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Abstract. We investigate the degree to which the Cosmic Microwave Background (CMB)
can be used to constrain primordial non-Gaussianity coming from the presence of spinning
particles coupled to the inflaton. We compute the (I'T'T) and (I'TTT) correlation functions
arising from the exchange of a particle with spin s and generic mass, and the corresponding
signal-to-noise ratios for a cosmic-variance-limited CMB experiment. We show that already
with Planck data one could improve the theoretical bounds on the amplitude of these pri-
mordial templates by an order of magnitude. We particularly emphasize the fact that the
trispectrum could be sizable even if the bispectrum is not, making it a prime observable to
explore the particle content during inflation.
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1 Introduction

Originally introduced to solve the problems of the Hot Big Bang cosmology, the inflationary
paradigm owes its success to how naturally it provides the initial conditions of our Uni-
verse. In the simplest scenario, a scalar field with a time-dependent vacuum expectation
value (v.e.v.), the inflaton, is responsible for the accelerated expansion of the universe and
its quantum fluctuations, stretched up to cosmological scales, seed the Cosmic Microwave
Background (CMB) anisotropies and the distribution of galaxies in the Large-Scale Struc-
ture (LSS). In this scenario only two additional degrees of freedom are active, besides the
scalar excitations of the inflaton: these are the tensor helicities of the graviton.

Despite the minimal model of inflation is enough to describe the current observations,
additional degrees of freedom could have been active during the inflationary epoch. This
is especially true if inflation happened at energies close to the current Planck upper bound
H <6 x 1013 GeV [1]. In fact, every particle with mass m < H gets excited during inflation
and might then contribute to the primordial correlation functions.

Understanding the particle content during the inflationary epoch is one of the hardest
and most exciting challenges of modern cosmology. Much work has been done to characterize
the non-Gaussian signatures due to presence of additional light scalar fields. However, until
very recently, less effort has been devoted to understanding the effects of particles with
a higher spin. One of the main reasons for this consists in the difficulty of having light
perturbations with spin s > 1 in a de Sitter spacetime (that well approximates the inflationary



spacetime). In fact, the behaviour of spinning fields in de Sitter is very constrained by the
de Sitter isometries, that force particles to obey the so called Higuchi Bound [2]

m? > s(s +1)H?. (1.1)

Close to the boundary of de Sitter, i.e. when the conformal time 7 goes to 0, its isometries
also fix the time evolution of fields in terms of their masses and spins,

Ot i (1K) ~ (=) 204y i (R), Ay =3/2— /(s —1/2)2 — (m/H)? (1.2)

(see for example [3]). Combined with the Higuchi Bound, the above time evolution implies
that particles with spin decay exponentially fast during inflation, suppressing the contribution
they might add to the primordial correlators.

The difficulty of having light fields during inflation can be overcome by coupling higher-
spins states with the foliation provided by the inflaton.! The time dependent v.e.v. of the in-
flaton breaks the special conformal transformations, the three de Sitter isometries responsible
for the Higuchi Bound, and it can then make light spinning particles healthy [6] (see also [7]).
These higher-spin perturbations, coupled with the inflaton, can be described using an effective
approach which extends the formalism of the effective field theory of inflation (EFTI) [8, 9].
This formalism allows to study additional perturbations with arbitrary spin [10].2

The presence of long-lived perturbations with spin s > 1 generates some anisotropy
that does not decay even on the longest scales. It manifests itself in the non-Gaussian 3- and
4-point functions of scalar perturbations, giving rise to new shapes of scalar non-Gaussianity.
These new shapes are quite different from the templates of non-Gaussianity available on the
market, namely the local, the equilateral, and the orthogonal templates. For instance, while
the scalar bispectrum and trispectrum peak in the squeezed (k1 < ko ~ k3) and counter-
collapsed (k12 < ki,ks, k1 =~ ko, ks =~ ky) configurations respectively, like the common
templates for local and mnp,-type non-Gaussianity, their scaling with the momenta is different
from that of these parameterizations. Indeed, it depends on the mass of the exchanged light
field, and could even be non-analytic. Moreover, in these configurations both correlation func-
tions are modulated by the angle between long and short modes, with the modulation being
a function of the spin of the exchanged particle. For these reasons, these new shapes of non-
Gaussianity show a very small overlap with the local template and the 77, parametrization of
the trispectrum, which are the only templates constrained by Planck data that peak in the
squeezed and counter-collapsed configurations respectively. Moreover the non-Gaussianity
generated by the exchange of higher-spin fields cannot be mimicked by single-field inflation
or by multi-field models with only scalar fields: it therefore represents a smoking gun for the
presence of higher-spin excitations. All this suggests that a dedicated CMB analysis of the
Planck data, aimed at constraining these shapes of non-Gaussianity, is required.

In this paper we take a first step in this direction with a Fisher analysis of how a cosmic-
variance-limited experiment measuring temperature anisotropies of the cosmic microwave

!The coupling with the foliation is not the only way to have light spinning particles. Another possibility
consists in having fields that enjoy a partial gauge invariance that allows to evade the Higuchi Bound. These
fields, called partially massless states, have unsuppressed super-horizon perturbations for some values of their
mass [4, 5].

2In the language of the Effective Field Theory these higher-spin states should be viewed as excitations of
a fluid more than elementary particles.



background up to £.x = 3500 can constrain the templates

/ kikoks\ 2 .
(Chy ChoChs)' = Fs (k3/8) Pe(k1) P (k2)Ps(k1 - ko) + 2 perms. , (1.3)
t
2 \A o
(Cher Chos Cs Chea) = s [(;ﬂ;) Pe(ky2) Pe (k) Pe(k3)Ps(ky - k3) + 23 perms.| ,  (1.4)

where the prime means that we have removed the factor (27r)35(3)(k12m), and we define
ke = ki + ko + k3 and k;j; = |k; + k;|. These templates parametrize well the effects of a
particle o with spin s and mass m. The function P4(z) is the Legendre polynomial of order
s, while from now on we define?

