjk + βjP ik −

2

3
γδijβk

)
δQ̃k + γ2

(
βiβj − 1

3
β2δij

)
δρ̃ . (2.63b)

To first NR order and to first order in β, we have the following useful results

δP ' 2

3
βkδQ

k , δV i ' δQi

m
,

δΠij '
(
βiδjk + βjδik −

2

3
δijβk

)
δQk , δṼ i ' 1

m

(
δQi − βiδρ

)
,

δñ ' δρ̃

m
' 1

m

(
δρ− 2βkδQ

k
)
, δn ' 1

m

(
δρ− βkδQk

)
. (2.64)

Note that the preceeding results hold as well for the corresponding unperturbed quantities,
see (2.42). Finally, the full energy-momentum tensor for a non-relativistic species to first
order in β is

T 0
0 + δT 0

0 ' −ρ̃− δρ+ ρ̃βiBi , (2.65a)

T 0
i + δT 0

i ' mδVi + ρ̃

(
δji +

1

2
δjiA+

1

2
Hj
i

)
βj , (2.65b)

T ij + δT ij ' m
(
βiδVj − βjδV i

)
+ ρ̃βjB

i . (2.65c)

3 Boltzmann equation

After writing the energy-momentum tensor in terms of the distribution function, we need to
compute its time evolution. This information is encoded in the Boltzmann equation, which
in the locally Minkowskian frame takes the form

Df

dt
= C[f ] . (3.1)

where dt ≡ e 0
µ dxµ is the time measured by the locally Minkowskian observer, which for the

vierbein choice in (2.56) reads dt = a(1− 1
2A)dτ . The left-hand side, the so-called Liouville

operator, describes the free streaming of particles in phase space. It is defined as

Df

dt
≡ ∂f

∂t
+

dxi

dt

∂f

∂xi
+

dqi

dt

∂f

∂qi
. (3.2)
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This operator contains the information about the space-time geometry, through its effects
on the geodesics of the particles. The functional on the right-hand side of (3.1) is the so-
called collision term. It takes into account how the number of particles per unit of phase-space
volume change due to collisions, i.e. local interactions. Hence, it does not contain information
about the underlying geometry [35]. The collision term takes the same form as in flat space-
time when written in terms of the momenta measured by a locally inertial observer pa defined
above. The final form of the Boltzmann equation in conformal time is

Df

dτ
= a

(
1− 1

2
A

)
C[f ] . (3.3)

The next section is devoted to the left-hand side of the Boltzmann equation, i.e. the Liouville
operator, particularizing to massless and non-relativistic particles. This analysis exhausts all
the information needed to follow the evolution of non-interacting particles, like CDM and
neutrinos. However, to describe the photon-baryon plasma, we must move on to the full
Boltzmann equation. Section 3.2 studies the interaction between photons and electrons.

3.1 Liouville operator

In order to compute the time derivatives appearing in (3.2), we need the geodesics in the met-
ric (2.53). The whole computation of the geodesics can be found in detail in the appendix A.
Using the definition of the four-momentum (2.33) and the parameterization (2.54), the final
results are

dxi

dτ
=
qi

ε

(
1− 1

2
A
)
−Bi − 1

2ε
H i
kq
k , (3.4a)

dqi

dτ
=

1

2
ε∂iA+ qjCij +

qjqk

ε
Dijk , (3.4b)

where the following combinations of metric variables have been defined

Cij ≡ ∂iBj −
1

2
Ḣij , (3.5a)

Dijk ≡
1

2
(∂iHjk − ∂kHij) . (3.5b)

The left-hand side of the Boltzmann equation (3.3) is evaluated in the O frame, where the
geodesics are computed,

Df

dτ
≡ ∂f

∂τ
+

dxi

dτ

∂f

∂xi
+

dqi

dτ

∂f

∂qi
. (3.6)

We will assume that the distribution function takes the form

f(τ,x, q) = f0(τ, q) + δf(τ,x, q)

= f̃0(τ,Λβε) + δf(τ,x, q) , (3.7)

where f̃0(τ, ε̃) is the standard isotropic distribution in the Õ frame. Since (3.4b) is already
first order in perturbations, the left-hand side of the Boltzmann equation can be recast as

Df

dτ
=
∂f0

∂τ
+
∂δf

∂τ
+

dxi

dτ

∂δf

∂xi
+

dqi

dτ

∂f0

∂qi
. (3.8)

We will restrict our discussion to massless and non-relativistic massive particles.
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3.1.1 Massless particles

For massless particles the Lorentz transformations (2.39) take a simpler form

q̃ = γ (1− n̂ · β) q , (3.9a)

q̃i =
(
P ijnj − γβi

)
q , (3.9b)

where we have splitted the momentum into direction and magnitude

qi ≡ q ni , niδ
ijnj = 1 . (3.10)

Using the Boltzmann equation, it can be directly checked that the unperturbed distribution
function in the Õ frame only depends on q̃, if there is no zero-order collision term,

f̃0(τ, q̃) = f̃0(q̃) . (3.11)

It is convenient to work with the reduced phase-space density, integrating out the dependence
on the momentum magnitude, defined as

F(τ,x, n̂) ≡ 1

Ñ

∫
q3dq δf(η,x, q) , (3.12)

where the constant Ñ is related to the comoving energy density

Ñ ≡
∫
q̃3dq̃ f̃0(q̃) =

2π2

g∗
a4ρ̃ . (3.13)

Plugging the geodesic equation (3.4) into the right-hand side of (3.8) and integrating over
the momentum magnitude, we obtain, to all orders in β,

∫
q3dq

Df

dτ
= Ñ

[
∂

∂η

1

γ4(1− n̂ · β)4
+ Ḟ + ni∂iF −

4

γ4(1− n̂ · β)5

(
1

2
ni∂iA+ ninjCij

− 1

2
βi∂iA− βinjCij − βinjnkDijk

)]
. (3.14)

Expanding it to first order in β, we have

∫
q3dq

Df

dτ
= Ñ

[
4n̂ · β̇ + Ḟ + ni∂iF − 4

(
1

2
ni∂iA+ ninjCij

)
(1 + 5n̂ · β)

+ 4βi
(

1

2
∂iA+ njCij + njnkDijk

)]
. (3.15)

The first moments of the angular distribution can be obtained performing the
appropiate integrals

∫
dΩ

4π

∫
q3dq

Df

dτ
= Ñ

[
δ̇ +

4

3
∂iδv

i − 4

3
Cijδ

ij − 4

3
βi∂iA−

4

3
Dijkδ

ijβk
]
, (3.16)

∫
dΩ

4π
ni
∫
q3dq

Df

dτ
=

4

3
Ñ
[
β̇i + δv̇i +

3

4
∂jπ

ij +
1

4
∂iδ − 1

2
∂iA− (δijβk + δjkβi)Cjk

]
,

(3.17)
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where we have defined

δ ≡
∫

dΩ

4π
F =

δρ

ρ̃
, (3.18a)

δv ≡ 3

4

∫
dΩ

4π
n̂F =

δQ

ρ̃+ P̃
, (3.18b)

πij ≡
∫

dΩ

4π

(
ninj − 1

3
δij
)
F =

δΠij

ρ̃
. (3.18c)

3.1.2 Massive particles

The results for massive particles are much more involved. In this case, we must use the full
expressions for the Lorentz transformations (2.39) and the geodesics (3.4). However, since we
will focus on non-relativistic particles, we can simplify the analysis restricting it to the first
moments of the Boltzmann equation. Summing up, in this section we compute the evolution
of the number density, energy and velocity perturbations.

The energy density contrast, equation of state and sound speed are defined as

δ ≡ δρ

ρ̃
, w ≡ P̃

ρ̃
, c2

s ≡
δP

δρ
. (3.19)

Note that in these definitions the background quantities are referred to the Õ frame while
the perturbed quantities are defined in the O frame. The election of intermediate variables
is a matter of choice, the only condition being that we write the energy-momentum tensor
consistently in terms of these variables. We stick to this convention throughout this work.
The final results for the first moments of the distribution are

• Number density:

a−3g∗

∫
d3q

(2π)3

Df

dτ
= a−3 ∂

∂τ

(
γ a3ñ

)
+ a−3 ∂

∂τ

(
a3δn

)
+ ∂iδV

i

− γñ
[

1

2
βi∂iA+ δijCij +Dijkδ

ijβk
]
. (3.20)

• Energy:

a−4g∗

∫
d3q

(2π)3
ε
Df

dτ
=

∂

∂τ

[
γ2(ρ̃+ β2P̃ )

]
+ 3H(ρ̃+ P̃ )

(
1 +

4

3
β2γ2

)
+ ∂iδQ

i

+ ρ̃
(
δ̇ + 3Hδ(c2

s − w)
)

+ δ
(

˙̃ρ+ 3H(ρ̃+ P̃ )
)

− γ2(ρ̃+ P̃ )
[
βi∂iA+ δijCij + βiβjCij +Dijkδ

ijβk
]
. (3.21)

• Momentum:

a−4g∗

∫
d3q

(2π)3
qi
Df

dτ
= a−4 ∂

∂τ

[
γ2βi a4(ρ̃+P̃ )

]
+ a−4 ∂

∂τ

(
a4δQi

)
+ ∂j

(
δΠij + δijδP

)

− γ2(ρ̃+ P̃ )

[
1

2

(
δil + βiβl

)
∂lA

+
(
δjkβi + δijβk

)(
Cjk +Djklβ

l
)]

. (3.22)
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These results are exact to all orders in β, for relativistic and non-relativistic particles alike.
They can be shown to reproduce (3.16) and (3.17) for massless particles. Next we define

δn ≡
δn

ñ
, δvi ≡ δV i

Ñ
. (3.23)

Assuming that the zero-order Boltzmann equation (without collisions) is satisfied, so we keep
only cosmological perturbations and terms with β, and expanding to first NR order and to
first order in β we have

• Number density:

a−3g∗

∫
d3q

(2π)3

Df

dτ
' Ñ

{
δ̇n + ∂iδv

i − 1

2
βi∂iA− δijCij −Dijkδ

ijβk
}
. (3.24)

• Energy:

a−4g∗

∫
d3q

(2π)3
ε
Df

dτ
' ρ̃

{
δ̇ + 2Hβkδvk + ∂iδv

i − βi∂iA− δijCij −Dijkδ
ijβk

}
.

(3.25)

• Momentum:

a−4g∗

∫
d3q

(2π)3
qi
Df

dτ
' ρ̃

{
β̇i +Hβi + δv̇i +

(
βiδjk + βjδik

)
∂jδv

k +Hδvi

− 1

2
∂iA−

(
δjkβi + δijβk

)
Cjk

}
. (3.26)

3.2 Collision term

This section is devoted to the calculation of the collision term for Compton scattering between
electrons and photons. The notation in this section is slightly different. As we mentioned
before, the collision term must be written in terms of the momenta pi measured by a locally
inertial observer at a fixed spatial position. They are related to the momenta qi we have
been using as defined in (2.57), i.e. qi = pi/a.

The standard physical assumptions underlying the derivation of the collision term are

• When written in terms of the momenta pi, the collision term is the same as in flat
space, since it takes into account local information where the curvature effects are not
important. In the same way, the matrix element M is computed using quantum field
theory (QFT) in flat space.

• The temperature of the plasma is low enough so that the electrons are non-relativistic.
We keep only the first order correction in the non-relativistic expansion, so we keep the
electron velocity but neglect its pressure and sound speed. We consider the NR limit
of Compton scattering, i.e. Thomson scattering.

• Electrons and protons are much more tightly coupled between them than to the photons.
The velocities of free electrons, protons and the full baryonic velocity are the same
throughout the evolution.
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• The angular dependence of Thomson scattering is neglected. This angular dependence
has proven important for 1% accuracy and especially for polarization, but we will not
take it into account in this work. We use the angle-averaged matrix element instead.

• The number of internal degrees of freedom is not included in the definition of f , i.e.
the equilibrium distributions correspond to the usual Bose-Einstein and Fermi-Dirac
distributions.

• The medium is diluted enough so that we can neglect the quantum statistical factors
(1 ± f) responsible for the Bose enhancement and Pauli blocking effects. We do not
take into account any plasma effect from finite temperature QFT.

With these qualifications, our starting point is the following definition of the collision
term for the process e(pe) + γ(p)↔ e(p′e) + γ(p′)

C[f(p)] =
1

4p

∫
DpeDp′Dp′e(2π)4δ(pµ + pµe − p′µ − p′µe )

×
[
f(p′)fe(p

′
e)− f(p)fe(pe)

] ∑

spins

|M|2 , (3.27)

where Dp = dp3

(2π)32E
is the Lorentz-invariant phase-space volume element and the dependence

of the distribution functions on space-time coordinates has been omitted since it does not
play any role. In our setting, we must implement the fact that the fluids are moving. The
collision term is defined in the cosmic center of mass, O frame, and in this frame both photons
and electrons have their own bulk velocity. We will represent it schematically as

C[f ] =
1

4p

∫
DpeDp′Dp′e(2π)4δ(pµ + pµe − p′µ − p′µe )

×
[
f̄(Λβp

′)f̃e(Λβep
′
e)− f̄(Λβp)f̃e(Λβepe)

] ∑

spins

|M|2 , (3.28)

where f̄ and f̃e are the distribution functions of photons and electrons in their frame, moving
with bulk velocities β and βe, respectively, with respect to the O frame.

