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1 Introduction

The inclusion of higher-derivative curvature-squared terms into the Einstein-Hilbert action
has been proved to smooth the quantum and classical divergences which usually stem in
the ultraviolet (UV) regime. On the one hand, since the 1970s it is known that general
relativity (GR) is not perturbatively renormalizable [1, 2], while its counterpart with four
derivatives is [3] — and local models with at least six derivatives become superrenormal-
izable [4]. On the other hand, from the classical perspective, whereas Newton’s potential
diverges at the origin, Stelle’s fourth-order gravity has a finite non-relativistic potential [3]
(but still has curvature singularities when coupled to a é-function source [5-7]). Recently
it was shown that polynomial-derivative theories of order higher than four have a regular
Newtonian limit. Indeed, in addition to having a finite potential [8, 9] they also have regular
curvature invariants [10].

In this work we discuss how this increasing regularity of the Newtonian-limit solutions
can be viewed as a regularization of the d-source, as one includes higher derivatives. Such
analogy is frequent in the framework of non-local gravity theories and can be tracked back
to [11] (see also [12-17] and references therein for more recent considerations). Even though
this analogy also holds in the case of local higher-derivative gravity (HDG), it is seldom
discussed in the literature. In fact, to our knowledge the only examples of this kind are [17,
18], where particular cases of Lee-Wick gravity were analysed. Therefore, it is instructive to
extend considerations to general higher-derivative polynomial theories, including the cases in
which the propagator has complex and/or degenerate poles.

Most of our discussion concerns the gravity model defined by the action'

1
Sirav = 1= /d4x\/—g {2R+ Ry, Fi(O) R™ + R Fy(0) R} : (1.1)

where Kk = 87G and F} and Fb are polynomial functions of the d’Alembert operator, not
necessarily of the same degree. We shall also consider non-local higher-derivative theories [12,

'We use the same sign conventions as [10]. Also, we set ¢ = h = 1.



19-23], in which F} and/or Fy are non-polynomial functions with improved UV behaviour.?

We recall that at the linear regime a term of the type RW&[;Fg(D)RW B can be recast as
a combination of Ricci- and R-squared terms (see, e.g., [4]). Hence, to our purposes the
action (1.1) is the most general one with higher derivatives.
The propagator associated to the model (1.1) can be written in the momentum-space
representation as
(2) pl0=s)

P
D Vo k) = pv,o8 _ pv,o8 1.2
pv, 5( ) kaQ(—k?2) 2k52f0(—k2) ’ ( )

where Pﬁ) op and P/SB;‘(B are the spin-2 and spin-0 projectors (see, e.g., [32]); the other terms
which are gauge-dependent have been omitted. The functions fy and fo are related to I}

and Fy through

fo(0) = 1 - F(0)0 - 350)0, (1.3)
f(0) =1+ %Fl(D) 0. (1.4)

Therefore, the roots —m?s)i of the equation fs(—k?) = 0 define the massive poles of the
propagator. The index s = 0,2 indicates the spin of the particle, while ¢ enumerates the
particles of the same spin. If the functions fs are polynomials, then many of these massive
excitations correspond to ghost modes [4].

Two proposals for dealing with the ghosts (or avoiding them) in the framework of HDG
have been the subject of intensive investigation in the recent years. The first possibility we
mention is accomplished by requiring that the massive poles in the propagator which are
associated to ghost modes are complex. Then, from the quantum gravity perspective, the
theory has a unitary S-matrix in the Lee-Wick sense [33, 34]. Different aspects of such Lee-
Wick gravity theories have been considered in, e.g., [9, 17, 18, 33-37]. The second possibility
consists in avoiding ghosts by choosing functions F; such that f, is the exponential of an
entire function [12, 19-23]. Consequently, the equation fs(—k?) = 0 has no roots in the
complex plane, and no other excitations besides the graviton are present. The most simple
example of non-local ghost-free gravity is to set fs to be the exponential of a monomial.
Other interesting choices for fs are the so-called weakly non-local form factors, which have
the same behaviour as a polynomial in the UV domain [12, 20, 21].

In the following sections we investigate the Newtonian limit of polynomial HDG coupled
to a d-source and explicitly show that the occurrence of regular solutions can be viewed as
a regularization of an effective source. The considerations are quite general, comprising the
models with complex poles (Lee-Wick gravity) and/or higher-order poles in the propagator.
In section 5 we discuss the case of non-local ghost-free HDG. It is shown that for a wide
class of theories the corresponding effective sources can be obtained as the uniform limit of a
sequence of sources associated to polynomial HDG, and hence the aforementioned regularity
properties also hold.