A=3/2—/9/4— (m/H)?. (1.5)

Notice that in the case of an additional massless scalar, i.e. if s = 0 and A = 3/2, the two
templates reduce to the well-known parameterizations Fy = fnr, and 79 = 7nL.

There are several works in the literature that study the observational consequences
higher-spins fields in the CMB. For instance, refs. [11, 12] analysed the bispectrum template,
eq. (1.3), for A = 0, i.e. when the exchanged spin-s particle is massless. Moreover, ref. [13]
has studied a template similar to that of eq. (1.4) for s = 2 and A = 0,* while ref. [14]
studied the effects of primordial higher-spin fields on the power spectrum (see also ref. [15]
for an early discussion). In this paper we make a further step, implementing also the scale
dependence that arises when the additional degrees of freedom are not massless and extending
the trispectrum analysis even to particles with spin s > 2.

Many authors have also studied the effects of primordial higher-spin fields on LSS ob-
servables, mainly focusing on the primordial bispectrum. An incomplete list of works on this
topic is [16-22].

Our paper is organized as follows. In section 2 we briefly review how the templates
of egs. (1.3), (1.4) arise in theories where additional light spinning particles are active. In
section 3 we derive the expected signal in the 3- and 4-point functions of CMB temperatures
anisotropies. Section 4 is devoted to the forecast for cosmic-variance-limited CMB experi-
ments. We comment the results and conclude in section 5. Appendices A to D collect some
technical details.

Notation and conventions. We denote the modulus of a vector by |k| = k. We then
use the following shorthand notation: k;; = k; + kj, L;; = L; + L;, and so on. We denote
Z?Zl k; by k123 and Z?Zl k; by k1234. The functions Y;", Y;"* are, respectively, the spherical
harmonic of index £, m and its complex conjugate. The functions (P}") P, are the (associated)
Legendre polynomials, while j, are the spherical Bessel functions of the first kind. We consider
a flat ACDM cosmology compatible with the latest Planck results [23]: Ag = 2.1 x 1079,
ns = 0.965, k, = 0.05Mpc™t, r = 0, Qh% = 0.0226, QA% = 0.112, S.m, = 0.06eV,
Ho = 67.5kms™'Mpc™!, Tomp = 2.7255 K, Yie = 0.24, Neg = 3.046, 7 = 0.06. The various
transfer functions for temperature anisotropies are computed with CAMB [24], version 0.1.8.1.°
We use the wigxjpf library (version 1.9) to compute the necessary Wigner symbols [25].5

3Notice that, differently from eq. (1.2), this A does not depend on s. This redefinition does not lead to
any loss of generality: we refer to, e.g., ref. [10] for details.

“This template is different from eq. (1.4), both in its angular modulation and scale dependence (for A # 0)
in the counter-collapsed limit.

Phttps://camb.info/readme.html.

Shttp://fy.chalmers.se/subatom/wigxjpf/.
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2 The primordial signal

The existence of light excitations with spin s > 2 during inflation, in a quasi-de Sitter
spacetime, is made possible by the coupling with the preferred foliation that breaks some
of the de Sitter isometries. Since we are interested in working out the phenomenological
consequences of these higher-spin states, it is convenient to use an effective approach to
describe the additional degrees of freedom. The formalism presented in [10] is well-suited to
describe generic spin-s excitations which live on the hypersurfaces of constant inflaton.

Because of the foliation, Lorentz invariance is broken and thus on sub-Hubble scales
fields are invariant only under spatial rotations. This implies that one should cast pertur-
bations into representations of SO(3) instead of SO(1,3). Spin-s excitations are therefore
described by traceless rank-s tensors Y/ that live on the three-dimensional surfaces at
constant inflaton, ¢ = t 4+ 7(t,x) = const. Diffeomorphism invariance is then restored in
the action by “pushing forward” the tensor X% in a way that depends on the particular
configuration of the inflaton slices described by m

8$Ms

. B

axul

.. s 11...05 _ NVi..ts
St (it ) = W

(2.1)

¥
The generic action for a spin-s field that preserves spatial diffeomorphisms can be written

using 3#1Hs and the unit vector n* perpendicular to the inflaton hypersurfaces. At quadratic
level in 3 one gets

1
5= 28'/dtd3$a3 ((l—cg)n“n)‘ VS oSy, = 2 VS VRS, L,
Y QV Zul/z...usv 2)\ _ 2 2H2 W1 Vs 2.9
Cs Vo AX g vy — (M7 +sc H) V1..Vs (2.2)
- dtd3z a® (([7““'15)2— cz a—Z(aszl...zs)2_ 563 G/_Q(ajO']lles)z— m2 (O_zl...zs)2) :
S

where, in the last line, we have introduced a new field o = ¢® X% % which has the
same temporal part of the kinetic term as a canonical scalar field with mass m?. Notice that
there are three independent kinetic terms one can write. This means that different helicities
have a different propagation speed ¢ (for h = 0,...,s): this is a function of the speed of
propagation of the helicity-s mode, 2, and of the parameter §c2.

For a systematic study of the phenomenology of the spin-s fields one should also include
interaction and mixing terms allowed by the symmetries. Even if we work at leading order
in fields and derivatives, it is hard to write the most generic operators for generic spin s. For
simplicity, we just report the leading operators in the case of an additional spin-2 particle, i.e.

S = / dz /=g (Mp pOK 55 + Mp 5 3g"6 K s 2 — uzaﬂza’yzwﬁ) . (2.3)

where p, p and p are coupling constants and 6K,5 = Kap — a>Hhgg is the fluctuation of the
extrinsic curvature of constant-i¢ hypersurfaces. Notice that the first term of the above ac-
tion starts quadratic in perturbations: it mixes ¢ with the inflaton field. The second and the
third terms, instead, start cubic: at this order in perturbations they give rise to, respectively,
a onm and a o vertex.