Previously, the Õ frame was defined as the frame comoving with the fluid. In this case,
we are facing two moving fluids. We take Õ to be the frame moving with velocity βe with
respect to O, i.e. the frame comoving with the electrons. Performing the integration in this
frame, we have

C[f ] =
1

4p

∫
Dp̃eDp̃′Dp̃′e(2π)4δ(p̃µ + p̃µe − p̃′µ − p̃′µe )

×
[
f̄(ΛβΛ−1

βe
p̃′)f̃e(p̃

′
e)− f̄(ΛβΛ−1

βe
p̃)f̃e(p̃e)

] ∑

spins

|M|2 . (3.29)

The previous two equations may seem devoid of any additional content with respect to (3.27).
As they stand, without defining f and fe, they correspond just to a renaming of functions and
reshuffling of variables. The physical content lies in (3.7), i.e. in the structure and relation
of the background distribution function in O and Õ. The Õ frame is comoving with the
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electrons and observes a standard isotropic equilibrium distribution. It is in this frame that
we can perform the usual NR expansion [36] to get

C[f ] =
σT
4πp

∫
p̃′dp̃′dΩ̃′

[
ñfull
e δ(p̃− p̃′) + ñeũ

full
e · (p̃− p̃′)

∂δ(p̃− p̃′)
∂p̃′

]

×
(
f̄(ΛβΛ−1

βe
p̃′)− f̄(ΛβΛ−1

βe
p̃)
)
, (3.30)

where σT is the Thomson cross section and we have defined

ñfull
e ≡ 2

∫
d3p̃e
(2π)3

f̃e(p̃e) , ñeũ
full
e ≡ 2

∫
d3p̃e
(2π)3

p̃e
Ẽpe

f̃e(p̃e) , (3.31)

where f̄ , f̃e correspond to the full distribution functions. Just as we did for the left-hand side
in section 3.1, we will split the distribution functions into a background and a perturbation
part and integrate out the magnitude of the photon momentum. The whole process, to all
orders in β, is detailed in the appendix B. Here we present only the final results. To first
order in β, we get

1

Ñ

∫
q3dq C[f ] = ñeσT

[
− (1− n̂ · βe)Fγ + (1 + 3n̂ · βe)δγ −

8

3
βe · δvγ − 4n̂ ·∆β

− 8

3
δve ·∆β + 4n̂ · δve n̂ ·∆β + 4δve · (n̂− βe + 4n̂ n̂ · βe)

− 4n̂ · β δne
ñe

]
, (3.32)

where ñe is the number density of free electrons in the Õ frame, δne and δve are defined
in (3.23) and the difference of velocities is

∆β ≡ β − βe . (3.33)

Since, to first order in β, the background quantities like ρ or n concide in the O and Õ
frames, we will drop the distinction. The first two moments of the photon collision term are

1

Ñ

∫
dΩ

4π

∫
q3dq C[f(p)] = −4

3
neσT

[
βe · (δvγ − δve) + δve ·∆β

]
, (3.34)

1

Ñ

∫
dΩ

4π
ni
∫
q3dq C[f(p)] = −4

3
neσT

[
δviγ − δvie + ∆βi + βi

δne
ne
− βieδγ −

3

4
βe jπ

ij
γ

]
.

(3.35)

Conserved quantities. We have just computed the collision term for photons. However,
the whole plasma is described by the coupled system

Df

dt
= C[f, fe] , (3.36a)

Dfe
dt

= Ce[f, fe] . (3.36b)

We ought to compute the collision term for electrons Ce as well. Not surprisingly, both terms
are not independent. In fact, we can make use of some conservation laws derived from the
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full Boltzmann equation to save us most of the work. Following [36], we write both collision
terms with the compact notation

ceγ =
1

2

1

2Epe

1

2p

1

2Ep′e

1

2p′
(2π)4δ(pµ + pµe − p′µ − p′µe )

×
[
f(p′)fe(p

′
e)− f(p)fe(pe)

] ∑

spins

|M|2 , (3.37a)

Ce[fe(pe)] ≡
∫

d3p

(2π)3

d3p′

(2π)3

d3p′e
(2π)3

ceγ ≡ 〈ceγ〉pp′p′e , (3.37b)

C[f(p)] ≡ 〈ceγ〉p′p′epe . (3.37c)

Integrating over all the momenta, it is easy to see that we have

〈ceγ〉pepp′ep′ = 0 , (3.38)

〈(p+ Epe)ceγ〉pepp′ep′ = 0 , (3.39)

〈(p+ pe)ceγ〉pepp′ep′ = 0 , (3.40)

corresponding to the conservation of the number of particles, energy and momentum. Using
these results, the following equalities hold

∫
d3pe
(2π)3

Epe Ce[fe(pe)] = −
∫

d3p

(2π)3
p C[f(p)] , (3.41)

∫
d3pe
(2π)3

pe Ce[fe(pe)] = −
∫

d3p

(2π)3
p C[f(p)] . (3.42)

This means that we can compute the first two moments of the Boltzmann equation for
electrons, the only ones that we will need since they are non-relativistic, from the first two
moments of the photons, already computed in (3.34) and (3.35).

3.3 Boltzmann equation for different components

3.3.1 Photons

The reduced Boltzmann equation for photons is obtained combining the Liouville opera-
tor (3.15) and the collision term (3.32). To zero order in cosmological perturbations, it
describes the evolution of the bulk velocity β

β̇i = −aneσT∆βi . (3.43)

To first order in cosmological perturbations and β, we get the evolution of the reduced
phase-space density

Ḟγ + ni∂iFγ − 4

(
1

2
ni∂iA+ ninjCij

)
(1 + 5n̂ · β) + 4βi

(
1

2
∂iA+ njCij + njnkDijk

)

= aneσT

[
− (1− n̂ · βe)Fγ + (1 + 3n̂ · βe)δγ −

8

3
βe · δvγ −

8

3
δvb ·∆β

+ 4n̂ · δvb n̂ ·∆β + 4δvb · (n̂− βe + 4n̂ n̂ · βe)− 4n̂ · β δne
ne

+ 2n̂ ·∆βA
]
.

(3.44)
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Since protons and electrons form a single tightly coupled baryonic fluid, we have substituted
δve with δvb, the velocity of baryons. The evolution of the fluid variables can be obtained
performing the appropiate angular integrals. The equations for the density, combining (3.16)
and (3.34), and the velocity, combining (3.17) and (3.35), are

δ̇γ +
4

3
∂iδv

i
γ −

4

3
Cijδ

ij − 4

3
βi∂iA−

4

3
Dijkδ

ijβk

= −4

3
aneσT

[
βe · (δvγ − δvb) + δvb ·∆β

]
, (3.45)

δv̇iγ +
3

4
∂jπ

ij
γ +

1

4
∂iδγ −

1

2
∂iA− (δijβk + δjkβi)Cjk

= −aneσT
[
δviγ − δvib + βi

δne
ne
− βieδγ −

3

4
βe jπ

ij
γ −

1

2
∆βiA

]
. (3.46)

3.3.2 Baryons

The evolution of the baryon density can be found using the left-hand side (3.25) and energy
conservation (3.41). For the velocity, we must use the left-hand side (3.26) and momentum
conservation (3.42). As mentioned before, since they are much more tightly coupled between
them than to photons, electrons and protons form a single baryonic fluid. We use βe to denote
the baryon velocity. To zero order in cosmological perturbations, we find the evolution of the
bulk velocity βe

β̇ie +Hβie =
4ργ
3ρb

aneσT∆βi . (3.47)

To first order in cosmological perturbations and β, the evolution of the first two moments of
the distribution is

δ̇b + 2Hβe · δvb + ∂iδv
i
b − βie∂iA− δijCij −Dijkδ

ijβke

=
4ργ
3ρb

aneσT

[
βe · (δvγ − δvb) + δvb ·∆β

]
, (3.48)

δv̇ib +Hδvib +
(
βieδ

j
k + βjeδ

i
k

)
∂jδv

k
b −

1

2
∂iA−

(
δjkβie + δijβke

)
Cjk

=
4ργ
3ρb

aneσT

[
δviγ − δvib + βi

δne
ne
− βieδγ −

3

4
βe jπ

ij
γ −

1

2
∆βiA

]
. (3.49)

3.3.3 Massless neutrinos

Since we will neglect both the mass and coupling of neutrinos, they only free-stream with
the same left-hand side as photons. The equation for βν is

β̇iν = 0 . (3.50)

The equation for the evolution of the reduced phase-space density is

Ḟν + ni∂iFν − 4

(
1

2
ni∂iA+ ninjCij

)
(1 + 5n̂ · βν)

+ 4βiν

(
1

2
∂iA+ njCij + njnkDijk

)
= 0 . (3.51)

– 20 –



J
C
A
P
0
6
(
2
0
1
9
)
0
4
1

3.3.4 Cold dark matter

Cold dark matter behaves as collisionless non-relativistic matter, i.e. it just follows the same
equations as baryons without interactions. The equation for βc is

β̇ic +Hβic = 0 . (3.52)

The relevant equations for the perturbations are

δ̇c + 2Hβc · δvc + ∂iδv
i
c − βic∂iA− δijCij −Dijkδ

ijβkc = 0 , (3.53)

δv̇ic +Hδvic +
(
βicδ

j
k + βjcδ

i
k

)
∂jδv

k
c −

1

2
∂iA−

(
δjkβic + δijβkc

)
Cjk = 0 . (3.54)

3.3.5 Total fluid

The total energy-momentum tensor, adding all the components, does not contain any explicit
β contribution after enforcing the cosmic center of mass condition. The conservation of the
total energy-momentum tensor, which is a direct consequence of the Einstein equations,

∇µTµν = 0 , (3.55)

gives us the conservation and Euler equations for the total fluid

δ̇ + 3H(c2
s − w)δ + (1 + w)∂i

(
δvi −Bi

)
+

1

2
(1 + w)Ḣ i

i = 0 , (3.56)

δv̇i +H(1− 3w)δvi +
ẇ

1 + w
δvi +

1

1 + w
∂i
(
c2

sδ
)

+
1

1 + w
∂jπ

j
i −

1

2
∂iA = 0 , (3.57)

where the different variables are defined in the same way as for the individual components,
but using the total energy-momentum tensor, e.g.

δ ≡ 1

ρ

∑

s

ρsδs , (3.58)

c2
sδ ≡

1

ρ
δP ≡ 1

ρ

∑

s

δPs . (3.59)

4 Multipole analysis

The cosmological perturbations can be classified according to their transformation rules under
the group of spatial rotations. This yields the usual splitting in scalar, vector and tensor
perturbations, the only ones that contribute to the Einstein equations. Additionally, in the
standard cosmological perturbation theory, the three types of perturbations are decoupled
at the linear level, a fact known as decomposition theorem [37]. Since, in this case, the only
angular contribution comes from factors of the form (n̂ · k̂), i.e. the angle between the line of
sight and the direction of the Fourier mode, it is customary to write a multipole expansion
for the scalar part of the Boltzmann equation (3.44) in terms of Legendre polynomials [33]

F(τ,k, n̂) =
∞∑

`=0

(−i)`(2`+ 1)F`(τ,k)P`(n̂ · k̂) . (4.1)
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The Boltzmann equation then unfolds into a whole hierarchy of coupled differential equations
for the coefficients F`. The vector modes are usually neglected altogether since, even if ini-
tially present, they rapidly decay. The tensor modes are predicted in small quantities in many
inflationary scenarios and their evolution must be followed when studying polarization effects.

The key difference in our scenario is the existence of a new direction β̂, introducing new
angular dependencies in the Boltzmann equation (3.44). This means that we must resort to
a full decomposition in terms of spherical harmonics of the form

F(τ,k, n̂) =
√

4π
∞∑

`=0

∑̀

m=−`
(−i)`+m

√
2`+ 1Fm` (τ,k)Y m

` (n̂) , (4.2)

where the coefficients have been defined to match the previous ones for the scalar m = 0
modes. In particular, in our case, the decomposition theorem no longer holds. As it can be
checked, in addition to the usual coupling between ` − 1 and ` + 1 modes, the term (n̂ · β̂)
introduces new couplings between the modes m−1 and m+1. It is possible to write down the
new hierarchy of coupled differential equations for the modified Boltzmann equation (3.44)
and it is important for a correct computation of CMB anisotropies [32]. However, in this work
we are mainly concerned with LSS observables and we do not need to trace the evolution of
ultrarelativistic species with high accuracy. Therefore, we will be working under an approxi-
mation scheme that allows us to consider only a subset of these equations. Consequently, we
present in this section a self-contained simplified derivation of the system of equations that
we will solve in later sections, bypassing the full multipole decomposition.

4.1 Scalar-vector-tensor decomposition

Any spatial vector, in particular the velocity, can be decomposed into a divergence and a
divergenceless part

δvi = ∂iv
S + χi , ∂iχ

i = 0 , (4.3)

where vS is the scalar part of the velocity and χ is the vector part, the vorticity. In Fourier
space, it can be written as

δvi = − ik̂i

k
θ + χi , θ ≡ −k2vS . (4.4)

A spatial traceless tensor can be decomposed in a similar way

πij =

(
∂i∂j −

1

3
δij∂

k∂k

)
πS + 2∂(iπ

V
j) + πT

ij , (4.5)

where again the vector part πV is divergenceless and πT
ij is the tensor part, satisfying

∂iπT
ij = 0 , δijπT

ij = 0 . (4.6)

Alternatively, we can write it in Fourier space as

πij = −2

(
k̂ik̂j −

1

3
δij

)
σ + ik

(
k̂iπ

V
j + k̂jπ

V
i

)
+ πT

ij , σ ≡ k2

2
πS , (4.7)

– 22 –



J
C
A
P
0
6
(
2
0
1
9
)
0
4
1

according to the notation of [33] for the scalar part of the shear tensor, σ. Adapting the
notation of [38] for a generic gauge, the metric perturbations can be decomposed as

ds2 = a2(τ)
{
−(1 + 2ψ)dτ2 + 2(∂iB − Si)dxidτ

+
(
δij − 2φδij + 2∂i∂jE + (∂iFj + ∂jFi) + hij

)
dxidxj

}
, (4.8)

where S and F are vector perturbations, i.e. divergenceless vectors, and hij is a tensor
perturbation, i.e. a divergenceless and traceless tensor. Our previously defined variables for
a general metric perturbation (2.53) now take the form

A = −2ψ , (4.9a)

Bi = ∂iB − Si , (4.9b)

Hij = −2φδij + 2∂i∂jE + ∂iFj + ∂jFi + hij . (4.9c)

From now on it will be convenient to work in Fourier space and to choose a basis adapted to
the previous decomposition. The components of the line-of-sight vector n̂ are

n̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ , (4.10a)

=
1√
2

eiφ sin θ ê+ +
1√
2

e−iφ sin θ ê− + cos θ k̂ , (4.10b)

=

√
4π

3

(
−Y +1

1 ê+ + Y −1
1 ê− + Y 0

1 k̂
)
, (4.10c)

where we have chosen the so-called helicity basis [39]

k̂ ≡ ẑ , (4.11a)

ê+ ≡
1√
2

(x̂− iŷ) , (4.11b)

ê− ≡
1√
2

(x̂+ iŷ) , (4.11c)

and our convention for the spherical harmonics matches those of [39] or [40].

