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Abstract. The discussion of vacuum energy is currently a subject of great theoretical impor-
tance, specially concerning the cosmological constant problem in General Relativity. From
Quantum Field Theory, it is stated that vacuum states subject to boundary conditions may
generate tensions on these boundaries related to a measurable non-zero renormalized vac-
uum energy: the Casimir effect. As such, investigating how these vacuum states and energy
behave in curved backgrounds is just natural and might provide important results in the
near future. In this paper we revisit a model of the Casimir effect for a massless scalar field
in a weak gravitational field background, with rectangular Dirichlet boundaries, which has
been proposed and further generalized in the literature. A trick originally used to simplify
calculations is shown to lead to a inconsistent value for the energy shift, and by performing
explicit mode expansion we arrive at an unexpected result: null gravitational correction even
at order (M/R)2, in opposition to earlier results.
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1 Introduction

One rather odd aspect of quantum field theory lies in the connection between quantum vac-
uum and the Casimir effect [1]: fluctuations of a confined field can generate measurable
interactions even at vacuum states. Mathematically, this comes from the renormalization of
the vacuum expected value of the stress-energy-momentum tensor in the presence of bound-
aries(or analogously topological identification conditions) [2]. This quite general character
makes it possible to extend the original model of electromagnetic fluctuations trapped be-
tween conducting surfaces for various fields, boundary conditions, surface geometries and
space-time topologies.

The first convincing experimental validations came about in 1997 [3] and by [4] in 1998.
Although the model might seen theoretically simple, a number of practical dificulties arise
when measuring casimir forces, such as deformation of the surfaces, corrections from finite
conductivity, temperature, material boundary rugosity, among others. A few recent experi-
ments are listed in references [5–9]. Unfortunately, as with many such measures expected at
very high energy scales, present technology is very far from detecting tiny corrections such as
those from extended standard-model theories and gravitational effects in the Casimir effect,
though, it is possible to use current experimental data to impose bounds on parameters of
the respective theories (more on this in the next paragraph).

For both theoretical and phenomenolgical interests, the study of Casimir effect in non-
trivial space-time topologies has gotten attention in the past decades. For being intrinsically
related to quantum vacuum fluctuations (some authors say however that the effect is not
actually related to zero point fluctuations, see for example [10]), the investigation of the
Casimir effect in curved background might be of cosmological value(look [11] for an general
view at the cosmological problem). The subject of casimir interaction in curved backgrounds
has already been extensively worked on, as can be exemplified from [12–44]. As recent and
potentially important phenomenological applications, we can highlight a few examples such
as the bounds found on a Lorentz violation parameter [36] (which is lower than previously
found ones), on one from Kehagias-Sfetsos solution for Horava-Lifshitz gravity [43], and a
proposed test for the Heisenberg-Coulomb theory based on gravitonic casimir effect [44].
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In this work we revisit the model of [32] where an expression for Casimir energy for a
massless real scalar field in a weak static gravitational field is derived. Through a perturbative
method, first order (in M/R) corrections are shown to be zero and a second order energy
shift is found. Works from other authors generalizing the space-time geometry are also
exemplified [33–37]. Although the original approach is simple and elegant, in circumventing
more lengthy calculations, an equivocated simplification is applied to obtain second order
corrections in [32], leading to a inconsistent value for the Casimir energy. In this paper
we rederive the results by performing explicit expansion of the mode solutions and carrying
out the calculations directly, we show that the gravitational correction in the mean Casimir
energy density obtained by the model is null even at second order. The result is also extended
for a more general space-time equivalent to the one proposed at [33]. As a number of works
followed from Sorge’s paper, the present authors hope that the results presented here might be
helpful in revising earlier ones, including those that might be of phenomenological importance
like [36] as well as fueling pertinent questions to the general study of Casimir effect and
quantum field theory on curved space-time.

2 Casimir effect in a weak gravitational field — brief review

In this section we present a review of the fundamentals for Casimir effect in curved space-time
and a few results from the literature, we follow heavily [32], which is the main reference of
this paper.