Non-Gaussian signal. The mixing and interaction terms of o with the inflaton perturba-
tions 7 generate complicate momentum dependencies in the scalar bispectrum and trispec-
trum. However, these dramatically simplify in the squeezed and counter-collapsed limit,
respectively. Taking the limit k1 < k2 ~ k3 the bispectrum becomes

A
(G G Go) = (2)5 (Rrzs) (Z) Pe(kr)Pelka) (8, o, (o) by s, ) o (2.4)
0

while in the limit k1o < k1, k3 and k1 =~ ko, k3 ~ k4, the trispectrum simplifies into

2

A
(G Coa s Gy = (236 (o) 7, (é@) Pe(lsa) Pe(ky) P (k)

X i C;QV (63’1)21zg (12212) ];'1 TRER ];71 is) (2'5)
h=-—s

h A N ~ *
X <€g7 )j1...js(k12) ]-6‘3]‘1 ...k3j5> .

In the above formulae, ¢ is the speed of propagation of the helicity-h component of the

particle o, A is 3/2 — v (with v related to the mass of the particle, v = \/9/4 — (m/H)?),
and finally egh)h

Having in mind the example of the additional spin-2 particle, eq. (2.3), we can estimate
how the coefficients F; and 75 are related to the coupling constants of the quadratic and cubic
interactions. In terms of the canonically normalized scalar perturbations 7. the mixing is
schematically of the form ~ p/(\/eH)00m .0, while the mro vertex is ~ p/(eH?Mp)#. 00m.0,"

therefore one gets (see figure 1)

# (o) (50) -

where the ¢;, stands for the speed of propagation of the helicity exchanged in the horizontal
propagator. Let us make a few comments on the amplitude of F; and 75. First, looking
at the diagram on the left of figure 1, we immediately realize that the scalar bispectrum
can get enhanced only if the helicity-0 component of o mixes with the inflaton. In fact, at
linear order in perturbations, scalars cannot mix with fields of a different helicity. On the
other hand, the scalar trispectrum is non-vanishing even if there is no linear mixing with the
inflaton. Furthermore, even in presence of such linear mixing, if ¢g >~ 1 but ¢1o < 1, the
4-point function will still be enhanced with respect to the 3-point function. For these reasons
it is important to analyze both correlation functions. It is possible to get rough bounds on
the maximum amplitude of F; and 75 by studying the theory described by egs. (2.2), (2.3).
The requirements p, p < \/eH ensure that the theory is in the perturbative regime and that
there are no gradient instabilities. At the same time, to satisfy observational constraints, we
require ¢; > 1072 (we refer to [10] for details). From the estimates of egs. (2.6), (2.7) we
therefore see that the amplitude of these new shape of non-Gaussianity could be quite sizable.

js(lzz) is the polarization tensor of the helicity-h component of o.

Ts = —
)

AN

"We have neglected, for the sake of simplicity, the cubic vertex proportional to p.



Figure 1. Leading contributions to the scalar 3- and 4-point functions. Solid lines correspond to
m, curly lines to 0. The blue circles indicate a contraction between a pair of free fields, i.e. the
insertion of a power spectrum. One has to put the minimal number of circles in such a way that
external lines cannot be connected without going through a circle (contraction), and each circle is
connected to external lines from both sides. Diagrams where the circles are located in different places
are subdominant for cj,.

Primordial templates. Eq. (2.4) is well approximated by the template of eq. (1.3), i.e.

k1 koks

A
k‘§/8> Pc(kl)Pc(@)Ps(iﬁ ko) + 2 perms. (2.8)

(Clor G Cios) = (27)°5(Ko123) Fs (
where ky = k1 + ko + k3. However, this shape is too difficult to handle because it is not
separable. Rather than pursuing the analysis of this shape we will use its squeezed-limit
approximation. As it is shown in appendix A, we are allowed to do this since most of the
signal comes from the squeezed configuration for 0 < A < 1. We therefore use the following
template for the primordial bispectrum

A
(G Cia Gy} = (27)6(azs) T (’,j) P (k) P (k)P (ky - o) + (B — k)

(2.9)
= (27)38(K123) Fs by ooy (5) + (ko — ks) |
with
47T kl A 5 h ~ h* ~
Dherkeaks (8) = 35— Ty Pe(k)Pe(ka) Y Y& (k)Y (ko) + (ko — k), (2.10)

h=—s

where we have expressed the contractions between the wavevectors and the polarization
tensor first in terms of the Legendre Polynomials Ps(z) and then in terms of the Spherical
Harmonics Y, (6, ¢).

Let us move now to the trispectrum. Again, we first need to rewrite the polarization
tensors in terms of the spherical harmonics (see e.g. ref. [4]). First of all we rewrite the second
line of eq. (2.5) as

(62?)1‘1...1'5(’%12) kviy .k z) (eg?)jl...js(’%12) ks - ’2?3js> =Y0,0) Y] (0. 4)

. (2.11)
= "™ PR (cos0) PP (cos @),



where 6 (¢') is the angle between k1o and ki (ks), ¢ (¢/) is the angle of the projection of
k1 (ks) on the plane perpendicular to kg and, finally, » = ¢ — ¢/. A further simplification
is needed to be able to compute the CMB 4-point function. This is because the right-hand
side of the above expression makes a precise choice of 1%12, while we need to integrate over
all possible directions k1o in order to compute the signal in multipole space (see section 3).
Therefore, we further assume that all the helicities of o propagate with same speed, i.e. ¢, =
cs Vh=0,...,s. With this assumption they all contribute with the same amplitude to the
primordial trispectrum, and the second line of eq. (2.5) becomes

. iﬁh(kl)lfs”*(l%s). (2.12)

—2V h h*/pnt —2V 7 7
Po(ky-k3) =
E Y H(0,0)Y" (0, ¢) o (k1 - k3) 2511 2

With this assumption the angular modulation does no longer depend on the angle v (in other
words, we got rid of the k12 dependence). In conclusion, we use as template the following
expression

~ ~ 2 A
(Choy Cioa G Ca) = (2)20) (Key34) 7 [Ps(kl'k3> (7511/623) Pe(k12) Pe (k1) P (k3)+23 perms.