4.2 Lower moments evolution

The first moments of the Boltzmann equation have already been obtained in the previous
sections, with ` = 0 corresponding to the density (3.45) and ` = 1 to the velocity (3.46). The
next moment ` = 2 can be obtained via direct integration of the Boltzmann equation (3.44)
and corresponds to the shear tensor (3.18c). Performing the appropiate integral, we have

π̇ij + ∂k

∫
dΩ

4π
nkninjFγ −

4

9
δij∂kδv

k
γ −

4

3

(
β(i∂j) −

1

3
δijβ

k∂k

)
A

− 8

15

(
C(ij) −

1

3
δijδ

klCkl

)
+

8

15
βm
(
Dm(ij) −

1

3
δijDmklδ

kl

)

= −aneσT
[
πij − βke

∫
dΩ

4π
nkninjFγ +

4

9
βe · δvγδij −

32

15

(
δvb (iβe j) −

1

3
δijδvb · βe

)

− 8

15

(
δvb (i∆βj) −

1

3
δijδvb ·∆β

)]
. (4.12)
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To obtain the scalar, vector and tensor parts of this expression, we compute the components as

π33 ≡ k̂ik̂jπij , π3+ ≡ k̂iêj+πij , π++ ≡ êi+êj+πij . (4.13)

The projection of a vector V in the helicity basis is computed in a similar way

V3 ≡ k̂ · V , V+ ≡ ê+ · V , V− ≡ ê− · V . (4.14)

Projecting the equations of motion we obtain

π̇33 + ik

∫
dΩ

4π
(n̂ · k̂)3Fγ −

4

9
θγ −

8i

9
β · kA

− 8

15

(
C33 −

1

3
Ckk

)
+

8

15

(
βmDm33 −

1

3
βmDmklδ

kl

)

= −aneσT
[
π33 −

∫
dΩ

4π
(βe · n̂)(k̂ · n̂)2Fγ +

4

9
βe · δvγ −

32

15

(
δv3
bβ

3
e −

1

3
δvb · βe

)

− 8

15

(
δv3
b∆β3 −

1

3
δvb ·∆β

)]
, (4.15)

π̇3+ + ik

∫
dΩ

4π
(n̂ · k̂)2(n̂ · ê+)Fγ −

2

3
iβ+kA−

4

15
(C3+ + C+3) +

4

15
βj (Dj3+ +Dj+3)

= −aneσT
[
π3+ −

∫
dΩ

4π
(βe · n̂)(n̂ · k̂)(n̂ · ê+)Fγ −

16

15

(
δv3
bβ

+
e + δv+

b β
3
e

)

− 8

15

(
δv3
b∆β

+ + δv+
b ∆β3

) ]
, (4.16)

π̇++ + ik

∫
dΩ

4π
(n̂ · k̂)(n̂ · ê+)2Fγ −

8

15
C++ +

8

15
βmDm++

= −aneσT
[
π++ −

∫
dΩ

4π
(βe · n̂)(n̂ · ê+)2Fγ −

32

15
δv+
b β

+
e −

8

15
δv+
b ∆β+

]
, (4.17)

where it is easy to check that the projections correspond to the scalar part and one of the
two vector and tensor helicities

π33 = −4

3
σ , π3+ = ikπV

+ , π++ = πT
++ . (4.18)

There remains to perform a couple of angular integrals, writing down the appropiate
coefficients of the expansion (4.2) and to substitute the metric variables defined in the
previous section (4.8). After these simplifications, and rearranging terms, the first moments
of the Boltzmann equation for photons are

Scalar. (m = 0, ` = 0, 1, 2)

δ̇γ +
4

3
θγ +

4k2

3
(B − Ė)− 4φ̇+

8

3
i (β · k)(ψ − φ) +

2k2

3
β · F

= −4

3
aneσT

[
βe · (χγ − χb) + χb ·∆β −

i

k
k̂ ·
(
βe (θγ − θb) + θb ∆β

)]
, (4.19)

θ̇γ −
k2

4
(δγ − 4σγ)− k2ψ − 4i(β · k)φ̇+ 2ik2(β · k)(B − Ė)− k2β ·

(
S +

1

2
F

)

= −aneσT
[
θγ − θb − ik ·

(
βe(δγ − σγ)− β δne

ne

)
− 3ik

4
β · πV

γ + iψ∆β · k
]
, (4.20)
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σ̇γ −
4

15
θγ +

3k

10
F0

3 −
4i

15
(β · k) (φ+ 5ψ)− 4

15
k2(B − Ė)− 2

15
k2β · F

= −aneσT
[
σγ −

4i

15k
k̂ · (βeθγ + 4βeθb + ∆β θb)

+
3i

10

(
(βe · k̂)F0

3 − i

√
2

3

(
(βe · ê+)F−1

3 + (βe · ê−)F+1
3

))

− 2

15

(
β · χγ + 4βe · χb + ∆β · χb

) ]
. (4.21)

Vector. (m = +1, ` = 1, 2)

χ̇+
γ −

3k2

4
πV

+ − 4β+φ̇+ β+k
2(B − Ė) +

i

2
β · k Ḟ+ +

1

2
β−ḣ++

= −aneσT
[
χ+
γ − χ+

b + β+
δne
ne
− β+

e δγ −
1

2
β+
e σγ −

3i

4
(βe · k̂)πV

+ −
3

4
β−e π++ + ψ∆β+

]
,

(4.22)

π̇V
+ +

4

15

(
χ+
γ +

√
3

2
F+1

3

)
+

4

15
β+(φ+ 5ψ) +

4

15

(
S+ + Ḟ+

)
− 2

15
β−h++ +

2i

15
β3kF+

= −aneσT
[
πV

+ +
4

15k2
β+
e

(
θγ + kF0

3

)
+

1

k

√
2

15
β−e F+2

3 +
4i

15k
β3
e

(
χ+
γ +

√
3

2
F+1

3

)

+
4

15k2

(
∆β+θb + 4β+

e θb
)

+
4i

15k

(
∆β3χ

+
b + 4β3

eχ
+
b

) ]
(4.23)

Tensor. (m = +2, ` = 2)

π̇++ + k

√
2

15
F+2

3 +
4

15
ḣ++ +

4

15
i(β · k)h++

= −aneσT
[
π++ −

8

15

(
β+
e χ

+
γ + 4β+

e χ
+
b + ∆β+χ

+
b

) ]
. (4.24)

The corresponding results for the other helicity can be obtained substituting − ↔ + in every
sub and superscript.

Several comments are in order now. In the first place, note that all the couplings
between scalar, vector and tensor modes are introduced by terms proportional to β. In the
standard case, each mode evolves independently. In the second place, note the appearance
of terms with ` = 3. What we present here are but the lowest moments of a whole hierarchy
of coupled differential equations. This system obeys a recurrence relation but it must be
truncated at a finite, prefearably large, value of `. The traditional line-of-sight approach [41]
was developed to allow a truncation at lower `, and it is used by every modern Boltzmann
solver [42, 43]. It will not be used here, even though it can be adapted to our case [32], since
we are mainly interested in the matter power spectra and not in the CMB. Instead, we will
study a simplified version of the system, under the following approximations.

• We will work to first order in β and to first order in cosmological perturbations, keeping
cross-products. We have been implicitly working under this assumption, since the RW
background is only correct to first order in β, but we will consistently carry it through.
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• We will assume that there are no initial vector or tensor modes to zero order in β. The
assumption is justified for vector modes, since most popular models of inflation do not
produce them at all. On the other hand, since we have not detected tensor modes so
far, and we have stringent limits on their amplitude, we assume that their amplitude
is small enough so we can neglect them.

Under this assumption, the hierarchy is simplified. Since they are zero initially the only
production occurs through their new couplings, i.e. it is proportional to β. The vector
modes are then O(β) and the tensor modes are O

(
β2
)
. In general, we can neglect the

backreaction of higher m modes into lower m modes. As we will see in the next section,
the Einstein equations are not modified, so we can apply the same reasoning to the
metric variables, i.e. S and F are O(β) and hij is O

(
β2
)
.

• The last approximation is the so-called fluid approximation. We will truncate the
hierarchy at ` = 2 for scalar and vector modes. This is a classic working assumption
in approximate computations of the CMB, that may introduce up to 10% errors in
computations of the CMB spectrum [44]. Another source of error in our case is the
naive truncation scheme we are using, i.e. setting to zero all higher moments. It is a
well known fact that this truncation scheme, neglecting the damping produced by the
transfer of power to higher moments, produces some spurious growth at small scales
in the ultrarelativistic species. Since, in this work, we are not interested in following
with great precision the evolution of photons or neutrinos, and we have checked that
they have a negligible impact in our final results, we will nonetheless stick to this crude
truncation scheme in our numerical solutions.

To increase the accuracy of the results for ultrarelativistic species one would need to
evolve the full hierarchy [32], or at least introduce a better truncation scheme [33] or
an effective viscosity in the equations of motion for ultrarelativistic species [45].

5 Einstein equations

In this section we present the last piece of information needed to solve the system: the
evolution of the metric perturbations. It is worth remembering that, to first order in β, the
background quantities we are interested in, e.g. ρ and P , are equal in the O and Õ frames.
Hence, as in previous sections, we will drop the distinction. The full energy-momentum
tensor for each component is

T 0
0 + δT 0

0 = −ρ− δρ− (ρ+ P )Biβ
i , (5.1a)

T 0
i + δT 0

i = δQi + (ρ+ P )

(
δji +

1

2
Aδji +

1

2
Hj
i

)
βj , (5.1b)

T ij + δT ij = Pδij + δP δij + δΠi
j + (ρ+ P )βjB

i , (5.1c)

where β is different for each component. We must write now the Einstein equations with this
source for the metric (4.8). For the background evolution we obtain the standard Friedmann
equations plus a condition for the cosmic center of mass frame

H2 =
8πGa2

3

∑

s

ρs , (5.2)

0 =
∑

βs(ρs + Ps) , (5.3)

Ḣ+
1

2
H2 = −4πGa2

∑

s

Ps . (5.4)
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Applying the condition (5.3), the explicit β contributions to the full energy-momentum ten-
sor vanish

δT 0
0 =

∑

s

δT 0
s 0 = −

∑

s

δρs , (5.5a)

δT 0
i =

∑

s

δT 0
s i =

∑

s

δQs i , (5.5b)

δT ij =
∑

s

δT i
s j =

∑

s

(
δPsδ

i
j + δΠ i

s j

)
. (5.5c)

In our case the non-relativistic species have pressure and anisotropic stress of order β. Split-
ting the sources into relativistic and non-relativistic components we have

δρ =
∑

NR

δρ+
∑

R

δρ , (5.6)

δP =
2

3

∑

NR

ρ βkδv
k +

1

3

∑

R

δρ , (5.7)

δQi =
∑

NR

ρ δvi +
4

3

∑

R

ρ δvi , (5.8)

δΠij =
∑

NR

ρ

(
βiδvj + βjδvi − 2

3
δijβkδv

k

)
+
∑

R

δΠij . (5.9)

Finally, the Einstein equations read

• (0, 0)

2k2φ+ 6H(φ̇+Hψ)− 2k2H
(
B − Ė

)
= −8πGa2δρ . (5.10)

• (0, i)

ik(φ̇+Hψ) = −4πGa2δQ3 , (5.11)

k2(S+ + Ḟ+) = 16πGa2δQ+ . (5.12)

• (i, j)

k2(φ− ψ)− k2(∂τ + 2H)
(
B − Ė

)
= −12πGa2δΠ33 , (5.13)

(∂τ + 2H)(φ̇+Hψ) + ψ(Ḣ − H2) = 4πGa2(δP + δΠ33) , (5.14)

ik(∂τ +H)(S+ + Ḟ+) = 16πGa2δΠ+3 , (5.15)

1

2

(
∂2
τ + 2H∂τ + k2

)
h++ = 8πGa2δΠ++ . (5.16)

Again, the results for the − helicity can be obtained substituting − ↔ + in every sub and
superscript. With our notation, the Newtonian gauge can be obtained just setting B = E = 0
and the synchronous gauge is defined as

ψ = B = 0 , (5.17a)

φ = η , (5.17b)

E = − 1

2k2
(h+ 6η) . (5.17c)
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The Einstein equations in the synchronous gauge for scalar perturbations can be written as

ḣ− 2k2η

H = 3Hδ , (5.18)

η̇ =
3H2

2k2
(1 + w) θ , (5.19)

ḧ+ 6η̈ + 2H
(
ḣ+ 6η̇

)
− 2k2η = −12H2σ , (5.20)

ḧ+Hḣ = −3
(
1 + 3c2

s

)
H2δ , (5.21)

where we have defined

c2
sδ ≡

1

ρ
δP , θ ≡ 1

ik(ρ+ P )
δQ3 , σ ≡ − 4

3ρ
δΠ33 . (5.22)

Appendix C contains a discussion about how the gauge transformations are modified for non-
comoving fluids and, in particular, how to relate the Newtonian and synchronous gauges.

6 Reduced system and final equations

This section contains the final, simplified equations that will be numerically integrated. In
the first place, the relevant equations for the evolution of the bulk velocities are presented in
section 6.1. The background follows the standard ΛCDM evolution to first order in β, but
there is a first order effect on the perturbations.

Once the evolution of the bulk velocities is known, we need to study the modified
evolution of the perturbations. Working to first order in β and with the approximations
made at the end of section 4, our modifications to the scalar and vector modes decouple
and can be treated separately. This is the subject of the last two sections 6.2 and 6.3. As
mentioned before, the tensor modes are second order in β and we neglect them.

6.1 Bulk velocities

The evolution of the velocities of the different fluids is governed by

β̇ = − 1

τc
∆β , (6.1a)

β̇ν = 0 , (6.1b)

β̇e = −Hβe +
1

Rτc
∆β , (6.1c)

β̇c = −Hβc . (6.1d)

where we have defined

R ≡ 3ρb
4ργ

, ∆β ≡ βγ − βe ,

τ−1
c ≡ aneσT , A ≡ R

1 +R
, (6.2)

and, as we mentioned before, the initial conditions are chosen according to the constraint
∑

s

(ρs + Ps)βs = 0 , (6.3)
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so the cosmic center of mass condition is maintained in the evolution. Moreover, we will
assume that all the bulk velocities (β,βe,βν ,βc) are aligned along the β̂ axis in the O frame.
As we will shortly see, and can be inferred from (6.1a) and (6.1c), when two species are
tightly coupled their velocities evolve to become equal. Once a particle species decouples, the
magnitude of its velocity evolves independently but, in the absence of additional interactions
or other sources of anisotropy, it does not change its direction. In our scenario, we assume that
the whole visible sector has been in thermal equilibrium at some time so all its components,
even if they are decoupled like the neutrinos, have velocities pointing in the direction β̂. The
only remaining contribution is the dark sector, with DM among its components. The dark
sector in the O frame counterbalance the flux of momentum of the visible sector to achieve
an isotropic universe, so it must point in the −β̂ direction.