2.1 Real massless scalar field in curved background

Consider a real massless scalar field is subjected to Dirichlet boundary conditions on rect-
angular parallel plates with a background static weak gravitational field. Measurements are
taken by a static observer with four-velocity:

uµ = (−g00)−1/2δµ0 . (2.1)

The action of the scalar field in curved background is given by:

S =

∫
d4x
√
−g
[

1

2
gµν∂µφ∂νφ+

1

2
εRφ2

]
, (2.2)

so that the field equation in curved space-time is:

1√
−g

∂µ[
√
−ggµν∂νφ] + εRφ = 0. (2.3)

To find a simple expression for the energy density, first we work out orthonormal mode
solutions in the sense of the scalar product:

〈φm, φn〉 = i

∫
Σ

√
gΣn

µ[φ∗n∂µφm − (∂µφ
∗
n)φm]dΣ, (2.4)

where Σ stands for the boundaries, and

〈φ(n,~kn), φ(m,~km)〉 = δ(~kn − ~km)δnm. (2.5)
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Here the ~k terms refers to the transverse wave numbers and the n,m are discrete modes
generated by the boundary condition impositions on the field. In terms of these orthonormal
modes the mean vacuum energy can be expressed as:

ε̄ =
1

Vp

∑
n

∫
d2k
√
gΣ(−g00)−1T00[ψ∗n, ψn], (2.6)

where Vp is the proper volume of the cavity and T00[ψ∗n, ψn] is defined after the energy-
momentum component:

T00[ψ∗n, ψn] = ∂0ψ
∗
n∂0ψn − g00g

µν∂µψ
∗
n∂νψn. (2.7)

2.2 Casimir energy for the flat space-time case

In the case gµν = ηµν , the field is governed by the usual Klein-Gordon equation. The
boundaries are planes of coordinate separation L such that φ(z = 0) = φ(z = L) = 0,
orthonormal solutions are given by:

φ(x) =
1

2π
√
ωnFL

sin
(nπz
L

)
exp[−i(ωnF t− k⊥x⊥)], (2.8)

where:

ωnF =
√
k2
⊥ + (nπ/L)2 (2.9)

Is the mode frequency(F standing for flat). Applying these modes on equation (2.6) results in:

ε̄ =
1

8π2L

∑
n

∫
d2k⊥ωnF . (2.10)

This integral diverges as expected. Using Schwinger’s proper time representation and zeta
function regularization we obtain the renormalized value for the Casimir energy in minkowsi
space-time:

ε̄cas = − π2

1440L4
. (2.11)

2.3 Sorge’s result

In reference [32], from F. Sorge, the Casimir energy is calculated perturbatively for the
following weak gravitational field space-time metric:

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)dl2, (2.12)

for rectangular Dirichlet boundaries of coordinate surface S and coordinate separation L.
The factor Φ is expanded inside the cavity (to order (M/R)2) as:

Φ = −M/r ' −M/R+Mz/R2 = Φ0 + γz. (2.13)

Introducing a rectangular coordinate system inside the cavity. The center of the inner plate
has spatial coordinates (0, 0, 0) while the center of the outer one has (0, 0, L). We consider
L �

√
S,M , so that the plates are finite but we can still approximate transverse modes by

plane waves.
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The line element then looks like

ds2 = −(1 + 2Φ0 + 2γz)dt2 + (1− 2Φ0 − 2γz)dl2, (2.14)

with a coordinate change

dt→ (1 + 2Φ0)−1/2dt (2.15)

~dx→ (1− 2Φ0)−1/2 ~dx, (2.16)

and we arrive at
ds2 = −(1 + 2γz)dt2 + (1− 2γz)dl2. (2.17)

The line element now is the same as (2.14) with φ0 = 0. This is to tell us that up to order
[M/R]2 the parameter of interest is γ, that of the spatially varying field. It is shown in [38]
that as long as there are no cross terms in the metric, the Casimir energy for a general
constant perturbation measured by observer (2.1) is unchanged. This is physically expected,
since those space-times are equivalent to the Minkowski one trough a coordinate reescaling
(actually any constant Φ0 can be gauged away, weak or not).

The case γ = 0, or first order aproximmation is calculated explicitly an shown to be
null in [32]. Next, for second order correction metric (2.17) is considered. For this space-time
the field equation becomes

− (1− 4γz)∂2
t φ+∇2φ = 0, (2.18)

where ∇2 ≡ δij∂i∂j . With mode solutions of the form

φn,k = χn(z)e−i(ωnt−k⊥x⊥). (2.19)

The assymptotic solutions are

χ(u) = Anu
−1/4 sin

(
2

3
u3/2 + ϕ

)
, (2.20)

where:

u(z) = −(z − b/a)a1/3

a = 4γω2
n (2.21)

b = ω2
n − k2

⊥.