= (27r)37'5/d3K(5(3)(k12—K) 68 (k3 + K) t%’,:i(K s)+23 perms., (2.13)

with

4 K2\% 5 . . o~
e (K, ) = %5+ 1 <I<:1k3> Po(K) P (k1) Pe(ks) > ViH(k1) YY" (k) . (2.14)
h=-—s

3 Signal in the sky

With eqgs. (2.9), (2.13) at hand we can move to the computation of the CMB correlation
functions. It is convenient to start by writing the primordial templates in multipole space,
using the variable (g, = [ d2k Y,/ (k)Ck. We begin with the computation of the bispectrum,
i.e. from eq. (2.9). In terms of (s, (k) it reads

3
(I T Ceom: (ki) /Hd2 ki Y, (Ki) (Chey Cheo Ches)
-1

:]:s/d3x

where in second line we have used the integral expression of the Dirac delta. We then use
the Rayleigh expansion of the exponentials, i.e.

= =4 3 i jolha) Y (k) Y (&), (3:2)

£m

(3.1)

H ks Yfznl*(l%l)] el bk, koks (5) + (K2 — k3)

and we perform the integrals over all the possible directions k; exploiting the orthonormality
of the spherical harmonics and the Gaunt integral,

gél lols /dQ YVZTI (ﬁ')}/g;nz (ﬁ)}/{?3(/ﬁ) — h51 lo L3 X <€1 62 €3> s (33)

mimams ml m2 m3



where

] 201+ 1)(200+ 1)(203+ 1) (01450
pltals _ \/( )( L )( ) <01 02 03) (3.4)
We finally obtain
3 AnFs [
(LT Ceimi (k) = 25+81 ; da a® ki, (ki) P (k) gy 2, (kow) Pe () jirs (ksx)
i=1
C X S gl gel o, 09
L1,La, My, My h
+ (k2 — k3).

Using the definition of eq. (2.10), the above expression can be written in a way that is
manifestly isotropic in terms of the Wigner 6-j symbols, i.e.

3
0 Uy 4 [

(] Ceomi (k) = (_;Ll_rfw@ (2m)3Fs bl 2% () + (ky — k), (3.6)

=1

where
327
b£11%2£/§3 (8) - 2s+1 Z IZI b2t (Ll’ La, 3)

fuke (3.7)

o0
x / de a? k{ jir, (kva) Pe(ky) ky 2y (kaw) P (k2) jrq (ka)
0
The symbol I encodes the angular structure of the primordial template and it is given by

908 Ly s) = (_1)%+geg+eg+gm+% plilets pliLis ploLas {il 22 i‘f)} . (3.8)
2 L1

where the curly matrices stand for the Wigner 6-j symbols.
Let us move now to the trispectrum template, i.e. eq. (2.13). The computation is similar
to that of the bispectrum template. In terms of (s, (k) we have

4
d3zd3yd3 K Sk (oo K)ot .
(LT Seom, (k) =Ts/(27r)3 [T @2k vy (i) | eFrzm B wtilhoat By g biie (g )
=1 i
+ 23 perms. (3.9)

After having expanded the exponentials using the Rayleigh expansion, and performed the
integrals using the orthonormality of the spherical harmonics and the Gaunt integral, we get

- 6 by L\ ts 4 L

l [ N Z M b b 3 U 3 kiks f16
<,_1 St (k1)) = 4 M( 1 (—m1 —my M) <—m3 —my —M) (2m)° 75 tigps eye (Lo 5) (3.10)
+ 23 perms.

In this expression, the matrices stand for the Wigner 3-j symbol and we redefined the function
t as

16(27)? 1 s
tﬁiiiiéﬁi (L, S) = 95 + 1 Z (_1)51234+2(L13+€13)+L + L+ If;ff (Ll,Lg, L/7 s, L)
L1,L3, L/
></0 dzdy (zy)? FL(A, 2,9)jir, (k12)je, (ko) iy (k3y) je, (kay) Pe (k1) Pe (ks) -

(3.11)



In the above equation, the function F7, is defined as

FL(Aay) = 2 / T AK KA PR ju(Kx) i1 (Ky) (3.12)

™ Jo

while the symbol 7 is

Tpi2 (L1, Ly, Ly s, L) = (2L + 1) P2 platalt phtas plolss {?ej LLl} {%K;LL?)} .

(3.13)

3.1 CMB 3- and 4-point functions

Given the primordial signal in multipole space, egs. (3.6), (3.7) and egs. (3.10), (3.11) re-
spectively, we can easily obtain the CMB 3- and 4-point functions in harmonic space, using
the relation

o = 4 (—i)" / ( 2‘1:)3 k2 Ag(E) Com(K) (3.14)

where Ay(k) is the temperature transfer function (we drop the superscript “T” for simplicity
of notation).

3.1.1 CMB bispectrum

The CMB bispectrum is given by

3 3
TLatm) = [H4 " [ EA@-(ki)] T m)
=1 =1

- (61 b2 €3)fsb‘flf2f3(s)+(k2—>k3).