CDM and neutrinos are decoupled, but the photon-baryon system must be treated with
some care. In the tight coupling limit, τc � 1, it is easy to see that the velocities converge
in direction and magnitude and we can look for an approximate solution of this system.
Expanding perturbatively in the small parameter τc we have

β̇ = −AHβ +O(τc) , (6.4)

∆β = AHβτc +O
(
τ2
c

)
. (6.5)

The differential equation can be solved to yield

β =
β0

1 +R
, (6.6)

where β0 is the initial velocity of the visible sector in the O frame, the only additional free
parameter in our model. In a similar way, the neutrino and CDM equations can be solved
to give

βν = β0 , (6.7)

βc = βtoday
c a−1 . (6.8)

Using the scaling (6.8) and enforcing the constraint (6.3) during the tightly coupled regime,

the value of βtoday
c is found to be

βtoday
c = −4

3
β0

Ωγ + Ων

Ωcdm
. (6.9)

It is important to notice that according to the evolution of βc (6.8), early enough in time,
the condition βc � 1 could break down. However, this is only the case if the DM keeps
the non-relativistic distribution at early times. If the DM were light enough it could behave
as a radiation-like fluid well before its bulk velocity reaches βc = 1. In this case, βc would
remain constant and small. On the other hand, if the DM is heavy, its bulk velocity can
reach the relativistic regime. In this case, it is worth mentioning that even if the anisotropies
that would arise at the background level are O(β0) and not O

(
β2

0

)
, their effects can only be

relevant well before the matter-dominated era, with no observational consequences.
In order to avoid choosing any particular framework for the dark sector, we will not fol-

low the dark matter evolution using (6.8). Instead, we follow the evolution of photons (6.1a),
neutrinos (6.1b) and baryons (6.1c), and then the momentum of the dark sector, regardless
of its composition, can be obtained imposing the center of mass condition (5.3). Thus, our
only assumptions regarding the dark sector are that it is subdominant at early times and
that it behaves as cold matter plus cosmological constant at late times.
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6.2 Scalar modes

Here we provide the scalar mode equations for the photon-baryon system. Neutrinos and
CDM obey the same equations as photons and baryons, respectively, without the coupling
term, i.e. σT = 0. In addition to the definitions (6.2) we define

∆θ ≡ θγ − θb , (6.10)

The evolution of the photon perturbations is described by the equations (4.19), (4.20), (4.21).
Under the approximation scheme discussed at the end of section 4, i.e. neglecting backreaction
of vector modes and neglecting moments higher than ` = 2, these equations take the form

δ̇γ +
4

3
θγ +

4k2

3
(B − Ė)− 4φ̇+

8

3
i (β · k)(ψ − φ)

= − 4

3τc

[
− i

k
k̂ ·
(
βe∆θ + θb ∆β

)]
, (6.11a)

θ̇γ −
k2

4
(δγ − 4σγ)− k2ψ − 4i(β · k)φ̇+ 2ik2(β · k)(B − Ė)

= − 1

τc

[
∆θ − ik ·

(
βe(δγ − σγ)− β δne

ne
−∆βψ

)]
, (6.11b)

σ̇γ −
4

15
θγ −

4

15
k2(B − Ė)− 4i

15
(β · k) (φ+ 5ψ)

= − 1

τc

[
σγ −

4i

15k
k̂ · (βeθγ + 4βeθb + ∆β θb)

]
. (6.11c)

Neutrinos are described by the same system, without collision term. For baryons, we apply
our approximation scheme to equations (3.48) and (3.49) obtaining

δ̇b + θb − 3φ̇+ k2(B − Ė)− 2iH (βe · k̂)

k
θb + 2i(βe · k)(ψ − φ)

=
1

Rτc

[
− i

k
k̂ ·
(
βe∆θ + θb ∆β

)]
, (6.12a)

θ̇b +Hθb − k2ψ + 2i(βe · k)θb − 4i(βe · k)φ̇+ 2ik2(βe · k)(B − Ė)

=
1

Rτc

[
∆θ − ik ·

(
βe(δγ − σγ)− β δne

ne
−∆βψ

)]
. (6.12b)

Again, CDM equations take the same form, but without collision term. The evolution of the
full energy-momentum tensor is described by

δ̇ + 3H(c2
s − w)δ + (1 + w) θ − (1 + w)

(
3φ̇− k2(B − Ė)

)
= 0 , (6.13a)

θ̇ + (1− 3w)Hθ +
ẇ

1 + w
θ − k2

1 + w
c2

sδ +
4k2

3 (1 + w)
σ − k2ψ = 0 , (6.13b)

where

c2
sδ =

1

ρ

(
1

3
ργδγ +

1

3
ρνδν −

2iρcβcθc
3k

− 2iρbβeθb
3k

)
, (6.14)

σ =
1

ρ

(
ργσγ + ρνσν +

iρcβcθc
k

+
iρbβeθb
k

)
. (6.15)
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The system of cosmological perturbations is a system of linear differential equations.
A generic cosmological perturbation g(τ,k) can be written as a product of a primordial
perturbation, encoding the initial condition, and a transfer function, encoding the subsequent
evolution [46]

g(τ,k) = Tg(τ,k)Rk . (6.16)

As long as we consider only the adiabatic mode, every cosmological perturbation is propor-
tional to the primordial curvature perturbation Rk. Furthermore, since the system is linear,
it can be recast into a system for the evolution of the transfer functions with the substitu-
tion g → Tg. It is common practice to abuse slightly of the notation and to denote Tg as
g, the perturbation itself, and to solve the system as if it had initial conditions Rk = 1.
The information about the initial conditions is recovered later, in the computation of the
physical spectra, convolving the transfer function with the primordial spectrum. We follow
this practice.

An important difference in (6.11) and (6.12) with respect to the β = 0 case is the
appearance of imaginary terms. Usually, even though the Fourier coefficients are generally
complex, the evolution equations are real. In this case, both real and imaginary part of Tg
satisfy the same equation and with a judicious choice of initial global phase it can be made
purely real. With the appearance of complex coefficients, real and imaginary parts form a
coupled system with different equations of motion.

We will assume that the global phase has been chosen so that the imaginary parts are
initially zero, or at most O(β). Even if they are initially zero, the terms proportional to β
couple the imaginary to the real parts, driving them to a finite value proportional to β. Then
we are in the same situation as with the vector modes. The imaginary parts of the scalar
modes are determined by the real parts, but they do not backreact on them. The real parts
follow the standard cosmological evolution. Therefore, every perturbation transfer function
can be splitted as

g(τ,k) = gR(τ, k) + i(β̂ · k̂)gI(τ, k) , (6.17)

where now gR and gI are purely real and do not depend on the direction of k̂. Following this
definition and the previous discussion, we are in the following situation.

• The real part of the perturbations gR only contains adiabatic perturbations, as in
standard ΛCDM, and follows the standard evolution.

• The real parts act as external sources in the system for the imaginary parts, via con-
tributions O(β). The imaginary parts of the perturbations gI are O(β).

We will work in the synchronous gauge (5.17). The modified gauge-transformation
properties are provided in the appendix C. Written in the synchronous gauge, the final
system for the photon perturbations is

δ̇Iγ +
4

3
θIγ +

2

3
ḣI − 8βk

3
ηR =

4

3kτc

[
βe∆θ

R + θRb ∆β
]
, (6.18a)

θ̇Iγ −
k2

4
(δIγ − 4σIγ) + βk

(
ḣR + 2η̇R

)
= − 1

τc

[
∆θI − k

(
βe(δ

R
γ − σRγ )− β δn

R
e

ne

)]
, (6.18b)

σ̇Iγ −
4

15
θIγ −

2

15

(
ḣI + 6η̇I

)
− 4βk

15
ηR = − 1

τc

[
σIγ −

4

15k

(
βeθ

R
γ +4βeθ

R
b +∆β θRb

) ]
. (6.18c)
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The equations for neutrinos are the same, setting the collision part to zero. For the baryons
we have

δ̇Ib + θIb +
1

2
ḣI − 2Hβe

k
θRb − 2βekη

R = − 1

kRτc

[
βe∆θ

R + θRb ∆β
]
, (6.19a)

θ̇Ib +HθIb + 2βekθ
R
b + βek

(
ḣR + 2η̇R

)
=

1

Rτc

[
∆θI − k

(
βe(δ

R
γ − σRγ )− β δn

R
e

ne

)]
. (6.19b)

And finally for the full fluid

δ̇I + 3H(c2
s − w)δI + (1 + w) θI = −1

2
(1 + w) ḣI , (6.20a)

θ̇I + (1− 3w)HθI +
ẇ

1 + w
θI − k2

1 + w
c2

sδ
I +

4k2

3 (1 + w)
σI = 0 , (6.20b)

where, in the synchronous gauge,

c2
sδ
I =

1

ρ

(
1

3
ργδ

I
γ +

1

3
ρνδ

I
ν −

2ρbβeθ
R
b

3k

)
, (6.21)

σI =
1

ρ

(
ργσ

I
γ + ρνσ

I
ν +

ρbβeθ
R
b

k

)
. (6.22)

To complete the system, we compute the variables η and aḣ using a combination of the
Einstein equations

η̇I =
3H2

2k2
(1 + w) θI , (6.23)

ḧI +HḣI = −3
(
1 + 3c2

s

)
H2δI . (6.24)

Usually, one would integrate the equations for photons, baryons, neutrinos and CDM.
Then, after adding all the components, one would compute the sources for the metric per-
turbations, i.e. the full energy-momentum tensor. As we mentioned before, in our setup we
have found it more convenient to follow a different route. Instead of tracking the behaviour
of the dark sector, thus choosing a particular DM framework, we follow the evolution of the
whole fluid (6.20). Using these equations, the only underlying assumptions are

• The dark sector is subdominant with respect to neutrinos and photons at early times,
i.e. before the matter-domination era.

• There is a transition to a CDM behaviour at late times.

Under these assumptions, the only CDM contribution to the full fluid goes into the equation
of state w, since in the synchronous gauge it does not contribute to δP or σ at first order in
β. The evolution of the dark sector can be obtained afterwards subtracting the contributions
of photons, baryons and neutrinos from the full fluid.

We are in position now to numerically solve the system. Our strategy can be summarized
as follows.

I) The background and the real part of the perturbation, labelled with R, follow the
standard evolution and act as external sources in our system. We use class [43] to
precompute these sources and then solve numerically the system for the imaginary parts,
labelled with I. The equations for the evolution of β are (6.1a), (6.1b) and (6.1c).
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II) The system to be solved for the imaginary parts consists
of (6.18), (6.19), (6.20), (6.23), (6.24) and a neutrino contribution equal to (6.18) but
without collisions.

III) The initial conditions are discussed in the appendix D, where we find the analytic
super-Hubble behaviour of the perturbations. In addition to the usual adiabatic and
isocurvature modes [47], we find a “sourced mode” that depends on the initial value of
ηR, i.e. the standard initial curvature perturbation in the adiabatic mode. If we assume
that θγ(τ = 0) = θν(τ = 0), since they have been thermally coupled at some point, the
presence of these external sources introduces an isocurvature velocity perturbation

θIγ(τ = 0) = θIν(τ = 0) = 2β0kη
R(τ = 0) , (6.25)

where β0 is the initial value of the velocity of photons and neutrinos. All other pertur-
bations are assumed to be initially zero. The whole analysis and the series expansions
are described in the appendix D.

IV) The impact of perturbed recombination [48, 49] is usually neglected but it will be
important in our case. This subject is covered in section 6.2.1.

V) We need two approximation schemes to follow the numerical evolution, the so-called
tight coupling approximation (TCA) and radiation streaming approximation (RSA). We
use the same criteria and switches as class [43]. The appropiate equations for TCA
are presented in section 6.2.2. While TCA is important at early times, RSA is crucial
at late times, when the ultrarelativistic species are decoupled and start oscillating fast.
In this case, it is time consuming to follow every oscillation but it is not necessary
since at late times the impact of ultrarelativistic components on the metric potentials
is negligible. We describe this scheme in section 6.2.3.

6.2.1 Perturbed recombination

The disturbances in the photon temperature field produce perturbations in the ionization
fraction of the electrons. In standard ΛCDM, this inhomogeneous recombination produces
second order effects in the CMB, but it has proven important at late times when computing
other observables like the 21 cm radiation, through its effects in the gas temperature [48, 49].

Boltzmann codes like camb [42] and class [43] have implemented perturbed recombi-
nation at late times. This implementations follow the formulae of recfast [50], including
perturbations into the recombination coefficient that effectively takes into account multilevel
atom computations. These codes also track the evolution of the gas temperature and its
perturbations, that modify significantly the baryon sound speed.

The study of the dark ages in detail is beyond the scope of this work, but, in our case,
perturbed recombination plays a role in the photon-baryon system to first order in β, where
a perturbation in the number of free electrons δne appears, e.g. see (3.44). The baryon sound
speed has been neglected in our calculations, it is only important at very small scales, and
we will neglect the perturbations in the gas temperature and the recombination coefficient
as well. Defining the ionization fraction [50, 51] as

xe ≡
ne
nb
, (6.26)
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where ne and nb are the number densities of free electrons and baryons, respectively, we have

δne
ne
≡ δb + δxe , (6.27)

where δxe ≡ δxe/xe is the relative perturbation in the ionization fraction. Since δne always
appears multiplied by β, to study its evolution it suffices to take (3.24) with β = 0. After a
few manipulations we obtain

∂

∂τ

(
δne
ne

)
− ∂

∂τ

(
1

a3ne

)
a3δne + θb +

1

2
ḣ = 0 . (6.28)

Substituting the definition (6.27) we get the final evolution equation

δ̇xe +
ẋe
xe

(
δb + δxe

)
= 0 . (6.29)

We solve this equation for each mode with initial conditions δxe(τ = τini) = 0 and using the
full ionization history xe(τ) provided by the thermodynamics module in class, computed
using recfast.

6.2.2 Tight coupling expansion

At early times, the time scale of Thomson scattering, τc ≡ (aneσT )−1, is much shorter than
the time scales of evolution of the background, H−1, or that of the modes, k−1. In this
regime, the photon-baryon system becomes computationally hard to solve, since it involves
widely different scales. However, we can find approximate expressions to follow the evolution,
expanding perturbatively in the small parameter τc. This is known as the tight coupling
approximation (TCA). In this work, as usual, we will restrict ourselves to the lowest order
in this expansion. Higher order terms in the standard scenario, and the procedure to obtain
them systematically, can be found in [52] and [43].

