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1 Introduction

After the initial evidences for neutrino conversion from the detection of solar and atmospheric
neutrinos, laboratory experiments based at reactors and accelerators were crucial to confirm
that the results were explained by the existence of neutrino oscillations. Nowadays, a vast
number of observations nicely fit in the framework of three-flavour neutrino oscillations, and
the last global analyses [1–3] provide precise measurements of the mixing parameters, as well
as some hints for the choice of the neutrino mass ordering and improved sensitivity on the
CP phase.

There remain, however, a few anomalies found in some short-baseline oscillation expe-
riments that could indicate the presence of an additional light neutrino at the eV mass scale
that mixes with the ordinary active states (see e.g. the reviews [4–6]). This problem can be
studied assuming a small mixing of this new sterile state with the active neutrinos, the so-
called 3+1 scheme,1 although recent global analyses of short-baseline data [11–13] show that
this does not provide an optimal solution due to the severe tension between the anomalies
in the appearance sector and disappearance measurements. It is expected that new data,
from both running and forthcoming neutrino experiments, will shed light on the causes of
this tension and eventually provide a definitive solution to this puzzle. In the meantime, it is
interesting to explore the implications of this kind of active-sterile oscillations in astrophysical
and cosmological scenarios.

1The cases with more than one sterile state, such as the 3+2 scheme, are disfavoured by the fact that
the larger number of parameters does not guarantee an improvement of the fit with respect to the 3+1
case [5, 7–10].
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Concerning cosmology, a well-known consequence of active-sterile oscillations would be
the production of the new states in the early Universe. If oscillations become effective before
neutrino decoupling, the sterile species will appear via mixing while the active states keep an
equilibrium energy distribution. The degree of thermalisation depends on the specific values
of the neutrino parameters and fixes the contribution of all neutrino states to the cosmo-
logical energy density of relativistic particles, usually parametrised by the effective number
of neutrinos (Neff). A fully thermalised fourth neutrino state would lead to a value Neff '
4, which is disfavoured according to the analysis of the full-mission data from the Planck
satellite [14] on the anisotropies of the cosmic microwave background (CMB). Combined with
other cosmological and astrophysical measurements, the allowed range can be as restricted
as Neff = 2.99+0.34

−0.33 (95% confidence region). Thus, it is important to be able to perform a
proper calculation, as precise as possible, of the values of Neff for each choice of the mixing
parameters describing the active-sterile neutrino oscillations.

The cosmological evolution of the active-sterile neutrino system in the early Universe
is a complex problem due to the simultaneous presence of oscillations in a changing medium
and effective weak interactions. It has been studied in a large number of previous papers,
where the corresponding Boltzmann kinetic equations were solved including different ap-
proximations. The first works simplified the task considering mixing with only one neutrino
state and that the neutrinos were well described by a single, average neutrino momentum
(see e.g. [15–19] and the review [20] for a complete list of early references). Later studies
have dealt with more realistic cases, including the dependence on neutrino momenta and/or
mixing of the sterile state with two or more active neutrinos.

In principle, solving the Boltzmann equations for unequal neutrino momenta is manda-
tory, because both oscillations and collisions present a (different) dependence on the neutrino
energy. Moreover, these processes can lead to non-thermal distortions in the neutrino energy
distributions that would be only found in multi-momentum calculations, with the least num-
ber of assumptions as possible. This has been achieved in the case of three active neutrinos,
where the standard value Neff = 3.045 was found [21], but the computational problem is more
demanding when active-sterile mixing is included. If the mass difference with the mostly ste-
rile state is very small (∆m2 ≤ 10−7 eV2), collisions can be neglected and the evolution of the
neutrino spectra can be calculated very precisely [22–24], but there is no enhancement of Neff .