(3.15)

m1maims

The primordial information is encoded in the reduced bispectrum b% 23 (s) whose expres-
sion is

a7
25 +1

pirtzta(s) = > IU0(Ly, Ly, s) R 132(A). (3.16)

Ly,L2

In the above expression, the function Ry is given by
Ris 0%(A) = /0 dz 2® Bryr, (A7) Bryry (= A, 7) gy (), (3.17)
where o and 3 are defined as

2 [e.e]
/ dk k% Ag(k) je(kzx), (3.18)
T Jo

Bus (A, ) % /0 Ak K2 P(k) Ag(h) (k). (3.19)



3.1.2 CMB trispectrum
The CMB trispectrum, instead, is given by

4 4 ] 4
<H Apym;) = [H 47r(_i)ei/ (;17]:;3 kz2 Afi(ki)] <H Cem,) %
=1 =1 i=1

(3.20)
51 EQ L 43 64 L 14
Z(—l)M<m1 . —M) <m3 i M Te téééi(L, s) + 23 perms.,
LM
where tﬁ;ﬁi([/, s) is the reduced trispectrum, defined as
4 4 ’
Hp(Los) = gg D () 1 1 1 L)
Ly,L3, L'
> 2
X / d:ndy (:L‘y) BﬂlLl(_Av 33‘) Qg (.fL') BK;;L:;(_A7 y) ayy (y)FL(Av Z, y) :
0
(3.21)

The function « is peaked at the recombination distance r.. Then, if F7(A, z,y) varies slowly
around that point, the integrals in x and y become separable, and we can approximate the
function Fp(A,x,y) as FL(A,ry, 7). This greatly reduces the computational cost needed to
estimate the signal. In appendix B we show that this assumption is satisfied for small L,
that is where most of the signal for the trispectrum is. The second line of eq. (3.21) can be
approximated to

Rtz (A) RisLsts(A) By (A 2 y), (3.22)

tris tris

where Ry is o
Rib(A) = / Az 2? By 1, (A, 2) gy (2) (3.23)
0

Before concluding this section let us study the signal for s = 0.8 In this situation the
primordial correlators are enhanced thanks to the exchange of a long-wavelength scalar field
and we recover the known results of, e.g., refs. [26, 27]. Thanks to the properties of the
Wigner 6-j symbols, the functions I and Z simplify greatly if s = 0: they reduce to

h€1 lo l3
I1405(L) 1,0) = ( ) 0011,003Lg » (3.24)
010 , h€1 o L h€3€4L
T,12 (L1, L3, L',0,L) = (477> 80,0, 005 L5001 - (3.25)

The final expressions for the CMB 3- and 4-point functions, then, are

bél €2f3(0) — ( l;; %L ,:;3 ) J—_'O hfl lol3 Rbis 22;53(A), (326)
—h —T2 I3

and
010 B m{ 61 fo L bz ¢y L
ege; (150) = Z (=1) <—m1 —ms M> (—mg —my —M
LM
X To hﬁl lo L h€3€4L R£1€1€2(A) R€3£354(A) FL(T*,T*) .

tris tris

(3.27)

If the field is massless, i.e. A = 0 (or equivalently v = 3/2), the above expressions agree with
already known results [26, 27].

8In this case one recovers the standard parameterizations: Fo = fni, and 70 = T~L.
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4 Analysis

We are now in position to estimate the constraints we can get on the coefficients Fg and
7 for different values of the spin and the mass of the exchanged particle. We consider a
noise-free and cosmic-variance-limited experiment measuring temperature anisotropies up to
a maximum multipole of 5. We also assume that the non-Gaussian signal is very weak,
so that we can neglect the non-Gaussian contribution to the cosmic variance. Let us define
the Fisher matrix F' (which for us is a 1 x 1 matrix) for the bispectrum as [11]

B 2
Fa= Y [ Beytat (5)] (4.1)

Cy, Cp,Cy, '
01 >0a>03>4 UREoNgs

where By, r,s,(s) is given by all the possible permutations of eq. (3.16). The Fisher matrix
for the trispectrum is instead defined as [28]

ey Y Tty (L 5)
tris (2L + 1)0{1 CEQ C€3 054 ’

L 01>02>03>04>5

(4.2)

where Tf;ff is the trispectrum averaged over possible orientations of quadrilaterals, i.e.

10y L
T;2(L,s) = Pp2(Lys)+ (2L+1)) [(1)223 { &11 Ez L,} P (L s)
L (4.3)
bty L
R P L]

and Pﬁe& is defined as
342

PUE (L) =2 [t (Ls)+ (-1 2 20 (L) + (- ) R (L) + (=) 21201 (L)
(4.4)

4.1 Simple estimates

Before proceeding with the full analysis, let us first estimate the expected behavior of both
s and Fiig as a function of the maximum multipole £y.. As we are going to confirm in
the next section, the value of s does not affect the scaling of the signal-to-noise ratio with
lmax, s0 we fix s = 0 for simplicity (correspondingly, we can fix L = ¢ in the § functions
of eq. (3.19)). From eq. (3.26), we see that the estimating b1 2% requires an estimate
of Ry b1i2t (A). To do this we approximate the radiation transfer function as a spherical

iS ¢4 0
Bessel function, neglecting acoustic physics, i.e. we use the Sachs-Wolfe approximation (see
appendix C for more details). In this approximation we have that Ag(k) = —js(krs)/5,

where 7, is the comoving distance to the last-scattering surface. Consequently, eq. (3.18)
becomes simply ay(z) = —0(r« — x)/5/r3x V¢, and from eq. (3.17) we get Rpjs 2253(A) ~
Beye, (A)Beye,(—A). From eq. (3.19) we finally get Be(A) o< £2Cy. Then, a naive estimate of
the signal-to-noise ratio for the bispectrum is (see also [29])

bflezfg 2
Fbis ~ /d2£1d2€2 g X 62

. 4.5
Cél CEQQ max ( )
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Interestingly, the scaling of Fi;s with f.x is independent of the mass of the exchanged
particle.” Something similar happens also for the trispectrum. It is easy to see that, in the
counter-collapsed configuration, tZZ (L,s) = Fr(A)Beye, (A)Beyes (A), with Fr(A) < L*AC.
This leads to the estimate'”

142 2 4(1—A) .
~ 2 2 2 (t€€ (L)) gmax 1f0§A<1/2,
Ftris ~ /d Ld gld 62 631247 XX o . A (46)
[ %} Emax if 1/2 < <l1.

