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1 Introduction

Gravitational waves (GWs) from a binary black hole (BH) were detected at the Advanced
LIGO interferometer in september 2015 [1] opening a new window to explore the Universe.
More recently, the LIGO and Virgo Collaborations reported the first event, GW170817, where
a gravitational-wave signal was observed from a merger of two neutron stars (NSs) [2]. Based
on the GW170817 observation, several recent studies have imposed relevant constrains on NS
equations of state (EoS) [3–10]. While BHs and NSs now represent the standard model of
compact objects, it is worth exploring alternatives which differ in their GW signatures from
the standard one. In this work, we compute the f -mode of an important class of hypothetical
objects, composed of self-interacting scalar field configurations known as boson stars (BSs).
The nature of these objects depends of the scalar self-interaction and its coupling to gravity.
Examples of such nonstandard stars were widely discussed in literature, such as a geon,
which is a self-gravitating star consisting of electromagnetic fields and was first considered
by Wheeler [11]. The gravitational attraction by its own field energy confines the geon
in a certain region. Later, Kaup solved the Einstein-Klein-Gordon (EKG) equations for a
massive complex scalar field and found a new class of solutions for compact objects [12].
These BSs are stable with respect to spherically symmetric gravitational collapse. Ruffini
and Bonazzola [13] demonstrated that BSs describe a family of self-gravitational scalar field
configurations within general relativity.

Although the existence of these elementary bosons, their clustering, and their hypothet-
ical role in the formation of galaxies and large scale structure of the Universe, is nowadays ob-
scure [14], there are two theoretical arguments that support the possibility of self-gravitating
objects made by bosonic particles in the Universe. First, the discovery of the Higgs bo-
son [15, 16] confirmed the existence of scalar fields in nature. Second, the suggestion of a
formation mechanism, dubbed as gravitational cooling [17], to produce BSs from a generic
scalar field configuration. In the past few years BSs have been studied in many different
contexts (see [18–20] for complete reviews). The stability of BSs against radial perturbations
around the equilibrium state has also been studied by several authors [21–23]. In general, it
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is found that BSs and NSs share a remarkable similarity on the stability properties. Further-
more, it has been argued that BSs could be composed by dark matter (DM) particles [24, 25]
and they have been considered as viable models of black hole candidates [26].

Torres et al. [27, 28] explored the possibility that supermassive BSs (for a large range
of boson masses and self-interactions) are capable of explaining the nature of the object in
Sgr A∗ without invoking the presence of a singularity. Olivares et al. [29] showed that the
accretion flows onto BSs behave differently compared to that on Kerr black holes as they
do not produce jets but stalled accretion tori that make them distinguishable from black
holes. Recently, the Event Horizon Telescope (EHT) has mapped the central compact radio
source of the elliptical galaxy M87 [30], finding that the observation is consistent with a
spinning Kerr black hole as predicted by general relativity. It was also shown that some
exotic compact objects are incompatible with this observation. For example, the shadow of
a superspinar is very different from that of a black hole excluding any superspinar model
for M87. Analogously, several types of wormholes can be excluded, while other compact-
object candidates need to be analyzed with more care. BSs produce images with ring-
like features similar to those observed by the EHT, but generically require masses that are
substantially different from that explored for M87 [31]. The gravitational wave production
from the merger of two BSs has been studied by Palenzuela et al. [32, 33] and, in particular,
the emission of gravitational radiation by an oscillating BS has been studied under the
Newtonian approximation by Ferrell and Gleiser [34]. It has been shown that the amount of
gravitational energy corresponds to the transition energy from an excited state to the ground
state of the oscillation modes. Quasinormal modes of BSs were also obtained within general
relativity by Yoshida et al. [35], Balakrishna et al. [36], and more recently by Macedo et
al. [37]. Kling and Rajaraman [38, 39] found a semianalytic solution describing dilute BSs in
the Newtonian limit, and showed that the solution is stable to numerical errors. The tidal
deformability of BSs has also been investigated in [40, 41] and this can be used to discriminate
between BSs and NSs with the future aLIGO sensitivity.