2That is, we shall consider non-local gravity models which are extensions of GR in the UV-limit, which
means that for large momentum the propagator decays faster than in GR. Specifically, we require that fo(z)
and f2(z) (defined in (1.3) and (1.4)) are constant or diverge at least linearly as z — oo, and that f,(0) = 1.
Owed to this improved behaviour in the UV, sometimes these models are called non-local HDG. The situation
is quite different from non-local IR modifications of GR, such as those defined by form factors of the type
Fy o 07! and F; oc 072 [24-26], or the logarithmic ones, F; « In[J, which come from the integration of
quantum matter fields in curved space-time [27-31].



2 Newtonian limit

In the static weak-field regime we consider the metric to be a fluctuation around the flat
Minkowski space-time, g, = 1, + ", and restrict considerations to the linearised equations
of motion. Applying the variational principle to the action (1.1) supplemented by a matter
action, one gets the equations for the field A, :

1
f2(8) (Ohy — 0,0,hf) — apauhﬁ) + 3 (2f0(0) + f2(O)] (M 0p0uh?™ — 1 Oh + 0,0,h)
2 1
+§ [f2(8) = fo(D)] 0 0u0y0p0uh™ = =2k Ty, (2.1)

where T}, is the energy-momentum tensor sourcing the field. In the non-relativistic limit,
for a static and spherically symmetric mass distribution p(r) one has T}, = pég 89 and the
metric can be written in isotropic coordinates,

ds® = —(1+2¢)de? + (1 - 29)(da? + dy? + d2?), (22)

where ¢(r) and 9 (r) are the Newtonian-limit potentials and » = /22 4+ y% + 22. These
two independent potentials are obtained by solving the 00-component and the trace of the
equations of motion (2.1),

2f2(A)A(p + 1) — 2fo(A)A(p — 2¢)) = 3kp, (2.3)
2fo(A)A(p = 2¢) = —rp.

Higher-derivative gravity models generally contain scalar and tensor massive excitations,
and the potentials ¢ and 1) depend on these masses. It is possible to separate the contribution
of each spin sector by splitting the original potentials into auxiliary ones, yo and xeo, via [10]

1 1
p=32x2+x),  ¥=502-x0) (2.5)
With these definitions egs. (2.3) and (2.4) simplify to

fs(A)AXs = Rsp, (26)

where kg = —K/2, ko = K, and the functions fs (with s = 0,2) on the L.h.s. are precisely
the ones which define the poles of the propagator (1.2). It is clear that the potential x5 only
depends on the spin-s massive modes of the theory, as claimed. It is also useful to notice
that the particular case in which fy = fo, which is equivalent to having F} = —2F5, yields
© = 1) = x2/2 and in this sense only one equation in (2.6) has to be solved.

Once the potentials yg and x2 are known, it is possible to evaluate the curvature invari-
ants associated to the metric (2.2). It turns out that the finiteness of the potentials is not
enough to guarantee a regular Newtonian limit, as there can still be curvature singularities.
The curvature invariants are finite at » = 0 if and only if x(,(0) = x5(0) = 0 (see, e.g., [10, 38]).
In this spirit, a finite potential x, is said to be regular if x%(0) = 0. Note that if xq is regular,
then R is also regular. Similarly, the regularity of xs implies in the one of Cimﬁ (here Cyp0p
is the Weyl tensor), as it depends only on the tensor sector [10]. In order to have regular
curvature invariants wa and wa op 1t is necessary that both xo and x2 be regular.



3 Effective smeared sources in polynomial HDG

Each one of the egs. (2.6) can be viewed as a Poisson equation with a modified source,

Axs = Ks 0s , (3-1)

[43

where the “new” sources gs satisfy

p(T‘) = fs(A) Qs(r)- (3'2)

Particularizing the consideration for a delta source p(r) = M§®)(r), one gets

M [ Eksin(kr)
2r?r Jo o fs(—K?)

0s(r) = dk . (3.3)

Note that the non-constant term fs(—k?) in the integrand induces a smearing of the original
delta source.