To obtain the equations of motion to leading order in τc, we need to expand ∆θI and
σIγ to first order in τc, just as we did with the TC expansion for β. Solving simultaneously
for both quantities, and plugging in the TC values for the real part of the perturbations and
β, we get

∆θI = βk
(
δRγ − δRb − δRxe

)
+ τc

{
k2

4
AδIγ +AHθIγ + βk

[
A(A− 1)H

(
δRγ − δRb − δRxe

)

−AHδRγ +AθRγ −
4

15
θRγ +Aδ̇Rxe +

A
6
ḣR − 2

15

(
ḣR + 6η̇R

)]}
+O

(
τ2
c

)
, (6.30)

σIγ =
4β

3k
θRγ +

τc
15

{
4θIγ +

(
ḣI + 6η̇I

)
+ β

[
k(A− 5)δRγ + 4kηR +

8AH
k

θRγ

]}
+O

(
τ2
c

)
.

(6.31)

The final equations of motion of the photon-baryon plasma during the tightly coupled
phase are

δ̇Ib + θIγ +
1

2
ḣI = β

[
kA
4
δRγ + k

(
3

4
δRγ − δRb − δRxe

)
+ 2kηR +

2AH
k

θRγ

]
, (6.32)

δ̇Iγ +
4

3
θIγ +

2

3
ḣI = β

[
kA
3
δRγ +

8k

3
ηR +

8AH
3k

θRγ

]
, (6.33)
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θ̇Iγ +AHθIγ +
k2

4
(A− 1)δIγ = βk

[
A(1−A)H

(
δRγ − δRb − δRxe

)

−AθRγ −
4

3
θRγ −Aδ̇Rxe − 2η̇R −

(
1 +
A
6

)
ḣR
]
. (6.34)

The evolution of every mode starts in a radiation-dominated phase during which TCA is
valid. We start evolving this set of equations for each mode until we switch the TCA off,
according to the class switches [43]. Once we switch it off we evolve the full system, joining
the solutions smoothly.

6.2.3 Radiation streaming approximation

The evolution equations for ultrarelativistic species (6.18), like neutrinos, can be combined
into a single second-order differential equation

δ̈Iν = −k
2

3
(δIν − 4σIν) +

4βνk

3

(
ḣR + 4η̇R

)
− 2

3
ḧI , (6.35)

and the same applies to photons after decoupling. Once the perturbation is sub-Hubble, it
starts oscillating very fast. During matter domination, it is possible to ignore the contribution
of ultrarelativistic species to the total density but their contribution to the total velocity is
still important. The radiation streaming approximation (RSA) consists on following only the
non-oscillatory particular solution of these equations [43]. Since in this regime |δ̈ν | � k2|δν |
and |σν | � |δν |, our RSA solution is

δIν = − 2

k2
ḧI +

4βν
k

(
ḣR + 4η̇R

)
, (6.36)

θIν = −1

2
ḣI + 2βνkη

R , (6.37)

σIν = 0 . (6.38)

We will apply the same equations to photons after decoupling, neglecting the small impact
of reionization.

6.3 Vector modes

In this section, we will describe the evolution of the vector modes, following the same steps
as in the previous section. Since the evolution equations, and the initial conditions, for both
helicities are the same, we can rewrite the vorticity for the species s as

χs = χs

(
(β̂ · ê+) ê− + (β̂ · ê−) ê+

)
(6.39a)

= χs

(
(β̂ · x̂) x̂+ (β̂ · ŷ) ŷ

)
. (6.39b)

Then, we do not need to distinguish between helicities and we can just write one equation
for χs. The same applies to the vector part of the shear tensor πV

s . Starting from (4.22)
and (4.23), under our approximation scheme, i.e. neglecting tensor modes and moments
higher than ` = 2, the evolution of the photon vector modes is described by

χ̇γ +
1

2
β
(
ḣ− 2η̇

)
− 3k2

4
πV
γ = − 1

τc

[
∆χ+

(
β
δne
ne
− βe

(
δγ +

1

2
σγ

))]
, (6.40a)

π̇V
γ +

4

15
χγ +

4

15

(
S + Ḟ

)
+

4

15
βη = − 1

τc

[
πV
γ +

4

15k2
(βeθγ + 4βeθb + ∆βθb)

]
, (6.40b)
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where we have defined

∆χ ≡ χγ − χb . (6.41)

Again, the behaviour of neutrinos can be obtained from these equations, setting to zero the
collision term. From (3.49) and (3.54), baryons and dark matter evolve according to

χ̇b +Hχb + βeθb +
1

2
βe

(
ḣ− 2η̇

)
=

1

τcR

[
∆χ+

(
β
δne
ne
− βe

(
δγ +

1

2
σγ

))]
, (6.42)

χ̇c +Hχc +
1

2
βc

(
ḣ− 2η̇

)
= 0 . (6.43)

The evolution of the total vorticity, i.e. the vorticity of the full fluid, is

χ̇+H(1− 3w)χ+
ẇ

1 + w
χ− k2

1 + w
πV = 0 , (6.44)

where

πV =
1

ρ

(
ρνπ

V
ν + ργπ

V
γ −

1

k2
βeθb

)
. (6.45)

Finally, the relevant Einstein equation is

S + Ḟ =
16πGa2

k2
(ρ+ P )χ . (6.46)

Our strategy for the integration of the vector modes can be summarized as follows.

I) The background and the scalar modes evolve according to standard ΛCDM and act as
external sources for the vector modes. We use class to precompute the sources.

II) The system to be integrated consists of (6.40), (6.42), (6.44), (6.46) and a neutrino
contribution equal to (6.40) but without collisions.

III) The initial conditions are described in the appendix D.

IV) As in the scalar case, we have to take into account perturbed recombination and we
need to implement the TC expansion and RSA in the vector case, as discussed in the
next sections 6.3.1 and 6.3.2.

6.3.1 Tight coupling expansion

As in the previous section, we need to find the approximate equations to follow the tightly
coupled phase. Performing the same manipulations, and inserting the TC solutions for β and
the scalar modes, we get

∆χ = β (δγ − δb − δxe) + τc

{
AHχγ + β

[
A(A− 1)H (δγ − δb − δxe)−AHδγ +

A
3
θγ

+
2

15
θγ +Aδ̇xe +

A
6
ḣ+

1

15

(
ḣ+ 6η̇

)]}
+O

(
τ2
c

)
, (6.47)

πV
γ = − 4β

3k2
θγ −

4

15
τc

{
χγ + (S + Ḟ )− β

[
5

4
δγ − η −

A
4
δγ −

2AH
k2

θγ

]}
. (6.48)

The equation governing the evolution of the photon vorticity during TC is

χ̇γ = −AHχγ − βθγ −
1

2
β
(
ḣ− 2η̇

)
+ βA

[
(1−A)H(δγ − δb − δxe)−

1

3
θγ −

1

6
ḣ− δ̇xe

]
.

(6.49)
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6.3.2 Radiation streaming approximation

The equations (6.40a) and (6.40b) for neutrinos, or photons after decoupling, can be combined
into a second order differential equation

χ̈ν = −k
2

5
χν −

k2

5
(S + Ḟ )− k2

5
βνη −

1

2
βν

(
ḧ− 2η̈

)
. (6.50)

During the period of rapid oscillations, we are in the situation in which |χ̈ν | � |k2χν | and
|χ̇ν | � |k2πV

ν |. From the previous equation and (6.40a), the approximate non-oscillating
particular solution is found to be

χν = −(S + Ḟ )− βνη +
5

2k2
βν

(
ḧ− 2η̈

)
, (6.51)

πV
ν =

2

3k2
βν

(
ḣ− 2η̇

)
. (6.52)

6.3.3 Semi-analytic solutions

The equations obtained admit semi-analytic solutions in some regimes. During the TC
regime, from (6.47) and (6.49), we find, to lowest order in τc,

(1 +R)χγ = −1

2
β0(h− 2η) + β0A (δγ − δb − δxe)−

β0

3

∫ (
1 +
A
4

)
θγdτ + Cγ , (6.53)

(1 +R)χb = −1

2
β0(h− 2η)− β0

1 +R
(δγ − δb − δxe)−

β0

3

∫ (
1 +
A
4

)
θγdτ + Cγ , (6.54)

where Cγ is a constant of integration, to be set with the initial condition, and β0 is the
initial velocity of the photon-baryon plasma. Another result that can be obtained, integrat-
ing (6.43), is the evolution of CDM

aχc = −1

2
βtoday
c (h− 2η) + Cc . (6.55)

As discussed before, we do not specify the behaviour of the dark sector at early times. Hence,
we do not use this equation. We solve the system instead using the total vorticity (6.44) and
then we obtain the vorticity of the dark sector subtracting the other components.

7 Results and discussion

7.1 Observables

Once we have constructed a consistent system of equations, we must discuss which of the
intermediate variables correspond to physical observables. One of the main observables in cos-
mology is the distribution of temperature anisotropies in the CMB. The CMB is very nearly
isotropic and described, at the background level, by an equilibrium Bose-Einstein distribution

f0 =
1

e p/T − 1
. (7.1)

Deviations from this background distribution are usually parameterized as temperature
perturbations

f(τ,x, p, n̂) =

[
exp

(
p

T [1 + Θ(τ,x, n̂)]

)
− 1

]−1

. (7.2)
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The temperature perturbation can then be written in terms of the distribution function as

(1 + Θ)4 − 1 =

∫
p3dp (f − f0)
∫
p3dp f0

≡ ∆ . (7.3)

With our definition for the distribution function (3.7), the deviations from (7.1) are

∆ =
1

γ4(1− β · n̂)4
− 1 + Fγ . (7.4)

To first order in cosmological perturbations we have

Θ =
1

γ(1− β · n̂)
− 1 +

1

4
γ3(1− β · n̂)3Fγ ,

= β · n̂+
1

4

(
1− 3(β · n̂) +O

(
β2
) )
Fγ +O

(
β2
)
. (7.5)

This would be the temperature perturbation observed in the O frame. From the Sun’s
reference system, the observed temperature perturbation Θ� is

1 + Θ� = γ�
(
1− n̂ · β�

)
(1 + Θ) , (7.6)

where β� is the velocity of the Solar System in the O frame. Expanding to leading order in
β and β� we get

Θ� =
(
β − β�

)
· n̂+

1

4

(
1 + n̂ · (β − β�)− 4(n̂ · β)

)
Fγ +O

(
β2
)
. (7.7)

The reduced distribution function can be decomposed schematically as

Fγ(n̂,β) = FΛCDM
γ (n̂) + (n̂ · β)Fβγ (n̂) +O

(
β2
)
, (7.8)

where FΛCDM
γ follows the standard evolution and Fβγ contains our modification, i.e. the

imaginary part of the scalar modes and the vector modes. Finally, we need to take into
account the aberration effects. The direction n̂� observed from the Solar System is related
to the direction n̂ in the O frame as

ni� =
P i� jnj − γ�βi�
γ�(1− n̂ · β�)

. (7.9)

Then, to first order in β, we can express the direction as

ni = ni� −
(
δij − ni�n� j

)
(β� jCMB − βj) +O

(
β2
)
, (7.10)

where we have defined the relative velocity between the Sun and the CMB rest frame

β�CMB ≡ β − β� . (7.11)

It is customary [9, 53] to express the deflection instead as

β − (n̂ · β) n̂ = ∇(n̂ · β) . (7.12)
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Taking everything into account, the temperature perturbation that would be measured from
Earth in the direction n̂� is

Θ�(n̂�) = n̂� · β�CMB

+
1

4

(
1 + n̂� · β�CMB − 4(n̂� · β)

)
FΛCDM
γ

(
n̂� −∇(n̂� · β�CMB) + ∇(n̂� · β)

)

+
1

4
(n̂� · β)Fβγ (n̂�) +O

(
β2
)
. (7.13)

The first term represents the usual kinematic dipole, i.e. the Doppler-shifting effect associated
with the relative motion of the observer with respect to the CMB. The second term contains
a dipolar modulation and aberration effects. Both effects produce a kinematic mixing of the
multipole coefficients. The third term is a purely dynamical contribution, i.e. the effect of
a relative motion between different species during the evolution. While recovering standard
results [9] for β = 0, in our setting we observe two kinds of new effects. First, the directions
of the dipole, the dipolar modulation and the aberration effects do not coincide. This effect
comes from the fact that, in our scenario, the standard ΛCDM evolution is recovered in the O
frame and not in the CMB rest frame. In standard cosmology both frames coincide and this
difference does not arise. The second effect is an additional source of statistical anisotropy,
coming from the modified evolution, with a dipolar pattern.

The CMB dipole is very well measured, with the latest Planck value being β�CMB =
(1.23357 ± 0.00036) × 10−3 [2]. It is widely accepted that its origin is mostly kinematical,
so it gives us a very precise measurement of our relative motion with respect to the CMB.
The Planck Collaboration also measured our relative motion using the kinematic correlations
induced between different multipoles and the resultant anisotropic signal [1, 9]. Even though
the uncertainties are large in this case, and there seems to be some tension [1], the velocity
inferred using this method is compatible with the dipole, supporting its kinematical origin.
The relative velocity with respect to the CMB frame is usually interpreted as the result of
peculiar motions of the Sun and the Local Group [54]. However, in our scenario, the relative
velocity would arise as a combination of the local motion, with respect to the matter frame,
and the relative motion between the matter and CMB frames. This gives rise to distinctive
phenomenological consequences.

At the background level, the non-coincidence of the CMB and matter frames produces
a global motion of large-scale structures with respect to the CMB. This effect could be
potentially observed as a bulk flow on the largest scales. Measurements of bulk flows, at
different scales, have been carried out in peculiar velocity surveys and using the kinetic
Sunyaev-Zeldovich (kSZ) effect [27–29]. See, e.g., table 5 of [30] and references therein
for a collection of recent measurements. Although there is a long history of conflicting
measurements and anomalously large flows on cosmological scales, in this work we adopt the
reported limit of Planck [28] for two reasons. In the first place, it extends to the largest
scales, up to 2 Gpc, where a cleaner determination of our global flow is expected. In the
second place, it sets the more conservative bound in our parameter β0, in the sense of being
the more restrictive to us. From the reported Planck value v < 254 km/s (95% CL), and
according to the time evolution of β in figure 1, we obtain

β0 < 1.6× 10−3 (95% CL) . (7.14)

Note that, since we are performing a first-order computation, all our results scale trivially
and we will write them explicitly in units of β0. The previous constraint is wholly compatible
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with the local measurements of peculiar motions mentioned above. The peculiar velocity of
the Local Group, and other higher order structures, with respect to the CMB is inferred
from the movement of the Sun with respect to both of them. The constraint (7.14) yields
a value β < 0.85 × 10−3 today, of the same order as the measured velocity β�LG = (1.00 ±
0.05)×10−3 [2], so it can be accomodated without fine-tuning the directions of these relative
velocities. Potentially, it could even constitute a component of unaccounted peculiar motions
of the largest structures [54]. This constraint also justifies our first order computation. In
section 2 it was discussed how to construct a RW background to O(β) and how the O

(
β2
)

terms introduce anisotropies, i.e. a Bianchi background. Using (7.14) we can see that the
terms O

(
β2
)

are in fact smaller than a typical cosmological perturbation. Therefore, it is
completely justified to take the RW metric (2.36) as the background geometry.