In this work, we study the f -mode of BSs with different self-interaction strengths and
different masses of the scalar boson. Recently these modes have been studied for many
models of compact stars in [42, 43] and in the context of binary systems in [44, 45]. The scope
of this work is to connect the microscopic properties of scalar bosons with the macroscopic
observables of BSs. In particular we compute both real and imaginary parts of the oscillation
frequencies which may be observed if pulsations are excited during the formation of BSs or
during their evolution under the action of an external perturbation. The paper is organized
as follows. In section 2 we present the main properties of quasi-normal modes of compact
stars. Equilibrium configurations and the EoS of BSs are studied in section 3. In section 4
we present our results for the f -mode with various possible parametrizations of the EoS. We
draw our conclusions and the possible connections to astronomical observations in section 5.

2 Quasi-normal modes of compact stars

The equations describing the nonradial pulsations of a compact star in a fully general rela-
tivistic context were first studied by Thorne and Campolattaro [46, 47]. They showed that
Einstein’s equations describing small, nonradial, quasi-periodic oscillations of general rela-
tivistic stellar models could be reduced to a system of ordinary differential equations for
the perturbed functions. Here, we use the formulation of Lindblom and Detweiler (see ap-
pendix A) [48, 49], where the formalism is reduced to a system of four ordinary differential
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equations describing the frequency and damping time of the star’s oscillations as well as of
the emitted gravitational waves.

We assume that the unperturbed spherically symmetric equilibrium state of a compact
star is given by a solution of the Tolman-Oppenheimer-Volkoff (TOV) equations. For pul-
sations of spherical-harmonic indices ` and m and parity π = (−1)`, the perturbed metric
tensor inside the star in the Regge-Wheeler gauge [50] is given by

ds2 = −eψ(1 + r`H`m
0 Y`me

iωt)dt2 + eλ(1− r`H`m
2 Y`me

iωt)dr2

− 2iωr`+1H`m
1 Y`me

iωtdtdr + r2(1− r`K`mY`me
iωt)(dθ2 + sin2 θdϕ2), (2.1)

where ω is the frequency, Y`m denote the usual scalar spherical harmonics, the functions eψ

and eλ are the components of the metric of the unperturbed stellar model, while H`m
i (r) and

K`m(r) characterize the metric perturbations. In this paper we do not consider perturbations
with axial parity because they are not characterized by pulsations emitting gravitational
waves [46].

The perturbation of the compact star fluid is described by the Lagrangian displacement
vector ξa, having components

ξr(t, r, θ, ϕ) = eλ/2r`−1W `m(r)Y`m(θ, ϕ)eiωt,

ξθ(t, r, θ, ϕ) = −r`V `m(r)∂θY`m(θ, ϕ)eiωt, (2.2)

ξϕ(t, r, θ, ϕ) = −r`V `m(r)∂ϕY`m(θ, ϕ)eiωt.

In this paper we use the formulation of Lindblom and Detweiler [48, 49], consisting of a
system of four ordinary differential equations

dY(r)

dr
= Q(r, `, ω)Y(r) (2.3)

for the functions Y(r) = (H`m
1 ,K`m,W `m, X`m), where

X`m = −eψ/2∆p`m (2.4)

and three algebraic relations which allow to compute the remaining functions {H`m
0 , H`m

2 , V `m}
in terms of the others (see appendix A). We concentrate our attention on normal modes which
belong to a particular even parity spherical harmonic π = (−1)` with the complex frequency

ω = σ +
i

τ
. (2.5)

The normal modes of the coupled system are defined as those oscillations which lead to purely
outgoing waves at spatial infinity. The real parts of their eigenfrequencies correspond to the
oscillation rate and the imaginary parts describe the damping due to radiative energy loss.

A compact star at the end of its evolution is cold and isentropic, and can be described
by a barotropic EoS p = p(ε). In contrast, in a hot compact star the situation is more compli-
cated because the pressure depends nontrivially on entropy s, i.e. p = p(ε, s). Thermal effects
on compact star oscillations have been studied for different modes in Burgio et al. [51] who
showed that in general the frequencies and the damping times can change significantly with
temperature. Thermal effects for self-gravitating BSs have been analysed in [52, 53]. These
effects are studied within the effective field theory at finite temperature, where in general the
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concept of entropy per particle can also be introduced for a star made up of bosons (see the
book of Pitaevskii and Stringari [54] for a complete description of the bosonic properties).