For A = 1/2 and A = 1 the scaling is slightly different: Fis o< £2,,, 10g fmax and Fiis o
02 log? lax, respectively.

max

4.2 Numerical analysis

The outcome of these estimates motivates us to study the behavior of the signal-to-noise for
different values of A since we see that, at least in the bispectrum case, the scaling with £«
does not drop off as we increase the mass of the exchanged particle. We perform the forecasts
for s =0,2,4 and A =0,1/2 and 1. The choices A = 0,1 are particularly interesting since
the former corresponds to the exchange of a massless particle, while the latter corresponds
to the Higuchi Bound for particles with s > 1. It is therefore the smallest value of A (i.e. the
strongest scale dependence of the bispectrum in the squeezed limit, (Cg, Ch,Chs)’ ~ klA*‘? for
k1 — 0) one can get if the spinning particle does not couple with the foliation provided by
the inflaton.

The plots in the top panels of figure 2 show the behavior of the signal-to-noise for the
bispectrum and the trispectrum given by the exchange of a massless particle as a function
of Umax.'! Since the trispectrum template is peaked in the counter-collapsed configuration,
we have truncated the sum on L, considering only the contributions with L < 10. This
simplification dramatically reduces the computational time required to perform the evaluation
of the signal-to-noise, and allows us to perform the analysis in a reasonable amount of time.
We confirm the scaling behavior predicted in eqs. (4.5), (4.6): as expected it is not affected
by the value of the particle spin. As we vary s, what changes is the amplitude of the signal,
that drops as the spin increases. The numerical results are approximately fitted by

6.95 x 10710

bis ~ T21050 ]_.52 £12nax log {max , (4.7)
3.60 x 10~1°

Ftris ~ m 7'52 Ei}nax . (48)

The Fisher matrixes in the massive case are also shown in figure 2 for both A = 1/2
and A = 1. Again, we confirm the predicted scalings, (Fis o< £2,,, and Fiys o< £2,,. 108 fimax)
with the possible exception of the bispectrum in the s = 0 case (that deviates from the

predicted scaling for £, = 400). Even in the massless case the signal-to-noise for s = 0

9Strictly speaking, if the exchanged particle is massless the dependence of Fiis on fmay is slightly different:
Fois o 02,108 lmax. The reason for this difference lies in the fact that for A # 0 our template explicitly
chooses k1 as the long mode, so that we can integrate eq. (4.5) only in the region ¢1 < ¢2. For A = 0, instead,
we can consider the contribution coming from all the configurations of ¢1 and /s.

ONotice that the trispectrum template is valid in any configuration of the momenta and therefore we are
not assuming any hierarchy between the multipoles ¢1 and #».

111 the plots we fix Fs and 7. to 1. Note that in the event of a positive detection, our estimates of the
signal-to-noise ratio break down due to the non-Gaussian contribution to the noise. Beyond this point, an
improved estimator is necessary to decrease the error bars as 1/v/Nyata.
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Figure 2. From top to bottom: Fisher matrix for the bispectrum (left panels) and trispectrum
(right panels) arising by the exchange of a massless particle with s = 0,2,4, and with A = 0,1/2.
The solid lines make use of the full radiation transfer function, while the dashed lines show the SW
approximation. Fi;is has been computed summing only over soft-limit contributions, L < 10. The
bottom panel shows the Fisher matrix for the bispectrum for A = 1, and s = 0,2,4. In all plots F;
and 7, are fixed to 1.
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presents such a deviation, as we see from the top left panel of figure 2 (we also notice that this
behavior at large £max is consistent with the one found by ref. [12]: see the blue line in their
figure 4). However this unexpected behavior becomes more pronounced in the massive case.
It is possible that this behavior is just a very slow oscillation in fyay around Fi oc £2,,.
In this case, more multipoles (¢max > 1000) are needed to recover the expected scaling: we
leave this to a future analysis.

Notice that in the massive case, even if the signal is still peaked in the counter-collapsed
configuration, it increases much more slowly in this limit. This means that, while for A = 1/2
we only expect order one corrections to our result coming from the terms with L > 10, we
could not perform the analysis for the trispectrum in the A = 1 case. One should sum over all
the possible values of L to get the correct result, making the analysis practically unfeasible.'?

Given the results of egs. (4.7), (4.8) and of figure 2 we can estimate the bounds that
a cosmic-variance-limited CMB experiment could put on the amplitude of these new shapes
of non-Gaussianity. The expected 1o errors on Fs and 74 are given by o(Fs) = 1/1/Fy;s and
o(1s) = 1/v/Fiis. Figure 3 shows these 1o errors for Fs and 75 for the case of a massless
particle exchange extrapolated up to £pax = 3500 (above this threshold lensing effects become
important and we can no longer trust the power-law behavior of the signal-to-noise [30]).*
The forecasts for Fy and F3 and 7y are consistent with the bounds obtained by Planck [31].