At the perturbation level, it can be proven that, to first order in β, our modification
does not leave an imprint in the CMB temperature spectrum, i.e. C`’s. To lowest order, the
first CMB signatures appear as deviations from statistical isotropy. It is very important to
notice that our model produces a distinctive signature in the CMB. In the standard picture,
as mentioned before, the motion of Earth produces a violation of statistical isotropy in
the CMB. In our case, there would be an additional, purely dynamical, source of statistical
anisotropy, caused by the relative motion between matter and radiation during the evolution.
Both effects could in principle be disentangled. We leave this analysis for future work [32],
focusing instead on LSS observables.

The local motion of the Earth also leaves an imprint in the observed galaxy distribu-
tion [11, 12, 53], even though the analysis is not straightforward in this case. Upcoming
galaxy surveys like Euclid [15] or SKA [16] will measure the induced dipole with high preci-
sion. A significant difference between this dipole and the CMB result would be difficult to
accomodate in standard ΛCDM, but could be easily interpreted as the result of a relative
velocity between the CMB and matter frames. Even if no such difference is measured, the
bulk motion can still be smaller than the local one, and yet lead to observational signatures,
as we will immediately see.

Until now, we have mainly discussed the effects on the CMB temperature perturbations.
Another class of observables comes from the clustering of matter. The distribution and
redshift of galaxies give us information about density perturbations and peculiar velocities.
Again, in the standard matter power spectrum we do not have a first order effect. On general
grounds, if we consider a cosmological quantity g splitted as in (6.17), we have

|g(τ,k)|2 = |gR(τ,k)|2 +O
(
β2
)
, (7.15)

i.e. the standard result. However, in the cross-correlation between two cosmological pertur-
bations g1 and g2 we get a first-order dipolar contribution

g1g
∗
2 = gR1 g

R ∗
2 + i(β̂ · k̂)

(
gI1g

R ∗
2 − gR1 gI ∗2

)
+O

(
β2
)
. (7.16)

Every cross-correlation between cosmological quantities contains a dipole modification with
this structure. This effect could be observed in the future in the cross-correlations between
matter density and velocity [55], as the precision of the surveys increases. It is conceivable
that this effect could appear in cross-correlations between baryon and CDM densities as well,
even though a thorough analysis using lensing information would be in order. Finally, the
generation of vorticity, purely decaying in ΛCDM, is another distinctive feature of our model.

Since the most accessible observables are related to velocity perturbations, we conclude
this section clarifying a few points concerning our previous definitions. In particular, it is
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important to relate the intermediate variables we have used with the physical velocities. The
velocity that would appear in the energy-momentum tensor of a fluid (2.1) is the velocity
of a frame in which the energy flux, i.e. the component T0i, is zero [56]. Using the boost-
transformation properties (2.45b) we can obtain an equation for the physical velocity U i of
the fluid

γ̄P̄ ij
(
Qj − UkΠkj

)
− γ̄2U i

(
ρ+ P −QjUj

)
= 0 , (7.17)

where

γ̄ ≡ (1− U2)−1/2 , P̄ ij ≡ δij + (γ̄ − 1)
U iUj
U2

. (7.18)

Working to first order in β and in cosmological perturbations we have

U i = βi +
1

ρ̃+ P̃

(
δQi − βkδΠi

k − βi(δρ+ δP )
)
. (7.19)

The physical velocity has two parts, a bulk velocity βi plus a peculiar contribution δui. For
ultrarelativistic particles, the peculiar velocity can be expressed in terms of our previously
defined variables (3.18) as

δui = δvi − 3

4
βkπik − βiδ . (7.20)

It can be splitted into a scalar and a vector part

δui = − ik̂i

k
ϑ+ ζi , (7.21)

so that we have

ϑ = θ − i(β · k)(δ − σ) , (7.22a)

ζ± = χ± − (β · ê±)

(
δ +

1

2
σ

)
. (7.22b)

For non-relativistic species, the results are identical setting σ = 0. It is worth noting that
this is not the only physically sensible definition of the velocity of a fluid. It can alternatively
be defined as the velocity of the frame in which the flux of particles (2.45f) is zero [57]. Both
definitions agree for non-relativistic fluids if the number of particles is conserved.

7.2 Time evolution and transfer functions

The time evolution of the bulk velocities for the different components is represented in figure 1.
All the components in the visible sector start their evolution with the same velocity in the
center of mass frame, and its momentum is counterbalanced by the dark sector. The velocity
of the neutrinos, since we are neglecting their masses, is always constant. The velocity of the
photon-baryon plasma is constant deep in the radiation-dominated era. Once the baryonic
contribution to the energy density becomes important, the plasma velocity drops down as
a−1, see (6.6), until decoupling. After decoupling, the velocity of the baryons keeps scaling
as a−1, like CDM, while the photons keep a constant velocity, with a slight late-time effect
from reionization. Today, the cosmic center of mass, i.e. the O frame, almost coincides with
the matter frame but photons and neutrinos possess a sizeable velocity.
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Figure 1. Time evolution of the bulk velocities for the different components. The dark matter
velocity is obtained enforcing the cosmic center of mass condition (5.3). Massless neutrinos behave
as an uncoupled ultrarelativistic species throughout the evolution and maintain a constant velocity.
The photon-baryon plasma behaves as a single fluid, either matter- or radiation-like, until decoupling
zdec ' 1090. Around z ' 11 there is a small effect in the photon velocity due to reionization.
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Figure 2. Transfer functions, with initial curvature perturbation normalized to one, in the New-
tonian gauge. Both panels represent the evolution of the density contrast, both the standard and
our modification. The imaginary parts are proportional to β0. We show the results for β0 = 10−3.
(Left) The vertical line indicates the super-Hubble and non-linearity scales, respectively. (Right) The
vertical line marks the horizon crossing. In the red and green shaded regions the RSA and TCA,
respectively, are switched on.

Finally, we present the transfer functions evaluated today for a range of k and their time
evolution for a fixed value k = 10−2 Mpc−1, as a sample from the full results for the evolution
of the perturbations. All the results concerning cosmological perturbations are computed in
the synchronous gauge and then transformed back to the Newtonian gauge, that can be more
easily interpreted in the Newtonian limit [58, 59]. Figures 2, 3, and 4 contain the density
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Figure 3. Transfer functions, with initial curvature perturbation normalized to one, in the Newtonian
gauge. Both panels represent the evolution of the velocity divergence, where the imaginary parts
have been redefined according to (7.22). The imaginary parts are proportional to β0. We show the
results for β0 = 10−3. (Left) The vertical line indicates the super-Hubble and non-linearity scales,
respectively. (Right) The vertical line marks the horizon crossing. In the red and green shaded regions
the RSA and TCA, respectively, are switched on.

and velocity of CDM, baryons and the full fluid. Figure 5 contains the metric variables, i.e.
Newtonian potentials and vector metric perturbations. The quantities with an R superscript
follow the standard evolution and are computed using class with the Planck 2018 [60] input
values. The modified contributions, with an I superscript, remain smaller than the standard
ones for most values of k, but not as small as could be expected. The difference at scales of
0.1 Mpc−1 is just one order of magnitude, instead of three as could be naively anticipated
from β0 = 10−3, and the modifications could grow even larger above the non-linearity scale.

7.3 Spectra

We stick to the following conventions for the definition of the spectra. In the first place, we
define the spectrum of a single variable as

〈
δ(z,k)δ∗(z,k′)

〉
≡ δ(k − k′)Pδδ(z, k) (7.23)

= δ(k − k′)|δR(z, k)|2 2π2

k3
PR(k) +O

(
β2
)
, (7.24)

where δR(z, k) is the real part of the transfer function and PR(k) is the usual nearly scale-
invariant curvature spectrum. For the cross-correlations we define

Re
〈
δ(z,k)θ∗(z,k′)

〉
≡ δ(k − k′)PRδθ(z, k)

= δ(k − k′)δR(z, k)θR(z, k)
2π2

k3
PR(k) +O

(
β2
)
, (7.25)

Im
〈
δ(z,k)θ∗(z,k′)

〉
≡ δ(k − k′)(β̂ · k̂)P Iδθ(z, k)

= δ(k − k′)(β̂ · k̂)
(
δI(z, k)θR(z, k)− δR(z, k)ϑI(z, k)

) 2π2

k3
PR(k)

+O
(
β2
)
. (7.26)
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Figure 4. Transfer functions, with initial curvature perturbation normalized to one, in the Newtonian
gauge. Both panels represent the evolution of the vorticity, compared with the velocity divergence.
Again, the vorticity has been redefined according to (7.22). The vorticity is proportional to β0. We
show the results for β0 = 10−3. (Left) The vertical line indicates the super-Hubble and non-linearity
scales, respectively. (Right) The vertical line marks the horizon crossing. In the red and green shaded
regions the RSA and TCA, respectively, are switched on.
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Figure 5. Transfer functions, with initial curvature perturbation normalized to one, in the Newtonian
gauge. Both panels represent the evolution of the Newtonian potentials, their difference and the vector
metric perturbation. The imaginary parts and the vector modes are proportional to β0. We show the
results for β0 = 10−3. (Left) The vertical line indicates the super-Hubble and non-linearity scales,
respectively. The sharp drop in the difference between the Newtonian potentials at small scales is
a consequence of the RSA. On those scales we are setting the shear of ultrarelativistic species to
zero, since it has a negligible impact in our observables. (Right) The vertical line marks the horizon
crossing. In the red and green shaded regions the RSA and TCA, respectively, are switched on.
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Figure 6. The vertical line indicates the scale of non-linearity. (Left) Cross-correlation spectra of dark
matter densities and velocities, including the standard as well as the dipolar contribution, both for the
divergence and for the vorticity. P Iδcθc and PRδcζc are given in units of (β0/10−3)(100 km/s)(Mpc/h)3,

i.e. the curves are plotted for β0 = 10−3 but the spectra are proportional to this value. (Right) Auto-
correlation spectra of dark matter velocity, as well as the cross-correlation spectrum between vorticity
and the divergence of the velocity. Pθcζc and Pζcζc are given in units (β0/10−3)(100 km/s)2(Mpc/h)3

and (β0/10−3)2(100 km/s)2(Mpc/h)3, respectively.
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Figure 7. The vertical line indicates the scale of non-linearity. Cross-correlation spectra of dark mat-
ter density and lensing potential Ψ ≡ φ+ψ, including both the standard and the dipolar contribution.
P IδcΨ is given in units (β0/10−3)(Mpc/h)3.
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The vorticity spectrum is defined in a similar way, according to definition (6.39),

〈
ζ(z,k) · ζ∗(z,k′)

〉
≡ δ(k − k′)

(
1− (β̂ · k̂)2

)
Pζζ(z, k) (7.27)

= δ(k − k′)
(

1− (β̂ · k̂)2
)
|ζ(z, k)|2 2π2

k3
PR(k) +O

(
β3
)
, (7.28)

The results for the velocity spectrum and the density cross-correlation for CDM are rep-
resented in figure 6. In addition to this information, the velocity-density cross-correlation
induced by our modification shows a distinctive dipolar pattern. In the same way, the vortic-
ity autocorrelation, even though its amplitude is very small, deviates from statistical isotropy,
with a quadrupole term in addition to the monopole. Figure 7 shows the cross-correlation
between the matter density and the lensing potential, defined as Ψ ≡ φ+ψ. This combination
is observable using weak-lensing information [39, 61]. Again, our additional contribution be-
comes important at small scales, being just one order of magnitude below the standard result
at scales k = 0.1 Mpc−1 instead of three as might be inferred from β0 = 10−3. Both vorticity
and deviations from statistical isotropy are absent in standard ΛCDM. Their presence, with
the structure proposed, is a testable effect that could be used to confirm, or disprove, the
non-comoving scenario.

As we have seen, in our modified setting, velocity spectra are the most easily accessible
LSS observables that show significant deviations. Peculiar velocity surveys provide useful
complementary information but currently are not competitive with other cosmological ob-
servables to constrain standard cosmology [55, 62]. Nonetheless, as the precision of velocity
surveys increase, such an effect might be seen or at least prove more competitive than the
dipole measurements in the CMB and galaxy distribution to constrain β0 [63].

8 Conclusions

In this work we have developed the theoretical framework needed to analyze the cosmology
of non-comoving fluids. We have shown that it is possible to relax one of the underlying
assumptions of ΛCDM, comoving CMB and matter frames, while retaining an homogeneous
and isotropic universe. Even if the background behaviour is preserved, the evolution of the
perturbations is modified, leading to new phenomenological signatures. To first order in
the relative velocities, i.e. O(β), we reproduce ΛCDM behaviour in the main cosmological
observables, like the matter power spectrum and the CMB temperature power spectrum.
We have postponed the full CMB analysis [32], focusing instead on LSS observables in this
work. As mentioned before, we find that the effects on the autocorrelation spectra are O

(
β2
)

but there are O(β) effects on every cross-correlation between cosmological perturbations.
Additionally, these corrections present a dipolar pattern, producing deviations from statistical
isotropy. We have observed that the additional contributions to the cross-correlation spectra
become important for small scales.

Another distinctive feature of this model is the production of vorticity, which is absent
in ΛCDM. The relative motion of the fluids induces O(β) couplings between scalar and vector
modes. This in its turn leads to the production of vorticity and vector metric perturbations,
sourced by the scalar modes. This vector contribution also leaves a characteristic imprint in
the velocity spectrum, with a statistically anisotropic quadrupolar modulation. No tensor
modes are excited to O(β).