In [53] the authors find that at high density the boson matter EoS does not depend
sensitively on the temperature, so that the maximum mass of BSs is insensitive to temperature
variations. However, at low densities, temperature effects on the EoS are large and lead to
significant changes in the mass of BSs with large radii. Unfortunately, the thermal evolution
of BSs is unknown and therefore in this paper we prefer to assume adiabatic oscillations for
which the BS is described by a barotropic EoS p = p(ε).

3 Equilibrium configurations of boson stars

A BS is a stellar object made of bosons, contrary to conventional stars which are formed
of fermions [55]. They are similar in many respects to NSs, differing in that their pressure
support derives from the Heisenberg uncertainty relation rather than the exclusion principle.
The existence of BSs was first theoretically demonstrated by Ruffini and Bonazzola [13] for
a non-interacting case. They analyzed only the zero-node solutions, corresponding to the
lowest energy state. It has been shown that BSs are stable to small radial perturbations,
provided that their central density does not exceed a critical value which also corresponds
to the configuration with the maximum possible mass [56]. BSs are described by the EKG
equations deriving from the action

S =

∫
d4x
√
−g
[

R

16πG
−∇αΦ∇αΦ∗ − V (|Φ|2)

]
, (3.1)

where R is the Ricci scalar, Φ is the scalar field, Φ∗ its complex coniugate, and V (|Φ|2) is the
potential. Different BS models are classified according to their scalar potential and particle
properties. Here we focus on the self-interaction potential

V (|Φ|) =
1

2
m2|Φ|2 +

λ

4
|Φ|4 (3.2)

where m is the mass of the field and λ its self-interaction. The presence of a self-interaction
in the scalar potential is known to have significant effects on the structure of BSs (see Colpi
at al. [57]). The dimensionless ratio λΦ4/m2Φ2 characterizes the relative contribution of the
potential energy due to self-interaction to the mass term. In the equilibrium state, the BS
mass is characterized by

M ∼
√

ΛM2
Pl

m
, (3.3)

where MPl is the Planck mass and the dimensionless quantity Λ is given by

Λ ≡
λM2

Pl

4πm2
. (3.4)

This shows that the interaction can dominate the potential energy even for very small λ and
that the mass of BSs can be comparable to the mass of typical fermion compact stars [57].

Since the action (3.1) is invariant under the U(1) global transformation Φ → eiθΦ, we
obtain the continuity equation

1√
−g

(
√
−gJµ),µ = 0, (3.5)
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where the comma denotes differentiation with respect to the following quantity and Jµ is the
conserved four-vector current defined by

Jµ = i(Φ∗∇µΦ− Φ∇µΦ∗). (3.6)

The associated Noether charge,

Q =

∫
g0µJµ

√
−g d3x, (3.7)

can be identified as the boson number. Note that the conservation of boson number here
is due to the complex nature of the scalar; for a real scalar field there is no such conserved
charge. By varying the action with respect to Φ∗ and gµν , we obtain the scalar field equation

∇µ∇µΦ =
dV

d|Φ|2
Φ, (3.8)

and the Einstein equations derived from the action (3.1) are given by

Rαβ −
1

2
gαβR = 8πTΦ

αβ, (3.9)

where TΦ
αβ is stress-energy tensor of the scalar

TΦ
αβ = ∇αΦ∗∇βΦ +∇βΦ∗∇αΦ− gαβ(∇γΦ∗∇γΦ + V (|Φ|2)). (3.10)

We seek for a time-independent, spherically symmetric solution of Einstein’s field equations;
thus, in Schwarzschild coordinates the metric has the form

ds2 = −B(r)dt2 +A(r)dr2 + r2dθ2 + r2 sin2 θdψ2. (3.11)

Assuming that the field has a time dependence Φ(r, t) = Φ0(r)e−iω̃t, the stress energy tensor
becomes time independent, which implies that the space-time is stationary and the metric
functions depend only on the radial coordinate r. Practically, Φ(r, t) is a complex field but
we can choose our field definition such that the complex part vanishes at time t = 0.