It is important to notice that the definition of pg through (3.2) depends on the shape of
the original source p and involves the inversion of the operator fs(A), which in general is not
direct. In the present work we restrict considerations to the Dirac delta source, associated
to a point-like mass in rest, which admits a Fourier representation. Moreover, as mentioned
before, here we assume that f; > 0 on the real line, fs(0) = 1 and that fs(z) (if not
trivial) diverges at least linearly as z — oo. The last hypothesis is certainly verified for
all polynomial functions, while for non-polynomial ones it acts as a constraint on the type
of non-locality of the theory. Under these assumptions the Fourier kernel associated to the
function 1/fs(—k?) is well-defined on the space of square-integrable functions and allows
one to define the source ps through its Fourier transform, a standard procedure in the field
of local and non-local HDG (see, e.g. [11-18]). Still, we point out that for static solutions
the original d’Alembert operator [ is substituted by the Laplacian A, which avoids all the
issues related to the choice of the appropriate Green function of the inverse operator (see,
e.g., the discussion on [25] for the case of IR-modified theories, and on [39] for the case of
non-perturbative solutions).

In what concerns locality, up to this point we did not make any a priori restriction
on the nature of the functions fs (or, equivalently, on F; and F, in the action). Let us
now assume that fs are polynomials; in other words, let us consider the case of polynomial
HDG [4]. Owed to the fundamental theorem of algebra, if fs has degree Ny and it is such
that fs(0) =1 (see egs. (1.3) and (1.4)), then it can be written as

N k2+m2 ; N(s)i
fs(=) =11 (Tﬁ) : (3.4)

i=1 (s)i

Here we assume that the equation fs(—k%) = 0 has Ny roots —m?s)z. (with ¢ = 1,..., Ny),

each of them with multiplicity n);. It is clear that > N(s)i = Ns. Accordingly, we can
expand the term 1/fs(—k?) in (3.3) in partial fractions,

T(s)i

Z Z 2 + L )y ’ (3.5)
s)z

zlgl



where «ay); ; are coefficients which can be easily calculated, e.g., by means of Heaviside’s

residue method. It is possible, however, to obtain useful results without the need of explicitly

writing down the expression for them, as we show in the next sections (see also [10]).
Inserting (3.5) into (3.3) one obtains the effective source for a polynomial HDG,

n(s) r j-3
o 13—1 (5 ()) K, (mgg). (3.6)

where K, is the modified Bessel function of the second kind. As we are considering a general
polynomial model, the expression above holds for degenerate modes — which are explicitly
taken into account through the summation over j € {1,...,n(,,;} — and also for complex
modes. In what concerns the latter ones, their masses were chosen with positive real part so
that os(r) decreases to zero for large distances (see [9, 10, 36] for further discussion).

From (3.6) it follows that the presence of complex poles in the propagator yields os-
cillatory contributions to the effective source. For example, for the sixth-order gravity with
conjugate poles m(s)1 = M52 = a + b,

M (a? + b?)%sin(br)
8mabr

0s(r) = e . (3.7)
Such oscillations of the source have been noticed for particular theories in [17, 18]; and before
that it was shown to occur in the potentials of general theories with complex poles [9] (see
also [34, 36)).

3.1 Regular effective sources

The smearing of the d-source does not necessarily imply that the resultant effective source
is free of singularities. However, we shall prove that for HDG the effective source is regular
in most of the cases. Namely, we show that g is finite if N5 > 1, i.e., for models with more
than four derivatives in the spin-s sector of the action.

To this end, let us expand the general expression (3.6) for the effective source around
r = 0. Taking into account the corresponding formulas for the modified Bessel functions [40]

it follows u
Qs(r) = 4714(5)1 + ws + O(’I"), (3'8)
r

where Ay = Y sy, and wg is a constant.?> To show that the source is regular it then

suffices to verify whether the coefficient A4,);, multiplying the divergent term r~!, vanishes.
We claim that ) N
m if =1
Agr =4 @ =02 3.9
(s)1 {07 it N > 1. (3.9)

As mentioned before, this claim can be demonstrated for the general case without the
need of explicitly calculating all the quantities c(,); ;, but only considering relations between
them. In fact, regrouping the r.h.s. of eq. (3.5) into a single fraction one gets

n(syi—J N (s)e

D0 20 Os)ig (k2 + mé)i) Lz <k2 + m%s)f)
IL: <k2 + m%s)z')n(S)i

31t is possible to prove that ws # 0; however, we postpone this demonstration to section 5.