Let us move now to the forecasts for the bispectrum and trispectrum amplitudes given
by the exchange of a massive particle. The top and bottom panels of figure 4 show the
expected 1o errors on the amplitude of, respectively, the bispectrum and trispectrum given
by the exchange of a spinning particle with A = 1/2, while figure 5 shows the error bars for
the bispectrum with A = 1. We notice that the expected error bars are of the same order
of magnitude in both the massive cases considered, and are at least an order of magnitude
worse than those for the massless case. For instance, for A = 1 and s = 0 we see that we
could get at most Fy < O(100) at fmax = 1000. Moreover, following [32], we have computed
the overlap between the template of eq. (1.3) with A = 1 and the standard templates of
non-Gaussianity (local, orthogonal, equilateral). We find that, independently of the value
of the spin, the overlap between this template and the equilateral one is always quite large
(the cosine being ~ 0.8-0.9: see appendix D). This tells us that a dedicated analysis of these
shapes would probably not yield better constraints on their amplitudes than the ones we can
get on equilateral non-Gaussianity.

5 Discussion and conclusions

The analysis we carried out shows that the CMB temperature anisotropies can still play
a very important role in distinguishing between different inflationary models. While the
Planck Collaboration has already put bounds on some of the shapes of non-Gaussianity that
we have investigated in this work, there are still many other shapes that are waiting to be
constrained. For example, we stress the importance of testing the templates for the scalar
trispectrum that arise in the presence of a massless spinning particle during inflation.

12%While the total computational time scales as £2,,, if the signal is peaked in the counter-collapsed config-
uration, in the most general configuration it scales as £3,,.

13We also stress that the effects of Silk damping start to become relevant at £ > 1000 [29]. These effects
should be taken into account when extrapolating our results up to ¢max = 3500: however, they are expected
to give a correction that scales only logarithmically with fmax [29], so that the error that we are making is
negligible.

— 14 —



) Massless particle exchange
10 ———

— EX,s=0 —— EX,s=2 —— EX,s5—4 ]
e fit,s=0 o fit,s=2 —— fit,s=
10° F 7

104 F

102

10!

100 L L
10 100 1000 3500

gmax

Massless particle exchange

1010 ——— - — - -
— EX,5s=0 —— EX,s=2 —— EX,s=4
00 = fit,s=0 - fit, s=2  --—— fit, s = £
108
107
—~ 106
o) 105
10*
103

102

10 100 1000 3500

gmax
Figure 3. Expected 1o errors on Fy (top panel) and 75 (bottom panel) for s = 0,2,4 and A = 0
as a function of f;,,x. The solid lines are computed using the exact expressions for the bispectrum

and trispectrum up to f.x = 1000, while the dotted-dashed lines are their extrapolations up to
Lrnax = 3500.
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Massive particle exchange (A = 1/2)
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Figure 4. Same as figure 3, but with A =1/2.
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Massive particle exchange (A = 1)
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Figure 5. Expected 1o errors on Fs up to ax = 1000, and their extrapolation up to £y, = 3500.

We emphasize, indeed, that it is possible to have a sizable trispectrum even if the
bispectrum is small. This happens, for instance, in models with additional higher-spin fields
that do not directly mix with the inflaton field. The example of section 2 shows that 75
could be very large in these models, since it is proportional to the inverse of the speed of
propagation of the helicity-s field cubed, and such speed could be much smaller than unity.
Our analysis shows that already with Planck data (for which we take £y,,x = 2500) one could
constrain 75 < 10% and 74 < 3 x 103, while a future CMB experiment that will measure the
temperature anisotropies up to fmax = 3500, like the proposed CMB-S4 [33], could arrive
at 72 <5 x 10% and 74 < 2 x 103, Given that at the moment we do not have observational
constraints on the amplitude of these shapes, and the theoretical upper limit can be as large
as 7s < 10° (see the discussion at the end of section 2), it is surely worth to look for these

~

shapes already in both the currently available and the future CMB data.

In this work we have also studied, for the first time in the context of CMB statistics,
the signal-to-noise for some templates of non-Gaussianity that take into account the scale
dependence due to the exchange of a massive particle with even spin. As an example, we
have studied the bispectrum and trispectrum templates for A = 1/2,1 (we recall that A =1
corresponds to the exchange of a particle at the Higuchi Bound), for different values of the
spin. The outcome of our analysis is that, even though the signal-to-noise ratio for the
bispectrum scales with £, in the same way as in the massless case, its overall amplitude is
smaller, leading, for A =1, to Fo < O(100) at £pmax = 1000 at most. Moreover, this template
has a large overlap with some of the standard templates already constrained by Planck.
This suggests that, even in the case of a detection of some level of non-Gaussianity in CMB
data, the CMB alone cannot be used to infer the mass of the particles which were active
during inflation, but it would need to be complemented by, for example, LSS observables:
these could be the scale dependence of the galaxy bias, together with a modification of the
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bias expansion of galaxy shapes (given by the peculiar angular dependence of the primordial
bispectrum in the squeezed limit).!* We leave such analysis for future work.

Before concluding, let us stress that in this work we have focused on the signal coming
from the temperature anisotropies only. However, also the correlation functions involving
polarization EF-modes will add to the total signal-to-noise ratio. In addition, a detection of
B-modes by an experiment like CMB-S4 would also bring an extraordinary chance to test
the presence of higher-spin fields. Indeed, higher-spin fields could have a large coupling with
the gravitational sector as well [10] thus enhancing the correlators which involve B-mode
polarization.
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A Bispectrum template for exchange of a massive particle

In this appendix we confirm that, as expected, the signal-to-noise for the bispectrum template
of eq. (2.8), i.e.

kikoks

A
W) Pr(k1)Pe(k2)Ps(k1 - k2) + 2 perms. , (A1)

(Chy ChaChs) = (2) 6 (K123) Fo (
peaks in the squeezed limit for all values of A between 0 and 1. The relevant quantity
for the computation of the Fisher matrix is the ratio between the square of the bispectrum
({Chey Ches Ches)')? and P (ky) Pr(k2) P (k3) (see e.g. eq. (4.1)). We then plot this quantity as a
function of x1 = k1 /ks and x9 = ko /ks for A = 1/2 and A = 1, organizing the momenta such
that k1 < ko < k3 and fixing Ay = 1, ng = 1 and F; such that kg(({k3ck3{k3>’)2Pg(k3) =1
This is shown in figure 6 for s = 0. We see that, indeed, the signal-to-noise peaks for x; — 0
and o — 1. For a general value of A, in this limit we see that this ratio goes as x?Af?’. For
0 < A <1 we are then sure that most of the signal comes from the squeezed limit.