The EKG equations reduce to a system of ordinary differential equations for the metric
functions A, B, and for the scalar field Φ. The equilibrium configurations are found by
numerically integrating the EKG along with suitable boundary conditions. For a given value
Φc of the scalar field at the center of the star, the equilibrium equations are reduced to an
eigenvalue problem for the frequency ω̃. Colpi et al. [57] showed that, in the Thomas-Fermi
limit, corresponding to Λ� 1, the scalar field becomes equivalent to a fluid with an EoS

p =
c4

36K

[(
1 +

12K

c2
ρ

)1/2

− 1

]2

(3.12)

with

K ≡ λ~3

4m4c
, (3.13)

where p and ρ represent the pressure and the density respectively. Chavanis and Harko [58]
showed the accuracy of the hydrodynamical approach in this limit. Therefore under these
conditions a BS can be treated as a perfect fluid [59]. In this limit the anisotropy parameter

– 5 –



J
C
A
P
0
6
(
2
0
1
9
)
0
5
1

δ ≡ (pr − p⊥)/pr where pr and p⊥ are the radial and tangential pressure approaches to
zero. The parameter δ measures the deviation from local isotropy and was investigated by
Gleiser [23] with the surprising conclusion that the value of δ at the surface of the star is
only weakly dependent on its central density. This EoS was used in Maselli et al. [60] to
study the I-Love-Q universal relations for BSs, showing that these relations exist for both
fermion and boson dark stars, and could be extremely useful in the near future to combine
multiple observations and perform redundancy tests of the stellar model. In the Newtonian
limit, eq. (3.12) takes the form of a polytropic EoS with n = 1,

p = Kρ2. (3.14)

In the high density limit, it tends to the ultra-relativistic EoS

p =
1

3
ρc2, (3.15)

as in the case of several typical fermion EoSs describing the core of neutron stars.

4 Results

The scalar potential is symmetric under a Z2 discrete transformation Φ → −Φ. Therefore,
the lightest Z2-odd component is stable and is a good dark matter candidate. Additionally,
observations of the central regions of galaxies, along with the missing of galaxy satellites
in the Local Group and the so-called “too big to fail” problem has led some to question
the non-interacting DM paradigm. The inclusion of self-interactions in the DM sector could
resolve these issues without creating tension with other astrophysical constraints. These
requirements can be satisfied at the same time if the cross section per unit mass for DM
verifies [61, 62]:

0.1
cm2

g
≤ σ̄

m
≤ 10

cm2

g
. (4.1)

Here σ̄ is the scattering cross-section among four scalars relating to λ by

σ̄ =
λ2

64πm2
. (4.2)

This interaction plays an important role in establishing an equilibrium BS configuration be-
cause, together with the quantum repulsive force generated by the Heisenberg uncertainty
principle, it counterbalances the attractive pull of gravity. In order to make the correspon-
dence between Bose-Einstein condensate (BEC) with short-range interactions described by
the Gross-Pitaevskii equation [54] and scalar fields with a λ

4 |Φ|
4 interaction described by the

Klein-Gordon, we set [58]:
λ

8π
≡ a

λc
=
amc

~
, (4.3)

where λc = ~/mc is the Compton wavelength of the bosons. In our calculations, four bench-
mark values of the scattering length a (a = 5 fm, a = 10 fm, a = 15 fm and a = 20 fm) and
five benchmark values of the mass m (1mn, 1.25mn, 1.5mn, 1.75mn and 2mn, where mn is
the neutron mass) are considered. In the main text we present the result for a = 5 fm and we
show the remaining three cases in appendix B. For these parameter values we calculate the
mass-radius ralationship, the compactness, the f -mode frequency defined as f = Re(ω)/2π,
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Figure 1. Mass radius relation and compactness for relativistic BSs with the EoS given in eq. (3.12).
We assume a = 5 fm and consider different values of the mass m. Changing these parameters it
is possible to span a large range of values of mass and radius. From top to bottom: m = mn,
m = 1.25mn, m = 1.5mn, m = 1.75mn, and m = 2mn.
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Figure 2. Frequency and damping time of the fundamental mode as a function of the stellar mass
for the EoS given in eq. (3.12) using a = 5 fm and different values of the mass m.