(3.10)




Then, by comparing the numerators of both sides of (3.5) and setting to zero the coefficients
of the terms which depend on k2, one obtains N relations between the quantities Q(s);,; and
the masses m,);. In particular, for the term of highest order, proportional to k:2(NS_1), it
follows »; a()i1 = A1 = 0. Of course, the case N = 1 is trivial as there is no term
depending on k in the numerator of (3.10), so a(s);1 = m%s)l. This proves eq. (3.9).

We say that the delta source is completely regularised if both gg and g are finite.
According to what was just proved, this occurs provided that F; and F, are polynomials of
degree at least one (i.e., they are non-trivial polynomials) and* Fy # —3F.

As an explicit example, the effective sources for Stelle’s fourth-order gravity,

() = M1 s 3.11)
Os . ) .
diverge as  — 0. On the other hand, for a sixth-order gravity with a spin-s pole of multi-
plicity two one gets

() = M1 (3.12)
Os St ) .

which is regular. It is immediate to verify that (3.7) is also regular.

3.2 Effective mass functions

Following the description of the higher derivatives’ effects through Poisson equations with
effective sources os, we shall define the mass function®

ms(r) = 4m /07" 2205 (x)dx (3.13)

as the total effective mass inside a sphere of radius r centred in the origin, associated to the
potential xs. In the general case this function is no longer a constant, insomuch as the effective
density functions are smeared and the total mass M now fills the whole space. The function
ms(r) can be written in terms of generalized hypergeometric functions by substituting (3.6)
in the equation above. We omit the result as the expression is not illuminating. Instead, it is
more instructive to use the expansion (3.8) in association to (3.9) to show that, near the origin,

r2if N =1,

The effective mass ms above is related to the (modified) Newtonian force exerted on
test particles. It is different from the massive quantity ms which appears in the expression
of the potential

KsMg(T
Xs(r) = == 7f< ) (3.15)
Indeed, with this Ansatz the eq. (3.1) yields
() = reo(r) (3.16)

“The condition Fy # —3F, ensures that fo is a non-trivial polynomial, see (1.3).
®Note that the definitions and the general discussion carried out in this subsection can be applied also to
non-local HDG theories.



whence ()
~ r [T mg(x
a(r) = ml0) - [

dz . (3.17)

The integration constant ms(0) = 0 is defined by recalling that the total mass M is now
delocalised. On the other hand, in view of (3.14) and (3.15), m.(0) is set by the requirement
that xs — 0 for r — oo, and it gives the value of the potential x at the origin. Therefore, one
can say that the power series expansion of mg around r = 0 starts with the linear term, and
the next term is of the same order of (3.14). From the consideration above one concludes that
the coefficient of the term 72 in the series expansion of 7 is non-zero if and only if Ny = 1.

4 Finite and regular potentials in polynomial HDG

The smearing of the §-source is not a sufficient condition for the cancellation of the curvature
singularities. As we show in this section, the smeared effective source in polynomial HDG
yields a finite modified Newtonian potential; but to regularise the curvature invariants it is
necessary to have regular effective sources.

In fact, the considerations of section 3.2 regarding the effective mass ms(r) shows that
the small-r behaviour of the potential y is, up to a constant (see (3.15) and (3.17)),

xal(r) ~ {r + O(r?), if N, =1, (1)

r2 4+ O(r3), if Ny > 1.

In both cases the potential is finite at » = 0, with x5(0) = £sm%(0), but in the former there
are curvature singularities since x%(0) # 0, as discussed in section 2. Therefore, the complete
regularization of the d-source coincides with the regularization of the curvature invariants.
This conclusion matches the considerations of [10], where the general expression for y, was
derived and it was shown that HDG models with at least six derivatives in both spin-0 and
spin-2 sectors have regular curvature invariants in the non-relativistic limit. Moreover, the
reasoning presented here offers an alternative demonstration of the results of [8, 9] on the
finiteness of the modified Newtonian potential in polynomial HDG.

In order to close this discussion on local HDG, it may be instructive to present some
explicit examples. We start by the fourth-derivative model defined by polynomials f(—k?) =
1+ m(_2 k2. In this case the effective delta source is given by (3.11), which yields the mass

s)1
function

1
my(r) = M [1—e ™ (1 +mgr)] = 5Mm%3)17“2 +O(r?) (4.2)

and the auxiliary potential

Mk Mmyg)1 ks Mm?s)lkas )
s = — 1— M) = — . 4
Xo(r) =~ (g ey = BT THO, o) (4)

Both of them have the short-distance behaviour presented in egs. (3.14) and (4.1) with
No = Ny =1 (complete fourth-derivative gravity). Even though the potentials are finite, as
X%(0) # 0 the curvature invariants are not regular; indeed, near the origin the Kretschmann
scalar associated to the metric (2.2) with auxiliary potentials (4.3) behaves like

8G*M?