B A separable template for the trispectrum

In this appendix we show that one can neglect the z- and y-dependence of F7,(A, z,y) in the
formula for the reduced trispectrum, eq. (3.21). The function Fp (A, x,y) can be explicitly
evaluated for a given value of A. For instance, if A = 0 it reads

L T'(L+ng/2—1/2)
T (2—na/2)

X oFy (ns/2—1,L+ns/2—1/2; L+3/2; (y/x)?) .
(B.1)

Fr(0,2,y) = 2272 Ay ksl gt (g)
a

14Gee [34] for a forecast using galaxy intrinsic alignments.
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Figure 6. Plot of k3 ((Ck, Ck,Chs)')?/ Hf’zl Pe(k;) for A =1/2,1. The scaling in the squeezed limit is
given by egs. (2.9), (2.10), and is ~ 22273

From the above expression it is easy to see that

0.0, F(0,2,9)
A 2 Yy Ny
" TF(0.x,y)

L+L* Ar?
= — -1 B.2
T 2 TOm 1), (B-2)

T,Y=T*
where Ar, is the width of the peak around the recombination distance of the function ay(z).
Typically (Ar,./r.)? < 2 x 1074, therefore the approximation Fp(0,z,y) ~ Fr(0,7,74) is
well justified. Following the same steps we did for A = 0 one can show that this approximation
holds also for A =1/2,1 and, more in general, for every value of A in the range 0 < A < 1.

C Sachs-Wolfe approximation

The Sachs-Wolfe (SW) approximation is useful to compute the signal-to-noise of eqs. (4.1),
(4.2) without needing to perform the integrals in the definitions of eqs. (3.12), (3.18), (3.19)
numerically.

Neglecting acoustic physics (together with Doppler and ISW effects) consists in assuming
Ay(k) = —je(kry)/5, with j, a spherical Bessel function. This is a good approximation of
the transfer functions for ¢ < 100: however, as one can see in the plots of figure 2, the
corresponding result well approximates the exact Fisher matrix even at higher multipoles
(see also [29]).

With this approximation the expression for ay, i.e. eq. (3.18), is greatly simplified. «y

takes the form

ay(x) = —M. (C.1)

5/r3x

Consequently, the integrals of eqs. (3.17), (3.23) become

1

Rbis ilfiif’) (A) == _g ﬁ£1L1 (A7 T*)BKQLQ (_A; T*) 9 (02)
1

Rf%igl@ (A) = _5 5€1L1(_A7 T*) . (03)
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To evaluate the functions 8,5, and F7, we further assume a scale-invariant primordial power
spectrum, P (k) = 2m2As/k3. Therefore, for the massless case we get

w2 ()
PO =0 T T () T (B ) o
Fr(0,74, 1) = 25 C3W (C.5)

where C5W = (27/25) x As/£(£+1) is the angular power spectrum in the SW approximation.
For A =1/2, the expressions of ;7 and Fp, are

xo/24, r (2e2t)
Ber(1/2,1:) = — 10y/2r, T (22L%5) T (2L=2645) | (261247 (C.6)
3702 Ag\/7s I (282021
Ber(=1/2,7.) = - 40\/55 F(QE—iL-‘r?) (2L 2é+7) (2£+24L+9)’ (C.7)
212 Ag
FL(]./Q,T*,T*) = m (08)
Finally, for A = 1, the expressions of 8¢, and Fy, are
T2 A, T (£+L+1)
5£L(177“*) == 5ry T (é—g+2) T (—e+zL+2) T (e+é+3) ’ (C,9)
T2 A T (Z+L71)
“1.r,) = i 2 , C.10
Ber(=1,7+) 10 T (@—é+4) T (—é+2L+4) T (£+g+5) ( )
1—ng 1—ng 2L+1+ng
Fr(1,7e, 1) = 7/2A ke D) T (5 5) (C.11)

S TiJrns T (2—2ns) T (2L+§—ns) '

Notice that in the last line we reintroduced the scale dependence of the primordial power
spectrum: P (k) = 2m2Ag/k® x (k/k.)™~'. This is because, in the scale invariant limit,
eq. (3.12) formally diverges for A = 1.

D Cosine with the standard bispectrum templates

In this appendix we collect the values of the cosine between the bispectrum template of
eq. (1.3) and the local, equilateral and orthogonal templates. Following [32], the cosine is
computed as (assuming a scale-invariant power spectrum)

S-S,

C(Si, Sj) = , D.1
where
Si 'Sj = / d.’I)ldl’QS(l’l,xQ,1)Sj($1,$2,1). (D.Q)
%

The shape function S is defined by
S(k1, ko, k3) = (k1k2ks)® (G, CraChs) (D.3)

while V is the set 1072 < 23 < 1 — 10_3, 1—x1 <29 <1—1073. The value 10~2 has been
chosen because it is roughly the ratio between the longest and shortest scales that we can
access in the CMB.
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C s=0 s=2 s=4
local 0.68 0.26 0.28
equilateral  0.82 0.92 0.88
orthogonal —0.39 0.41 0.38

Table 1. Cosine between the bispectrum template of eq. (1.3) for A = 1 and the local, equilateral
and orthogonal templates.

The values of the cosine for A = 1 are reported in table 1. We see that there is a sizable

overlap only with the equilateral template, while the cosine with the local and orthogonal
templates is always small for all the values of the spin we considered in this work.
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