and the damping time τ of BSs; see figures 1–2. Compactness C is defined as C ≡M/R, so
that C = 0.5 for a Schwarzschild BH and Cmax ≈ 0.18 for a BS.

It is important to note that we obtain our results within the formulation of Lindblom
and Detweiler (see appendix A) [48, 49], valid in the case of a perfect fluid star. In the case of a
generic BS, Yoshida et al. [35] obtained the perturbation equations which become a system of
six first-order differential equations. This is in clear contrast with the case of perfect fluid stars
where the basic equations can be reduced to a system of four first-order differential equations.
The reason for the difference would be that both real and imaginary parts of the perturbed
scalar field are dynamical degrees of freedom for the material source. It would be very useful
to compare both approaches for stellar configurations with the same mass. Unfortunately,
in [35] the self-interaction Λ was set to zero for simplicity; thus, a meaningful comparison
is not possible. In Balakrishna et al. [36], the authors study the quasinormal modes of BSs
for low values of Λ, i.e. outside the Thomas-Fermi regime. However, the damping times
are not given because they are more interested in studying the decay of excited states. In
Macedo et al. [37], three of the most popular models for BSs are discussed. For each case, two
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Figure 3. The frequency of the fundamental mode is plotted as functions of the square root of the
average stellar density, while the normalized damping time of the f -modes as functions of the stellar
compactness M/R, for the EoS considered in this paper with different parameter values.

specific stellar configurations are selected, one corresponding to the maximum total mass of
the model and the other to the maximum compactness M/R. In the case of massive BSs with
self-interaction, they fix the value of the dimensionless quantity λ̃ = λM2

Pl/(8πm
2) to λ̃ = 100.

Notice that λ̃ in ref. [37] is closely related to the dimensionless quantity Λ ≡ λM2
Pl/(4πm

2)
defined in eq. (3.4); i.e. Λ = 2λ̃. Using eq. (4.3), the quantity Λ can be written in terms of
the scattering length a and the boson mass m as:

Λ =
λM2

Pl

4πm2
=

8π amc~ M2
Pl

4πm2
=

2acM2
Pl

m~
≈ 16× 1038

( a

1 fm

)(mn

m

)
. (4.4)

Since in ref. [37] the value Λ = 2λ̃ = 200 is chosen, it is clear that the value of Λ used here
is several orders of magnitude larger. Therefore, in all these cases it is not possible to make
a comparison with our results.

Finally, we suggest two universal relations for the fundamental oscillation mode of BSs.
These empirical fits were originally proposed for compact stars by Andersson and Kokko-
tas [63] and recently studied by several authors for different compact star EoS [42, 43, 64].
It is known that the f -mode frequency scales naturally with the square root of the average
stellar density,

√
M/R3. In fact, from our results we obtain:

f = b1 + b2

√
M

R3
, (4.5)

with b1 = −0.0195± 0.0008, b2 = 62.997± 0.058. Also, the damping time τ is usually fitted
with a simple formula involving the stellar mass and radius. In the case of BSs we find:(

M3τ

R4

)−1

= c1 + c2

√
M

R
+ c3

M

R
(4.6)

with c1 = 0.106 ± 0.0005, c2 = 0.035 ± 0.005, and c3 = −0.474 ± 0.010. It is interesting to
notice that the coefficients of this expansion are quite independent on the choice of the BS
model. We show in table 1 all the coefficients for the various models analyzed in this paper.
The universal relations are shown in figure 3.
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a[fm] m/mn b1[kHz] b2[km/kHz] c1 c2 c3