W (mzlo)l + m%o)lm%z)l + 7m?2)1) . (44)

2 ~
R;wa,@ ~



However, its divergence is less strong than in GR, or in the incomplete fourth-derivative
model, for which Rimﬁ ~ 76,

The inclusion of a sixth-derivative in only one of the spin sectors cannot completely reg-
ularise the effective source (and the whole set of curvature invariants [10, 41]). For example,
in the incomplete sixth-order model with

2 ) —4 14 2 2 12
fo(=k5) =1+ 2m gy, K+ m gy k7, fo(=k*) =1+ mgy K (4.5)
ma(r) and xa(r) are the same as in (4.2) and (4.3) with s = 2, but the scalar sector has a
pole of order two. Using the effective source (3.12) with s = 0 it follows

1 1
mo(r) = M [—1 + MO —m g7 (1 + 2m(0)17">] e "o’ = 6]\4’7”:(30)17”3 +0(r"),

3
©on r? + O(r3),

koM [ ( m(o)ﬂ’) o T] roMmg)1 koMm
= — 1—1(1 P S’ (0)1 -
Xo(r) drr + 2 c 8 + 481

which, again, agree with (3.14) and (4.1) with Ny = 2. The Kretschmann scalar behaves like

2852, 4
) 56G* M M9

R;UIVO(B ~ T (4.6)

for r — 0. As the spin-2 sector is the one with only four derivatives, it is expected that the
dominant divergent term near r = 0 depends only on m ;.

Only with the regularization of the source in both sectors the Kretschmann scalar be-
comes regular. Indeed, in terms of the previous example, if one includes a sixth-derivative in
the spin-2 sector too by choosing, e.g.,

fs(=k%) = L+ 2m Sk +m k', s=0,2, (4.7)
then 212
M

RZVOZ/B = T? (5m?0)1 + Sm?o)lmé)l + 32m?2)1) + O('I") (48)

5 Effective smeared sources in non-local HDG

As it was mentioned in the Introduction, the description in terms of effective smeared sources
is often used in the framework of ghost-free HDG. Therefore, instead of obtaining the ex-
pressions for the source p; and the effective mass functions for particular theories (see, for
example, [12-17]), in this section we focus on more general aspects which follow from the
comparison with polynomial HDG.

Let us start by a particular family of models called ghost-free gravity of type N (GFy),
which is defined by choosing the functions fy = f2 of the form [23, 42]

R —on (2) 21
S - b 'uz 9 = 4, (51)

where N € N and p is a massive parameter. It was shown in [42, 43] that all these theories
have a regular modified Newtonian potential when coupled to a d-source. In view of the dis-
cussion in the preceding sections, it is reasonable to think that the associated effective source



is regular t00.5 In what follows we prove this statement by showing that the effective source
for GF y theories can be obtained as the uniform limit of a sequence of sources of local HDG.
To this end, let us consider the polynomial gravity defined by the particular choice

n 1 kz Nt
R = Fan ) = X 5 () (5.2
=0 $

where Ng > 1 and n > 2 are natural numbers and pg is a massive parameter. According to
eq. (3.3), the corresponding effective source is given by

M o0
stNSaTL(T) = ﬁ gS,NS,Tﬂ’L(k)dk; (53)
™ Jo
with ke sin(kr)
SIN(KT
gs,NS,r,n(k) (5.4)

T foNon(—K2)

for a fixed r. Since the sequence of (integrable) functions {gs,n,rn},-o is tight and converges
uniformly to

k sin(kr)
s r(k) = :
Govar®) = S R 1) 59
on every compact K C [0,400), it follows that
. M [
lin 0.xon(r) = 55 [ Goer(B)dk = 00, (1) (56)
n—00 2 0

for each r € (0, +00). Actually, as the sequence {05 N, n} o, IS equicontinuous’ and uniformly

bounded on [0,+00), one can show that the limit o5 n,,, — 0s,n, is uniform on [0, 400).
Thence, the limiting source g, n, is also continuous and bounded. We stress that in the
proof of the regularity of ps n, we did not use its specific form, given by (5.5) and (5.6).