And:
ωn = (1 + γL)ωnF (2.22)

Are the frequencies. Instead of working the modes explicitly the author considers an expan-
sion in terms of the flat case solution (2.11)

φn = φ(0)
n + δφn. (2.23)

Then, the energy-momentum tensor and Casimir energy are expanded as:

T00[φ∗n, φn] = T00[φ(0)∗
n , φ(0)

n ] + {T00[δφ∗n, φ
(0)
n ] + c.c}, (2.24)

and:
ε̄ = ε̄(0) + δε̄. (2.25)
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By substituting the first term of the r.h.s. of (2.24) on (2.6) and renormalizing we obtain:

ε̄
(0)
(ren) = −(1− 2γLp)

π2

1440L4
p

, (2.26)

and the second term, in analogy to the flat space-time expression (2.10), is to be calculated
by integrating the frequency change of the modes (other geometrical terms can be neglected
since δφ itself is of order γ):

δε̄ =
1

8π2L

∑
n

∫
d2k⊥δωn = γLp

(
− π2

1440L4
p

)
, (2.27)

arriving at

ε̄casimir = −(1− γLp)
π2

1440L4
p

, (2.28)

which is the original result presented by the author.

2.4 Generalizations

In this subsection we briefly review a few generalizations proposed in the literature to the
above result, calculations will not be shown explicitly, since accurate derivations of the
Casimir energy will be presented in the next section. In [35] the authors consider the far field
limit in the case of a rotating source, the metric used is

ds2 = (1 + 2φ)dt2 − (1− 2φ)dl2 − 4adtdϕ, (2.29)

where b = 1− 2aΩ, which is related to the rotation parameters. Through coordinate change
it is cast into (first order terms are eliminated similarly to Sorge’s case)

ds2 = (1 + 2bγz)dt2 − (1− 2γz)dl2. (2.30)

The procedure from last subsection is followed tightly, the mean Casimir energy density is
fond to be

ε̄cas = −[1− γLp(1 + 3aΩ)]
π2

1440L4
p

. (2.31)

Thermal corrections are also calculated but we will omit them for conciseness.
In [33] the space-time metric is proposed

ds2 = (1 + 2γ0 + 2λ0z)dt
2 − (1 + 2γ1 + 2λ1z)dl

2, (2.32)

which is then simplified to Fermi-Coordinates assuming the form

ds2 = (1 + 2λ0z
′)dt2 − dl′2. (2.33)

Notice that the parameters from the spacial part of the metric are eliminated from the
metric, though they will be present in the boundary conditions. A general analysis is pro-
vided for scalar and vector fields with both Neumann and Dirichlet conditions, for our case
(scalar field and Dirichlet boundaries) the result presented for the mean Casimir energy is

ε̄cas = −
(

1 + γ0 + λ0
Lp
2

)
π2

1440L4
. (2.34)

Note that only the denominator is expressed in terms of the proper length.
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In [34] the background space-time is that of extended theories of gravity (see the ref-
erence for more detailed discussion and explanation on the parameters used). The metric is
put in a familiar form:

ds2 = (1 + 2Φ0 + 2Λz)dt2 − (1− 2Ψ0 − 2Σz)dl2. (2.35)

The authors explain that in this theory there is a vaccum curvature scalar R ' R1 +R2z,
so geometric coupling is considered in equation (2.3). The result obtained is

ε̄cas = −[1− 3(Φ0 + Ψ0)− (2Σ− Λ)Lp]
π2

1440L4
p

+
εR2

192Lp
. (2.36)

The Casimir effect analysed in the recent paper [37] it is quite similar to another ref-
erence that approaches extended theories of gravity [34, 36]. We found to be difficult to
reproduce their results because in the Casimir effect part the authors practically only exhibit
both the solution in Sorge modes and the normalization constant, and then they already
present the result of the energy without greater details.

Notice that the afore mentioned results do not coincide if the proper parameter equiv-
alence is established, also first order corrections are found, what is not in concordance with
the arguments for first order correction in [32]. In the next section we will present explicit
calculations to properly review these results.

3 Revisiting

Let us first review Sorge’s trick for second order calculations. The same arguments which
led to it could be used to compute the first order correction as well, let us see what it gives.
For Φ = Φ0 in (2.12), substituting mode (2.8) on (2.7) and integrating in (2.6) we get

ε̄0 =
1

Vp

1

(2π)22L
(1− 3Φ0)

∑
n

∫
d2kωnF . (3.1)

Renormalizing and expressing in terms of LP it becomes

ε̄0ren = −(1− 4Φ0)
π2

1440L4
p

. (3.2)

The frequencies are ωn ' (1 + 2Φ0)ωnF so we should have

δε̄ = −2Φ0
π2

1440L4
p

. (3.3)

Summing both contributions gives a nonzero energy shift. The assumption that δε̄ in (2.25)
can be calculated by substituting ωnF for δω in the flat case expression is inconsistent with
the explicit mode expansion method, which in the case of constant perturbation, recovers
the physically expected null correction. We will show next that the correction in the above
equation is instead connected to a geometrical term reminiscing of the normalization condi-
tion (2.4).