5 1.00 −0.030 64.93 0.107 0.031 −0.468

5 1.25 −0.028 63.59 0.112 0.003 −0.430

5 1.50 −0.029 62.79 0.110 0.018 −0.448

5 1.75 −0.028 62.18 0.110 0.018 −0.451

5 2.00 −0.028 61.72 0.111 0.011 −0.444

10 1.00 −0.030 66.41 0.104 0.038 −0.473

10 1.25 −0.031 64.98 0.104 0.059 −0.519

10 1.50 −0.030 63.95 0.110 0.009 −0.429

10 1.75 −0.029 63.14 0.108 0.031 −0.470

10 2.00 −0.029 62.56 0.110 0.013 −0.438

15 1.00 −0.029 67.26 0.090 0.201 −0.792

15 1.25 −0.030 65.77 0.106 0.037 −0.484

15 1.50 −0.031 64.72 0.107 0.024 −0.452

15 1.75 −0.030 63.82 0.110 0.015 −0.442

15 2.00 −0.029 63.14 0.110 0.014 −0.463

20 1.00 −0.033 68.06 0.057 0.356 −0.981

20 1.25 −0.018 63.17 0.079 0.190 −0.703

20 1.50 −0.016 61.92 0.086 0.154 −0.646

20 1.75 −0.016 61.30 0.087 0.157 −0.658

20 2.00 −0.030 62.29 0.089 0.147 −0.647

Table 1. Set of parameters obtained for our model.

5 Conclusions

In this paper we have studied the fundamental oscillation mode of BSs. We restricted our
attention to the case of massive boson stars described by a relativistic EoS given by equa-
tion (3.12), and we choose the values of the scattering length a and the boson mass m in order
to satisfy observational constrains on the self-interaction of dark matter. We have also lim-
ited our choice of the EoS parameters to values that result in stellar-mass BSs. In principle,
a different choice of the parameters could lead to models with a million or billion times the
mass of the sun. However, we consider a range of masses for the boson stars of 1− 6M�, in
order to extend the typical mass limit of a neutron star of 1.4− 2.5M�. For these parameter
values we calculated the mass, the radius, the f -mode frequency, the damping time and the
compactness of BSs. Our results were obtained by solving the linear perturbation equations
that describe the nonradial oscillations of relativistic compact stars.

Our results contribute to a series of empirical fits proposed in the literature that describe
the general behavior of the f -mode frequency and damping time τ as functions of the stars’
average density and compactness [63, 64]. We find that the relations of universality are valid
for BSs not only for objects with mass comparable to that of normal NSs but also for BSs
with masses between 3–6 solar masses, i.e. compatible with those of some BH candidates or
other large-mass exotic objects such as self-bound strange quark matter stars [65]. Our main
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conclusions are that BSs could radiate in the optimal range for present gravitational wave
detectors and that the properties of the f -mode could be used to distinguish BSs from other
families of compact objects because they are described by significantly different universal fits.
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A The Lindblom-Detweiler equations

The polar non-radial perturbations of a non-rotating star can be described through a set of
first-order differential equations derived by Lindblom and Detweiler [48, 49] for the quantities
H`m

1 (r),K`m(r),W `m(r), X`m(r):

H
′`m
1 =−1

r

[
`+1+

2Meλ

r
+4πr2eλ(p−ε)

]
H`m

1 +
eλ

r
[H`m

0 +K`m−16π(p+ε)V `m],

K
′`m =

1

r
H`m

0 +
`(`+1)

2r
H`m

1 −
[
`+1

r
−ψ

′

2

]
K`m−8π(p+ε)

eλ/2

r
W `m,

W
′`m =−`+1

r
W `m+reλ/2

[
e−ψ/2

(p+ε)c2
s

X`m− `(`+1)

r2
V `m+

1

2
H`m

0 +K`m

]
,

X
′`m =− `

r
X`m+

(p+ε)eψ/2

2
[

(
1

r
−ψ

′

2

)
H`m

0 +

(
rω2e−ψ+

`(`+1)

2 r

)
H`m

1 +

(
3

2
ψ′− 1

r

)
K`m

− `(`+1)

r2
ψ′V `m− 2

r

(
4π(p+ε)eλ/2+ω2eλ/2−ψ− r

2

2

(
e−λ/2

r2
ψ′

)′)
W `m]. (A.1)