In view of eq. (3.3), it is immediate to verify that the source (5.6) with Gy, , given
by (5.5) is the one associated to the function (5.1) with N = N and pu = ps. Therefore, the
effective source pon(r) of the GFy models is the uniform limit of an equicontinuous sequence
of (non-singular) sources associated to local HDG models; whence gx () is regular too. Since
the regularity of the source implies in the one of the potential, the result of [42, 43] on the
regularity of GF y models is verified.

It is worthwhile to notice that the previous consideration applies directly to more general
ghost-free theories defined by the functions

Fo(—k2) = ePo(=F) | (5.7)

where, here and in what follows, Ps(z) is a real polynomial such that P;(0) = 0 and Ps > 0
for large |z| [43].

5Tn [17] the effective sources for some values of N were explicitly calculated. The solution for the smeared
sources in a general GFy theory can be directly obtained by means eq. (3.3), and it is a combination of
generalized hypergeometric functions o F5(y—_1) multiplied by powers of r. We omit the explicit (cumbersome)
expression as this section aims to more general results. The analogous complete solution for the potential was
presented in [43].

"This can be proved by noticing that the sequence {g’g Ns,n}n of the derivative of the sources is uniformly
bounded on [0, 00).



Nevertheless, this reasoning should be applied with caution to general ghost-free theories
defined by an arbitrary entire function with enhanced UV-behaviour. On the one hand, even
though the exponential of an entire function can always be written as a power series, which
converges uniformly on compact sets, the sequence of functions analogous to (5.4) might
be not tight or integrable, making some sources of the sequence {gs}, ill-defined. It may
be necessary to pass to a subsequence { fs’n/}n, in order to have a well-defined sequence of
sources. On the other hand, it is still possible that this sequence converges only pointwise
on (0,4+00), owed to the violation of equicontinuity. Therefore, despite being a sequence of
bounded functions defined on [0, +00), the convergence at » = 0 — and, thus, the regularity
of the limiting source — is not guaranteed.

As an example, let us consider the case of weakly non-local gravity theories [12, 20, 21].
These models are defined by form factors fi(—k2) = ef*(-%) where Hy(z) is an entire
function such that Hg(0) = 0 and which behaves like In [Ps(—k?)] when k — co. One simple
choice is [12, 21]

Hy(—k*) = % [y +T(0, P2(—k?))] + In Py(—k?), (5.8)

where 7 is Euler-Mascheroni constant and I'(0, z) is the incomplete gamma function. The
issue with these non-polynomial entire functions is the occurrence of an infinite number of
sign changes in the coefficients of the power series. In fact, (5.8) yields

P2 PG PS PIO P12
=145 54 s s _ s O(P*y. 5.9
fs + 2 72 + 288 4800 8100 +OF7) (5.9)

Hence, if the series is truncated in a term with negative coefficient, the function defined by
this partial sum will have a zero on the real line, possibly making the corresponding source ill-
defined. Passing to the subsequence {f; .}, of partial sums truncated on the n-th term with
positive coefficient, one gets a well-defined sequence of sources, all of them being regular due
to the polynomial nature of f ,. This sequence {0, }, converges pointwise on (0, +00), but
it does not converge uniformly if the sequence of derivatives {Q/sn }n is not uniformly bounded.
This is indeed what happens if Ps(z) is a monomial of degree Ny = 1. It is easy to see
that in this case g(r) diverges in the origin, as for large k one has fs(—k?) ~ e2 k2. In this
regime
lim EST) -7 (5.10)
r—0 ’I“fs(—]{}Q)
which is not integrable on an unbounded interval. Hence, Ny = 1 implies that o5, — o
pointwise on (0, 4+00), but not uniformly, as lim,_,o 0s(r) = co. The same arguments can be
used to show that the limit g5, — o, is uniform if the degree of Ps(2) is Ny > 2, and in this
case the source is regular (and the potential too).
As a second example, one can consider the more general quasi-local form factor [12, 21]

Hy(—k?*) = a; [y + (0, Ps(—k?)) + In Py(—k?)] (5.11)

where Ps(z) is a polynomial of degree N,. Note that the previous example follows from
the choice ay = 1/2 and the substitution P, — P2, while the form factor proposed by

S
Kuz’'min [20] corresponds to as € N and Ny = 1. For large momentum it holds

Jim efls(=F%) o7 2Noers (5.12)
— 00
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whence, in this regime,

. oy
lim ksin(kr) e

r=0 1 fo(—k2)  f2Nsas—1) (5.13)

It follows that the condition for having a regular source reads Ngas > 3/2. In particular, for
the Kuz’'min form factor (Ns = 1) the effective source is regular if ag > 2.