– 6 –
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3.1 Explicit calculation of second order corrections to the Casimir energy

We begin by casting (2.20) into a more familiar expression by rewriting this mode axial
solution in terms of the flat space-time mode solution plus a perturbative term

χ(z) =
1

2π
√
ω0L

sin
(nπz
L

)
+ γχ(1)(z) +O[M/R]3. (3.4)

For that we need to find ϕ,An and ωn. The frequencies are obtained by requiring periodicity
of the solution (ψ(0) = ψ(L) = 0), according to

ωn ' (1 + γL)ω0, (3.5)

where ω0 = [k2 + (nπ/L)2]1/2. Requiring that χ(z = 0) = 0 immediately gives

φ = −2

3
u3/2(0). (3.6)

For An we first express (2.4) taken on a hypersurface t = 0 in terms of χ

〈ψ(n, k1), ψ(n, k2)〉 = (ωn + ωm)

∫
V
d3x(1− 4γz)χnχme

i(k1⊥−k2⊥)x⊥ =

= δ2(k1⊥ − k2⊥)δnm, (3.7)

which leads to

An =

[
(2π)22ω

∫
V
d3x(1− 4γz))Θ2

n]

]−1/2

, (3.8)

where Θn = u−1/4 sin
(

2
3u

3/2 + ϕ
)
. Plugging the result on the mode solution leads to the

correction

χ(1)(z) = [2nπω2
0L

2(L− z)z cos(nπz/L)

+ L(2n2π2z + 2k2L2z − k2L3) sin(nπz/L)]/4Ln2π3
√
ω0L. (3.9)

With the full form of the mode solution (3.4) it can checked that equation (2.3), as well as
boundary and normalization conditions are satisfied to order (M/R)2.

Now all that is left is to use the definition (2.6). For χ(z), equation (2.7) reads

T00[ψ∗n, ψn] =
1

2
ω2
nχ

2
n +

1

2
(1 + 4γz)[k2

⊥χ
2
n + (∂zχn)2]. (3.10)

The nonrenormalized vacuum energy density is

ε̄ =
1

Vp

S

8π2L
(1 + γL/2)

∑
n

∫
d2k⊥ω0. (3.11)

The standard proper-time representation for the k⊥ integration and Riemann zeta function
regularization lead to the renormalized Casimir energy density

ε̄cas = − π2

1440L4
(1 + 2γL) = − π2

1440L4
p

. (3.12)

– 7 –
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So, in terms of the proper (measured by static observer) length of the cavity, the mean
Casimir energy density (and hence total energy) is just the same as the flat space-time case
for a rigid cavity.

Either the expression (3.12) tells us something important or not is tricky to say, since in
generalized coordinates it becomes a lot more difficult to distinguish between actual physical
effects and those simulated by choice of coordinates. The“measured” Casimir energy density
looking the same as that of flat space-time could be a effect of not considering covariant
boundary conditions (remember that conditions are imposed on the coordinate surface and
separation for the plates) for example. Putting those arguments aside, from a heuristic point
of view it is interesting that the shift in the field solution is found in this calculation to be
just enough to compensate for the geometrical factors. As this computation of the Casimir
energy is a highly approximate and simplified model (moreover, for a specific choice of field,
boundary, background and observer), this result is by no means a definitive answer, yet it
draws attention for going against our naive intuition. Also, it calls for an revision of other
works in the literature.

It is important to remark that measuring the Casimir energy in a curved background
is not an completely closed objective concept and that little is known about the quantum
vacuum in the presence of gravity. More studies are indeed needed in order to give solid
predictions about the behavior of vacuum energy in curved backgrounds.

Ignoring these factors, although the result presented here might seen disappointing from
the phenomenological point of view, gravitational corrections are still expected on thermal ef-
fects, non static space-times such as Kerr’s [42] as well as higher order corrections (sadly, even
corrections of order (M/R)2 are far from what would be detectable with current technology).