– 46 –



J
C
A
P
0
6
(
2
0
1
9
)
0
4
1

Our only additional free parameter, β0, is the initial velocity between the visible and
the dark sector, in the frame that observes a homogeneous and isotropic background. Mea-
surements of large-scale bulk flows and the CMB dipole allow us to set a conservative limit

β0 < 1.6× 10−3 (95% CL) . (8.1)

Satisfying this constraint, our model is compatible with current observations, and yet it can
have striking phenomenological consequences. There is a work under way to study the impact
on the CMB and to give concrete predictions about violations of statistical isotropy [32]. In
particular, it may alleviate the tension that seems to arise when interpreting the anisotropic
signal in the CMB as a pure kinematical effect [1]. This tension corresponds to the dipolar
modulation anomaly [31, 64] that arises when analyzing low multipoles. The modulation
points in a direction different from the kinematic dipole and seems to have a larger amplitude,
even if it is compatible with zero within 2σ [1].

One direction for future work involves extending our analysis up to very early times.
In this work we have treated the dark sector as a whole and we have only assumed that,
while it behaves as CDM at late times, it is subdominant with respect to radiation at early
times, at least during the period of interest. However, as pointed out in section 6.1, at very
early times some DM scenarios may induce O(β) anisotropic corrections on the background.
These corrections are not sourced at later times, where the analysis of the present work
holds, so their observation could be challenging. To extend the study in this direction or to
go one step further and find O

(
β2
)

contributions would force us to include corrections over
the background geometry. In particular, the lowest order corrections arising from the exact
Bianchi geometry describing our configuration of moving fluids. Our present results can be
interpreted as the zero order of a two-parameter expansion, where in addition to the standard
cosmological perturbations the background contains corrections over RW. To tackle this
kind of problems, a general N -parameter perturbation scheme has been developed [65] and
successfully applied to take into account the leading order effects of non-linear structures [66].
It is important to keep in mind that once we go to higher orders in perturbation theory the
definition of observables and its connection with gauge invariance becomes subtle [67] and
must be carefully analyzed [68].

More importantly, the production of vorticity for the photon-baryon plasma opens an
avenue for the creation of magnetic fields [69]. The origin of the galactic magnetic fields is a
long-standing open problem [70]. The Harrison mechanism [71] is a cosmological production
mechanism that needs vorticity in the photon-baryon plasma to operate, but unfortunately
it is absent in ΛCDM to first order in cosmological perturbation theory. Several studies of
second-order cosmological perturbation theory have proven that in this case vorticity, and
thus magnetic fields, is created but with an amplitude far too small to act as seed fields for
the galactic dynamo amplification mechanism [72–74]. Our setup is similar in some regards
to a second order computation, but our relevant scale β0 is larger than a typical cosmological
perturbation and so it is our vorticity production. The associated magnetic fields in our case
are expected to be larger and their spectrum would have a different tensor structure as well,
since we are singling out a privileged direction [69].

After setting up the formalism for a non-comoving cosmology and proving its viability,
this work paves the way for the search of these exciting new signatures.
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A Geodesics

In this appendix we will compute in detail the geodesics for a general perturbed RW metric

ds2 = a2(τ)
(
− (1−A)dτ2 + 2Bidτdxi + (δij +Hij)dx

idxj
)
, (A.1)

that is

gµν = a2

(
−1 +A Bi
Bi δij +Hij

)
, gµν =

1

a2

(
−1−A Bi

Bi δij −H ij

)
, (A.2)

and with the constraint

gµνPµPν = −m2 . (A.3)

Defining the proper-time parameter as dλ ≡
√
−ds2, the standard definitions for the 4-

velocity and 4-momentum are

Uµ ≡ dxµ

dλ
, (A.4)

Pµ ≡ mUµ , (A.5)

P0 ≡ −ε+ δP0 . (A.6)

The geodesics are given by

dUµ

dλ
+ ΓµνρU

νUρ = 0 , (A.7)

that can be conveniently rewritten as

dUµ
dλ

=
1

2

∂gνρ
∂xµ

UνUρ . (A.8)

This last form is especially useful. Since the background metric is homogeneous, we can keep
only the zero order in Uµ to compute the spatial part. Writing the evolution in terms of the
conformal time we have

dPi
dτ

=
m

U0

dUi
dλ

=
1

2ε

(
ε2∂iA+ 2εP j∂iBj + P jP k∂iHjk

)
. (A.9)

The spatial momentum is redefined as

Pi ≡
(
δji +

1

2
Hj

i

)
qj , (A.10)

a2P i = −εBi +

(
δki − 1

2
Hki

)
qk , (A.11)
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where, from now on, every spatial index on a perturbed quantity is assumed to be raised or
lowered using δij . From the mass-shell condition (A.3) we obtain

ε2 = m2a2 + q2 , (A.12)

P0 = −ε
(

1− 1

2
A

)
+ qiB

i , (A.13)

P 0 =
ε

a2

(
1 +

1

2
A

)
. (A.14)

The geodesic equation can be written with this parameterization as

dqi
dτ

=
1

2
ε∂iA+ qj∂iBj +

1

2ε
qjqk (∂iHjk − ∂kHij)−

1

2
qjḢij . (A.15)

Further decomposing qi into direction n̂ and magnitude q

qi ≡ q ni → niδ
ijnj = 1 , q2 = δijqiqj , (A.16)

we have

dq

dτ
= ni

dqi
dτ

, (A.17a)

dni
dτ

=
1

q

(
δji − njni

) dqj
dτ

. (A.17b)

Finally, using the following succint redefinition of metric variables

Cij ≡ ∂iBj −
1

2
Ḣij , (A.18)

Dijk ≡
1

2
(∂iHjk − ∂kHij) , (A.19)

the final formulae needed to compute the geodesics, with the parameterization (A.10), are

dxi

dτ
=
qi

ε

(
1− 1

2
A

)
−Bi − 1

2ε
H i
kq
k , (A.20a)

dqi

dτ
=

1

2
ε∂iA+ qjCij +

qjqk

ε
Dijk , (A.20b)

dq

dτ
=

1

2
ε ni∂iA+ q ninjCij , (A.20c)

dni
dτ

=
(
δji − njni

)( ε

2q
∂jA+ nkCjk +

q

ε
nknlDjkl

)
. (A.20d)

Some relevant metric quantities, written in terms of the scalar-vector-tensor decompo-
sition and in Fourier space, are

A = −2ψ , (A.21)

Bi = ikiB − Si , (A.22)

Hij = −2φδij − 2kikjE + i (kiFj + kjFi) + hij , (A.23)

Cij = −kikj(B − Ė)− ikiSj + φ̇δij −
i

2

(
kiḞj + kjḞi

)
− 1

2
ḣij , (A.24)

Dijk = −i(kiδjk − kkδij)φ−
1

2
(kikjFk − kjkkFi) +

i

2
(kihjk − kkhij) . (A.25)
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B Full computation of the collision term

Starting from the collision term (3.30),

C[f ] =
σT
4πp

∫
p̃′dp̃′dΩ̃′

[
ñfull
e δ(p̃− p̃′) + ñeũ

full
e · (p̃− p̃′)

∂δ(p̃− p̃′)
∂p̃′

]

×
(
f̄(ΛβΛ−1

βe
p̃′)− f̄(ΛβΛ−1

βe
p̃)
)
, (B.1)

we need to solve two integrals

I1 =

∫
p̃′dp̃′dΩ̃′δ(p̃− p̃′)

(
f̄(ΛβΛ−1

βe
p̃′)− f̄(ΛβΛ−1

βe
p̃)
)

= −4πp̃f̄(ΛβΛ−1
βe
p̃) + p̃

∫
dΩ̃′ f̄(ΛβΛ−1

βe
p̃′)|p̃′=p̃ , (B.2)

I2 =

∫
p̃′dp̃′dΩ̃′(p̃− p̃′)∂δ(p̃− p̃

′)

∂p̃′

(
f̄(ΛβΛ−1

βe
p̃′)− f̄(ΛβΛ−1

βe
p̃)
)

= −p̃
∫

dΩ̃′(ˆ̃n− 2ˆ̃n′)
(
f̄(ΛβΛ−1

βe
p̃′)|p̃′=p̃ − f̄(ΛβΛ−1

βe
p̃)
)

+ p̃2

∫
dΩ̃′(ˆ̃n− ˆ̃n′)

∂f̄(ΛβΛ−1
βe
p̃)

∂p̃′

∣∣∣∣
p̃′=p̃

. (B.3)

Now, we will integrate out the dependence on the momentum p in the O frame, like we did
with the left-hand side of the Boltzmann equation. First, for simplicity, we will assume that
β and βe point in the same direction, so we can obtain

ΛβΛ−1
βe

= Λ∆β , ∆β ≡ β − βe
1− ββe

. (B.4)

This assumption simplifies the derivation for arbitrary values of β, but it is not needed and
in fact the first order results are independent of it. Since the expressions are already quite
cumbersome, and this will be the only physical configuration of interest, we will adopt this
assumption throughout this appendix. Some preliminary results and definitions are

∫
q3dq f̄0(Λβq) =

Ñ
γ4(1− n̂ · β)4

, (B.5a)

∫
d3q̃

4π
q̃ f̄0(Λ∆β q̃) = Ñγ2

∆β

(
1 +

∆β2

3

)
, (B.5b)

∫
d3q̃

4π
q̃i f̄0(Λ∆β q̃) =

4

3
Ñγ2

∆β∆βi , (B.5c)

where Ñ is defined in (3.13) and P ie j , γe correspond to (2.40), evaluated with βe. We can
proceed now to compute the integrals term by term. First for I1∫

dq q2q̃ f̄(ΛβΛ−1
βe
q̃) (B.6a)

= Ñγe(1− n̂ · βe)
(
Fγ +

1

γ4(1− n̂ · β)4

)
,

∫
dq q2q̃

∫
dΩ̃ f̄(ΛβΛ−1

βe
q̃) (B.6b)

=
4πÑ

γ3
e (1− n̂ · βe)3

[(
1 +

∆β2

3

)
γ2

∆β + γ2
e

∫
dΩ

4π

(
1− 2n̂ · βe + (n̂ · βe)2

)
Fγ
]
.
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And for I2

∫
q2dq q̃if̄0(Λ∆β q̃) = Ñ

P ie jnj − γeβie
γ4(1− n̂ · β)4

, (B.7)

∫
q2dq q̃i

∫
dΩ̃ f̄0(Λ∆β q̃) = 4πÑ

P ie jnj − γeβie
γ4
e (1− n̂ · βe)4

γ2
∆β

(
1 +

∆β2

3

)
, (B.8)

∫
q2dq

∫
dΩ̃ q̃i f̄0(Λ∆β q̃) =

16π

3
Ñ∆βi

γ2
∆β

γ3
e (1− n̂ · βe)3

, (B.9)

∫
q2dq q̃ q̃i

∫
dΩ̃

∂f̄0(Λ∆β q̃)

∂q̃
= −16πÑ

P ie jnj − γeβie
γ4
e (1− n̂ · βe)4

γ2
∆β

(
1 +

∆β2

3

)
, (B.10)

∫
q2dq q̃

∫
dΩ̃ q̃i

∂f̄0(Λ∆β q̃)

∂q̃
= −64π

3
Ñ∆βi

γ2
∆β

γ3
e (1− n̂ · βe)3

. (B.11)

Finally, for the electron quantities,

ñfull
e ≡ 2

∫
d3p̃e
(2π)3

f̃e(p̃e) = ñe + δñe , (B.12a)

ñeũ
full
e = 2

∫
d3p̃e
(2π)3

p̃e
Ẽpe

f̃e(p̃e) = 2

∫
d3p̃e
(2π)3

p̃e
Ẽpe

δf̃e(p̃e) = ñeδṽe , (B.12b)

where ñe is the physical background electron number density, computed in its comoving
frame as every other background quantity. Using the Lorentz transformation properties

δñe = γe
(
δne − δvjeβe j

)
, (B.13a)

δṽie = P ie jδvje − γeβieδne . (B.13b)

The final results, to first order in β, are

∫
q2dq I1 = −4πÑ

(
(1−n̂ · βe)Fγ + 4n̂ ·∆β − (1+3n̂ · βe)

∫
dΩ

4π
Fγ + 2βe ·

∫
dΩ

4π
n̂Fγ

)
,

(B.14a)
∫
q2dq I2 = 4πÑ

(
−8

3
∆β + 4n̂ (n̂ ·∆β) + 4 (n̂− βe + 4n̂ (n̂ · βe))

)
, (B.14b)

δñe = δne − βe jδvje , (B.14c)

δṽie = δvie − βieδne . (B.14d)

C Gauge transformations with non-comoving fluids

After an infinitesimal gauge transformation

∆xµ = εµ , εµ =
(
T (τ,x),L(τ,x)

)
, (C.1)

a tensor changes as

∆Tµν = ερ
∂Tµν
∂xρ

+ ερ,µTρν + ερ,νTµρ = LεTµν , (C.2)
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where Lε is the Lie derivative. Applying the result to the metric tensor, we have for the
metric variables

∆A = −2(Ṫ +HT ) , (C.3a)

∆Bi = L̇i − ∂iT , (C.3b)

∆Hij = 2HTδij + ∂iLj + ∂jLi . (C.3c)

On the other hand, for the perturbed fluid variables we get

∆δρ = T ρ̇− 2(ρ+ P )βi∂iT , (C.4a)

∆δQi = −(ρ+ P )∂iT + T∂τ (βi(ρ+ P )) +
1

2
(ρ+ P )βj (∂iLj − ∂jLi) , (C.4b)

∆δP = T Ṗ − 2

3
βi∂iT (ρ+ P ) , (C.4c)

∆δΠij = −(ρ+ P )

(
βi∂jT + βj∂iT −

2

3
δijβ

k∂kT

)
, (C.4d)

where we are adopting the definitions (2.59). With our previous definition for the scalar-
vector-tensor decomposition of the metric variables (4.9), we get, in Fourier space,

∆ψ = Ṫ +HT , ∆S+ = −L̇+ ,

∆B = − i

k
k̂ · L̇− T , ∆F+ = L+ ,

∆φ = −HT , ∆h++ = 0 ,

∆E = − i

k
k̂ ·L . (C.5)

The results for the − helicity can be obtained substituting − ↔ + in every sub and su-
perscript. If we want to change from the synchronous to the Newtonian gauge, for scalar
perturbations, the following conditions must be satisfied

ψ = Ṫ +HT , (C.6a)

0 = − i

k
k̂ · L̇− T , (C.6b)

φ− η = −HT , (C.6c)

1

2k2
(h+ 6η) = − i

k
k̂ ·L , (C.6d)

that can be solved to yield

T =
1

2k2

(
ḣ+ 6η̇

)
, (C.7)

ψ = Ṫ +HT , (C.8)

φ = η +HT . (C.9)
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Finally, for the fluid variables that we use in the main part of the computations, we have
the rules

δ(Newt)− δ(Syn) = T
ρ̇

ρ
− 2i(1 + w)(β · k)T , (C.10)

θ(Newt)− θ(Syn) = k2T + i(β̇ · k)T + i(β · k)
ρ̇+ Ṗ

ρ+ P
T , (C.11)

χ+(Newt)− χ+(Syn) = T β̇+ + Tβ+
ρ̇+ Ṗ

ρ+ P
, (C.12)

δP (Newt)− δP (Syn) = T Ṗ − 2i

3
(β · k)T (ρ+ P ) , (C.13)

σ(Newt)− σ(Syn) = i(β · k)(1 + w)T , (C.14)

πV
+(Newt)− πV

+(Syn) = −β+(1 + w)T , (C.15)

πT
++(Newt)− πT

++(Syn) = 0 , (C.16)

where we have neglected terms βL+, making use of the fact that, according to (C.5), the
transverse part of L under our assumptions can be at most order β. Again, we are omit-
ting the results for the − helicity, that can be obtained substituting − ↔ + in every sub
and superscript.