More generally, the regularity of the effective sources in local and non-local HDG models
follows from the UV behaviour of the functions f;. This can be understood in light of some
observations:

i. fs does not change its sign because, as we restrict considerations to tachyon-free models,
the equation fs(—k?) = 0 has no root for k € R.

ii. If for large arguments the function f,(z) grows faster than 2%/, then G sr(k) = ffii(n—(llzg))
is integrable for any r € [0,00). So, lim,_00s(r) < oo, i.e., the effective source is
regular.

iii. Since r > 0 implies

k|sin(kr k2
|Gsr| = | sin(kr) =G, (5.14)

<
Tfs(_k2) fs(_kQ)
then [;° G (k)dk < [J° |Gsr(k)|dk < [;° Gso(k)dk, which means that g,(r) achieves
its maximum at r = 0. In particular, gs(0) # 0.

Recall that a constant term in the power series expansion of gs around r = 0 gives mg(r) ~ r3

(see section 3.2). Thus, it follows from the last observation above that for any theory with a
regular potential, the leading non-constant contribution to y, for small distances is of order
r2. Particularizing for polynomial HDG, this yields the conclusion that ws # 0 in (3.8).

6 Conclusions

Local and non-local higher-derivative models have fruitful applications in the field of per-
turbative quantum gravity, as classical and quantum singularities which stem in GR can be
smoothed out. This is ultimately related to the improved behaviour of the propagator in
the UV regime and, therefore, it might be reasonable to think that regularity, at least at
the linearised level, should be ubiquitous in these theories. In fact, in [10] we showed that
all the polynomial gravity models with more than four derivatives in both scalar and tensor
sectors are regular in the weak-field limit. In the present work we give an alternative proof
of this result, based on the description of the higher-derivative’s effects through an effective
matter source. In this approach, increasing of the number of derivatives in the action can be
viewed as implementing the regularization of the source: the singular point-like d-source in
GR becomes a singular smeared source in fourth-derivative gravity, and it is regularised in
theories with six and more derivatives. Furthermore, the considerations in terms of effective
sources allow an almost straightforward extension to non-local HDG theories.

Regularity properties of non-local ghost-free gravities have been intensively studied in
recent years [11-17, 22, 23, 38, 42—-48], and it is useful to notice that the key ingredient here
seems to be not the non-locality of the interaction or the ghost-free condition, but (again) the
behaviour of the propagator in the UV, as we give examples of regular models with ghosts
and renormalizable ghost-free models with singularities. The use of effective sources makes
this clear, at least in the weak-field limit.

— 11 —



Indeed, we showed that the effective sources for ghost-free theories defined by the expo-
nential of a polynomial can be regarded as the uniform limit of a sequence of regular sources
of polynomial theories, being, therefore, regular too. This also holds for quasi-local theories
defined by form factors fs(—k?) which behave like k™, n > 4, in the UV. In this sense, the
good regularity properties of these ghost-free gravities do not follow from non-locality or
from the absence of ghosts; instead, they can be viewed as being inherited from the local
polynomial theories. This is in agreement to the point of view that non-local gravities are the
limiting theories when the degree of the polynomial goes to infinity, and therefore, it has an
infinite number of (complex) poles hidden in the infinity [49]. Of course, this is different from
what concerns the avoidance of ghosts in the propagator [12, 19-23] or extra propagating
degrees of freedom [39, 50, 51], which do require non-locality.

The results of the present work, together with [10], motivates further investigations on
the static spherically symmetric solutions in the full non-linear regime of polynomial and non-
local gravities, and prospective relations between them. In fact, in [5-7] one can see that the
singularity associated to the d-source in the linearised fourth-derivative gravity was preserved
in the non-linear scenario. In what concerns local models with more than four derivatives, the
numerical calculations presented in [52] give evidence that the spherically symmetric solutions
are regular. Similar discussions have been carried out for the non-local models [16, 44, 47, 53—
57], which raises the interesting question of to which extent the relation between local and
non-local models in the linear regime can be extended to the full non-linear one.
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