3.2 Generalization to spherically symmetrical space-time

A general spherically symmetrical space-time line element looks like(in isotropic coordinates)

ds2 = −e2φt(r)dt2 + e−2φs(r)(dr2 + r2dΩ2), (3.13)

where φs e φt are general functions of r (not (r,t), since by Birkhoff’s theorem any spherically
symmetrical solution will also be static). In the same fashion as the last section we can treat
this problem (in weak field regime) using the line element

ds2 = −(1 + 2γtz)dt
2 + (1− 2γsz)dl

2. (3.14)

The EoM for the scalar field is

− (1− 2γtz)∂
2
t φ+ (1 + 2γsz)∇2φ+ (γt − γs)∂zφ = 0. (3.15)

With solutions of the form (2.19) we get

∂2
zχ+ 2γ−∂zχ+ (ω2 − k2

⊥)χ− 4γ+ω
2zχ = 0, (3.16)

where γ+ = (γs + γt)/2 and γ− = (γt − γs)/2. The solutions are

χ(z) = An(1− γ−z)Θ(u(z)), (3.17)

Where Θ(u) and frequency modes are defined in analogy to the last section with γ → γ+.

– 8 –
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It will be instructive to keep a couple terms implicit in the calculation. Let (3.7) be
rewritten as

〈φ(n, k1), φ(n, k2)〉 = (ωn + ωm)

∫
V
d3x(1− βz)χnχmei(k1⊥−k2⊥)x⊥ , (3.18)

and (2.6) as

ε̄ =
1

Vp

∑
n

∫
d3x

∫
d2k(1− λz)T00[ψ∗n, ψn]. (3.19)

Also, γ is replaced by γ+ in (3.10). Applying the solution (3.17) to the corresponding
expressions leads to the renormalized energy in the form

ε̄ren = − Sπ2

1440L3

1

Vp

[
1 +

1

2
(β − λ+ 2γ+)L

]
= − π2

1440L4
p

. (3.20)

In this form it is easier to see where each term comes from. One can check that inserting
the Minkowski solution in (3.19) leads to the γ+ and λ term while the correction associated
exclusively to the shift in the modes is

δε̄ren = βLε0, (3.21)

which for the original case was δε̄ = 2γε0. That leads to the zero correction of our calculation.
So the multiplicative factor involved is not directly associated to the frequency correction as
assumed in [32], but rather to the spatial metric from the normalization integral. So,also for
this case no gravitational correction is expected. As discussed in the end of last subsection
these calculations are very simplified, so the result could suffer drawbacks in contrast to an
“exact” solution. But as far as internal consistency of the calculation goes, replacing (2.27)
by (3.21) is strictly necessary.

Of course, this is for zero temperature, perfectly plane and conducting surfaces, among
other idealizations. These are not the case in any real world experiments, so using this
model to propose phenomenological tests to gravity theories as proposed in [34, 36, 37] might
very well still be done by considering gravitational terms arising from thermal corrections
originally considered in these references.

4 Conclusions

In this paper we have revisited the problem of a Casimir apparatus of parallel plates in the
weak gravitational background described by (2.17). We followed the model from [32], now
deriving the second order mode solution explicitly, finding a null correction for the mean
Casimir energy density, in variance with the former author and, consequently, with all the
works based in it, including the more recent ones which take into account extended theories
of gravity [36, 37]. The method originally used was discussed and shown to fail when applied
to the first order correction. We generalize this result to a static spherically symmetrical
space-time (3.14). The resulting corrections are also zero, in variance with [33, 34].

From a phenomenological point of view, the results obtained here are not as interesting
as the previous ones since there is no actual energy shift, although corrections may appear
when considering thermal effects, finiteness and border effects of the boundaries, as well as
higher corrections. An useful analysis that should to be made in the sense here discussed
is with respect to the stationary (Kerr-like) space-times, which according to the literature
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already presents first order gravitational corrections in the Casimir energy density [42], this
is in accordance with [38], since those effects can show up at non-static space-times even if
metric coefficients are constant.

Computation of the “vacuum” energy is not, by itself, a closed theoretical concept.
Moreover, the one presented here and in the main aforementioned references is a very simpli-
fied and approximate one, so there is a number of factors not considered here that could affect
the result. Putting those aside from the moment, this odd apparent absence of gravitational
correction for the cases considered might be interesting though, from a theoretical point of
view. It is curious that the action of the curved background up to second order is to exactly
cast coordinate separation into proper distance as shown in equation (3.12). It also raises
the question that, should the static gravitational field (3.14) generate no correction to the
Casimir energy up to second order, then, on which order(or if) and from where should those
effects actually emerge.

Although the obtained results appear to be partially frustrating in the sense of near
future attempts of measuring gravitational changes in the Casimir effect, the interpretation
of these results is to be tackled cautiously, and the question as to how vacuum energy fluctu-
ations behave in curved space-times for simpler cases such as weak-field approximation might
provide useful hints for the understanding of wider pictures. As such, the present authors
hope to aid further discussions on the subject.
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