The remaining perturbation functions, H`m
0 (r), V `m(r), H`m

2 (r), are given by the algebraic
relations:

0 =

[
3M +

1

2
(`− 1)(`+ 2)r + 4πr3p

]
H`m

0 − 8πr3e−ψ/2X`m

+

[
1

2
`(`+ 1)(M + 4πr3p)− ω2r3e−(λ+ψ)

]
H`m

1

−
[

1

2
(`− 1)(`+ 2)r − ω2r3e−ψ − eλ

r
(M + 4πr3p)(3M − r + 4πr3p)

]
K`m,

X`m = ω3(ε+ p)e−ψ/2V `m − p′

r
e(ψ−λ)/2W `m +

1

2
(ε+ p)eψ/2H`m

0 ,

H`m
0 = H`m

2 . (A.2)

Equations (A.1) and (A.2) are solved numerically inside the star, assuming that the pertur-
bation functions are nonsingular near the stellar center. An asymptotic expansion in power
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series about r = 0 shows that:

X`m(0) = (ε0 + p0)eψ0/2

{[
4π

3
(ε0 + 3p0)− ω2

`
e−ψ0

]
W `m(0) +

1

2
K`m(0)

}
, (A.3)

H`m
1 (0) =

1

`(`+ 1)
[2`K`m(0) + 16π(ε0 + p0)W `m(0)], (A.4)

where the constants ε0, p0, and ψ0 appearing in these expressions are simply the first terms
in the power-series expansions for the density, pressure, and gravitational potential. At the
stellar surface, r = R, one assumes continuity of the perturbation functions and the vanishing
of the Lagrangian pressure perturbation, i.e.,

X`m(R) = 0. (A.5)

In the exterior, the metric perturbations are described by the Zerilli functions:

Z`m =
r`+2

nr + 3M
(K`m − eψH`m

1 ), (A.6)

where n = (`− 1)(`+ 2)/2, which is solution of the Zerilli equation

d2Z`m

dr2
?

+ [ω2 − VZ(r)]Z`m = 0, (A.7)

with r? ≡ r + 2M ln(r/2M − 1) and

VZ ≡ e−λ
2n2(n+ 1)r3 + 6n2Mr2 + 18nM2r + 18M3

r3(nr + 3M)2
. (A.8)

The transformation between H`m
1 , K`m, and the Zerilli function is nonsingular [66]. Chan-

drasekhar has proven that the reflection and transmission coefficients obtained from the
Zerilli equation are identical to those derived from the Regge-Wheeler equation [50].

The solutions of eq. (A.7) representing outgoing and ingoing waves have the asymptotic
behavior

Zout ∼ er?/τ and Zin ∼ e−r?/τ . (A.9)

In order to describe the free oscillations of the star we must impose the outgoing wave
boundary condition

Z`m(r)→ e−iωr? (r →∞). (A.10)

A solution of eqs. (A.1) and (A.7) satisfying the boundary conditions (A.3), (A.4), (A.5),
and (A.10) only exists for a discrete set of complex values of the frequency ω, which are the
quasinormal modes of the star.

B Results for various possible parameters

In figures 4–7, we present additional results for the mass versus radius relationship, the
compactness, the oscillation frequency, and the oscillation damping time of BSs for three
other benchmark values of a, and five values of the boson mass m.
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Figure 4. Mass versus radius relation for relativistic BSs for the EoS given in eq. (3.12) using
a = 10 fm (left panel), a = 15 fm (central panel), a = 20 fm (right panel) and different values of the
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is possible to span a wide range of values of mass and radius.
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Figure 5. Compactness of relativistic BSs as a function of the stellar mass. The parameters and the
labels are the same as in figure 4.
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Figure 6. Frequency of the fundamental mode as a function of the stellar mass. The parameters and
the labels are the same as in figure 4.
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Figure 7. Damping time of the fundamental mode as a function of the stellar mass. The parameters
and the labels are the same as in figure 4.
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