D Initial conditions

In this appendix we will find the appropiate initial conditions for the system of scalar and
vector modes in sections 6.2 and 6.3. We will consider the most general initial condition and
then study the physical restrictions that we must impose. For β = 0, our system reproduce
the standard cosmology. This case has been extensively studied over the years and the
relevant modes, i.e. one adiabatic and four isocurvature modes, have been identified [47]. In
our setup, the presence of an external source gives rise to the existence of a new “mode” of
the system, in the sense that we have a non-trivial evolution even if the usual adiabatic and
isocurvature modes are absent. First, we will identify this particular solution, setting to zero
the other modes of the system. Note that the external sources only contain variables that
evolve according to standard ΛCDM, so for these variables only adiabatic initial conditions
are considered. After identifying the effect of the sources, the most general perturbation can
be constructed adding to the sourced mode the adiabatic and isocurvature modes. Finally,
we must analyze what physical requirements constrain our choice of initial conditions. In
particular, we impose that neutrinos and photons, being tightly coupled in the very early
Universe, share a common initial velocity. Every other initial condition that is not fixed by
this condition is set to zero. This programme is carried out in detail in the next sections.

D.1 Scalar modes

To obtain our results, we have analyzed the most general type of perturbation, reproducing
the results of [47] but with a slight change of notation. In the first place, we use an alternative
approach where we integrate (6.20) instead of the dark matter equation. In this setup, matter
isocurvature modes appear when taking non-zero initial conditions for δν , δb or ḣ. In the
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second place, even though it is perfectly equivalent, we parameterize the neutrino isocurvature
velocity mode with the initial value of θγ instead of θν .

Before presenting the results, some shorthand definitions that will be used later are

Sγν ≡ Ωγ + Ων , (D.1)

Rs ≡ Ωs/Sγν , s = γ, ν, b, c , (D.2)

Rbc ≡ Rb +Rc , (D.3)

Assuming a universe composed of radiation and matter, where τ stands for conformal time,

H =

H0Rbc
√
Sγντ

2 + 1

τ

(
H0Rbc

√
Sγντ

4 + 1

) , (D.4)

a = H0

√
Sγντ

(
H0Rbc

√
Sγντ

4
+ 1

)
. (D.5)

During the radiation-dominated phase, they can be expanded as

a = H0

√
Sγντ +O

(
H2

0R2
bcSγντ

2
)
, (D.6)

H =
1

τ
+
H0Rbc

√
Sγν

4
− H2

0R2
bcSγντ

16
+O

(
H2

0R2
bcSγντ

2
)
, (D.7)

H2 =
1

τ2
+
H0Rbc

√
Sγν

2τ
− H2

0R2
bcSγν

16
+O

(
H2

0R2
bcSγντ

2
)
, (D.8)

Ḣ = − 1

τ2
− H2

0R2
bcSγν

16
+
H3

0R3
bcS

3
2
γντ

32
+O

(
H2

0R2
bcSγντ

2
)
. (D.9)

Now, if we look for regular super-Hubble solutions and expand every cosmological variable as

δIγ = D
(0)
δγ

+D
(1)
δγ
τ +D

(2)
δγ
τ2 +D

(3)
δγ
τ3 + . . . (D.10)

The results for the sourced mode only (setting the initial conditions for ηI , ḣI , δIν , δIb and θIγ
to zero), can be written in terms of the initial value of ψR(τ = 0) = Ψ or

ηR(τ = 0) =
4Rν + 15

10
Ψ , (D.11)

as

D
(0)
δγ

= 0 , D
(1)
δγ

=
4Ψβ0k (4Rν + 15)

15
, (D.12)

D
(0)
δν

= 0 , D
(1)
δν

=
4Ψβ0k (Rν − 1) (4Rν + 15)

15Rν
, (D.13)

D
(0)
δb

= 0 , D
(1)
δb

=
Ψβ0k (4Rν + 15)

5
, (D.14)

D
(0)
δ = 0 , D

(1)
δ = 0 . (D.15)

D
(2)
δγ

= −H0Ψ
√
SγνRbβ0k (Rν − 3) (4Rν + 15)

20 (Rν − 1)
, (D.16)
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D
(2)
δν

= −H0Ψ
√
SγνRbβ0k (4Rν + 15)

20
, (D.17)

D
(2)
δb

= −3H0Ψ
√
SγνRbβ0k (Rν − 3) (4Rν + 15)

80 (Rν − 1)
, (D.18)

D
(2)
δ =

H0Ψ
√
SγνRbβ0k (4Rν + 15)

20
. (D.19)

D
(3)
δγ

=
H2

0 ΨSγνRbβ0k (4Rν + 15) (5RνRbc (Rν − 1)− 3Rb (Rν − 6))

300 (Rν − 1)2

+
4Ψβ0k

3 (44Rν + 65)

225 (4Rν + 5)
, (D.20)

D
(3)
δν

= −H
2
0 ΨSγνRbβ0k (4Rν + 15) (3Rb − 5Rbc (Rν − 1))

300 (Rν − 1)

+
2Ψβ0k

3 (32Rν + 45)

225Rν
, (D.21)

D
(3)
δ =

3H2
0 ΨSγνRbβ0k (4Rν + 15) (2Rb − 5Rbc (Rν − 1))

400 (Rν − 1)

+
Ψβ0k

3
(
80R2

ν + 392Rν + 545
)

450 (4Rν + 5)
. (D.22)

D
(0)
θγ

= 0 , D
(1)
θγ

= 0 , (D.23)

D
(0)
θν

=
Ψβ0k (4Rν + 15)

5Rν
, D

(1)
θν

= 0 , (D.24)

D
(0)
θ = 0 , D

(1)
θ = 0 . (D.25)

D
(2)
θγ

= −Ψβ0k
3

6
, (D.26)

D
(2)
θν

= −Ψβ0k
3
(
44R2

ν + 151Rν + 135
)

30Rν (4Rν + 5)
, (D.27)

D
(2)
θ = −Ψβ0k

3 (Rν + 2) (4Rν + 15)

15 (4Rν + 5)
. (D.28)

D(0)
σν = 0 , (D.29)

D(1)
σν =

2Ψβ0k (Rν + 2) (4Rν + 15)

15Rν (4Rν + 5)
, (D.30)

D(2)
σν =

2H0Ψ
√
SγνRbcβ0k (Rν + 2)

5 (4Rν + 5)
, (D.31)

D(3)
σν =

H2
0 ΨSγνR2

bcβ0k (Rν + 2) (4Rν − 45)

30 (2Rν + 15) (4Rν + 5)

− Ψβ0k
3
(
32R4

ν + 224R3
ν + 914R2

ν + 2097Rν + 1620
)

270Rν (2Rν + 15) (4Rν + 5)
. (D.32)
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D(0)
η = 0 , D(1)

η = −2Ψβ0k (Rν + 2) (4Rν + 15)

15 (4Rν + 5)
, (D.33)

D
(0)
h = D

(0)
h , D

(1)
h = 0 . (D.34)

D(2)
η =

H0Ψ
√
Sγνβ0k (−Rb (4Rν + 5) (4Rν + 15) + 40Rbc (Rν + 2))

80 (4Rν + 5)
, (D.35)

D
(2)
h =

3H0Ψ
√
SγνRbβ0k (4Rν + 15)

40
. (D.36)

D(3)
η = −H

2
0 ΨSγνR2

bβ0k (4Rν + 15)

400 (Rν − 1)
+
H2

0 ΨSγνRbRbcβ0k (4Rν + 15)

240

+
H2

0 ΨSγνR2
bcβ0k (Rν + 2) (4Rν − 45)

24 (2Rν + 15) (4Rν + 5)

+
Ψβ0k

3
(
−80R3

ν + 568R2
ν + 4525Rν + 4950

)

1350 (2Rν + 15) (4Rν + 5)
, (D.37)

D
(3)
h =

H2
0 ΨSγνRbβ0k (4Rν + 15) (3Rb − 5Rbc (Rν − 1))

200 (Rν − 1)

− Ψβ0k
3
(
80R2

ν + 528Rν + 655
)

450 (4Rν + 5)
. (D.38)

Once we have the new behaviour of the system, we need to evaluate the assignment of
initial conditions. It seems reasonable to give zero initial values to our modification but there
is one further physical requirement that we must impose. As mentioned in the main text,
if neutrinos and photons were in thermal contact in the primeval Universe it is physically
sensible to impose that they shared the same velocity

θν(τ = 0) = θγ(τ = 0) = θ(0)
γ , (D.39)

In the standard scenario this leads to θ
(0)
γ = 0 and to the absence of neutrino velocity

isocurvature modes. However, in our case, if we consider a neutrino isocurvature velocity
mode on top of the sourced mode, upon imposing this restriction we get

θ(0)
γ =

4Rν + 15

5
Ψβ0k . (D.40)

In order to obtain the correct initial conditions, we must consider the combination of the
sourced mode with a neutrino isocurvature velocity mode with the previous initial condition.
The final results are

δIγ = δIν = δIb = δI = 0 +O
(
τ3
)
, (D.41)

θIγ =
Ψβ0k (4Rν + 15)

5
+

3H0Ψ
√
SγνRbβ0k (4Rν + 15)

20 (Rν − 1)
τ

+
3H2

0 ΨSγνRbβ0k (4Rν + 15) ((Rν − 1)Rbc + 3Rb)
80 (Rν − 1)2 τ2

− 2Ψβ0k
3 (Rν + 5)

15
τ2 +O

(
τ3
)
, (D.42)
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θIν =
Ψβ0k (4Rν + 15)

5
− Ψβ0k

3
(
8R2

ν + 62Rν + 95
)

15 (4Rν + 5)
τ2 +O

(
τ3
)
, (D.43)

θI = −ΨRνβ0k
3 (4Rν + 15)

5 (4Rν + 5)
τ2 +O

(
τ3
)
, (D.44)

σIν =
2Ψβ0k (4Rν + 15)

5 (4Rν + 5)
τ +

6H0Ψ
√
SγνRνRbcβ0k

5 (4Rν + 5)
τ2 +O

(
τ3
)
, (D.45)

hI = 0 +O
(
τ3
)
, (D.46)

ηI = −2ΨRνβ0k (4Rν + 15)

5 (4Rν + 5)
τ +

3H0Ψ
√
SγνRνRbcβ0k

2 (4Rν + 5)
τ2 +O

(
τ3
)
. (D.47)

D.2 Vector modes

Considering adiabatic perturbations in the scalar contributions, during TC and deep in the
radiation era, the super-Hubble evolution is

D(0)
χγ = D(0)

χγ , D(1)
χγ =

3D
(0)
χγH0

√
SγνRb

4 (Rν − 1)
, (D.48)

D(0)
χν = −Ψβ0 (4Rν + 15)

10
, D(1)

χν = 0 , (D.49)

D(0)
χ = 0 , D(1)

χ = 0 , (D.50)

D(2)
χγ =

3D
(0)
χγH2

0SγνRb (3Rb +Rbc (Rν − 1))

16 (Rν − 1)2 − Ψβ0k
2 (8Rν + 25)

60
, (D.51)

D(2)
χν = −Ψβ0k

2 (8Rν + 25)

60
, (D.52)

D(2)
χ = 0 , (D.53)

D(3)
χ = 0 , (D.54)

D(4)
χ =

5Ψβ0k
4

8 (8Rν + 45)
, (D.55)

D(0)
πν = 0 , (D.56)

D(1)
πν = 0 , (D.57)

D(2)
πν = 0 , (D.58)

D(3)
πν =

Ψβ0k
2
(
32R2

ν + 268Rν + 375
)

270 (8Rν + 45)
, (D.59)

D
(0)

S+Ḟ
= 0 , (D.60)

D
(1)

S+Ḟ
= 0 , (D.61)

D
(2)

S+Ḟ
=

5Ψβ0k
2

8Rν + 45
, (D.62)

– 57 –



J
C
A
P
0
6
(
2
0
1
9
)
0
4
1

Again, imposing the physical requirement that photons and neutrinos had the same velocity
in the very early Universe, we are led to

D(0)
χγ = −Ψβ0 (4Rν + 15)

10
. (D.63)

The initial conditions provided for the numerical integration are

χγ = −Ψβ0 (4Rν + 15)

10
− 3H0Ψ

√
SγνRbβ0 (4Rν + 15)

40 (Rν − 1)
τ ,

− 3H2
0 ΨSγνRbβ0 (4Rν + 15) (RνRbc + 3Rb −Rbc)

160 (Rν − 1)2 τ2

− Ψβ0k
2 (8Rν + 25)

60
τ2 +O

(
τ3
)
, (D.64)

χν = −Ψβ0 (4Rν + 15)

10
− Ψβ0k

2 (8Rν + 25)

60
τ2 +O

(
τ3
)
, (D.65)

χ =
5Ψβ0k

4

8 (8Rν + 45)
τ4 +O

(
τ5
)
, (D.66)

πV
ν =

Ψβ0k
2 (4Rν (8Rν + 67) + 375)

270 (8Rν + 45)
τ3 +O

(
τ4
)
, (D.67)

S + Ḟ =
5Ψβ0k

2

8Rν + 45
τ2 +O

(
τ3
)
. (D.68)

(D.69)
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