In the recent years, several authors (see e.g. [25, 26]) have presented multi-momentum
calculations of active-sterile oscillations in the early Universe in the approximation of only
one active and one sterile neutrino species (1+1 scenario), in some cases including a poten-
tially large lepton asymmetry. In particular, the first results in the 1+1 case (νe-νs) with full
collision integrals were shown in [26] and the values found for Neff were compared with those
obtained with various approximations. The quantum kinetic equations were solved with a
modified version of the LASAGNA code [27], enforcing a zero lepton asymmetry. The same code
has been used in later works [28–31] to convert the active-sterile mixing parameters into two
other quantities relevant for cosmology (Neff and the effective sterile neutrino mass ms

eff), in
order to obtain bounds from Planck data and from current and future neutrino oscillation ex-
periments in the framework of the two-neutrino approximation (either νe-νs or νµ-νs mixing).

On the other hand, a precise calculation of 3+1 active-sterile oscillations in cosmology
must include the unavoidable presence of mixing among active neutrinos (early simplified
analyses include [32, 33]), i.e. the full four-neutrino mixing matrix with up to six different
angles: three exclusive of the active sector (θ12, θ13, θ23) and three related to the mixing
with the sterile state (θ14, θ24, θ34). More recent multi-angle studies [34, 35] have been
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performed within the averaged-momentum approximation. In particular, the authors of [35]
have shown how the cosmological constraints change if two active-sterile mixing angles are
considered. A first step beyond the averaged-momentum and single-mixing approximations
was taken in [36]. This study considers a multi-momentum and multi-flavour calculation of
the kinetic equations of the active-sterile system in the 2+1 scenario, with mixing parameters
inspired by the short-baseline neutrino anomalies and in the presence of primordial neutrino
asymmetries, where the production of the sterile state can be suppressed. However, to our
notice there is no code available to compute the neutrino evolution in the full 3+1 case with
momentum dependence.

Prompted by the current precision on the determination of the effective number of neu-
trinos by Planck data and taking advantage of our previous experience on multi-momentum
calculations in the standard three-neutrino case [21, 37], in this paper we present an analysis
of the sterile neutrino thermalisation in the early Universe in the 3+1 scenario, based on the
numerical solution of the kinetic equations with full collision terms and the complete 4 × 4
mixing matrix.

The rest of this paper is organised as follows. In section 2 we present the equations
for active-sterile oscillations in the 3+1 scenario, which are solved with a new numerical
code. We describe in section 3 the main results concerning the evolution of cosmological
neutrinos, with emphasis on the final values of the effective number of neutrinos and the
dependence on the mixing parameters. Our main conclusions are summarised in 4, while the
two appendices are devoted to technical details on the collision terms of the kinetic equations
and to a description of our computational code.

2 Active-sterile oscillations in the early universe

In order to calculate the degree of thermalisation of light sterile neutrinos via oscillations, we
need to solve the corresponding set of quantum kinetic equations in an expanding Universe.
For the relevant cosmological temperatures, from a few tens or hundreds of MeV down to a
few keV, both neutrino oscillations and interactions are important. Therefore, in order to
take into account all effects we consider the evolution of a 4 × 4 neutrino density matrix,
defined as

%(p, t) =


%ee %eµ %eτ %es
%µe %µµ %µτ %µs
%τe %τµ %ττ %τs
%se %sµ %sτ %ss

 . (2.1)

Each term of % depends on the neutrino momentum p and evolves with time t. Since we
consider no lepton asymmetry, the density matrices for neutrinos and antineutrinos are the
same. The (real) diagonal terms %αα contain the momentum distribution function of the
neutrino flavour α, while the off-diagonal terms are complex and take values different from
zero only in presence of mixing.

The evolution of the density matrix for a given momentum p is dictated by the Boltz-
mann equations [21, 34, 36, 38], which in compact form read as

(∂t −Hp∂p) %(t) = −i

[(
1

2p
MF −

8
√

2GFp

3

(
El
m2
W

+
Eν
m2
Z

))
, %(t)

]
+ I [%(t)] , (2.2)

where mW and mZ are the W and Z boson masses, GF is the Fermi constant, and H is
the Hubble expansion rate. The neutrino mass matrix in the flavour basis is MF = UMU †,
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rotated from the diagonal mass matrix M = diag(m2
1, . . . ,m

2
4) using the 4× 4 mixing matrix

U . The other two matrices in the commutator,

E` = diag(ρe, ρµ, 0, 0) , Eν = Sa

(∫
dyy3%

)
Sa , with Sa = diag(1, 1, 1, 0) , (2.3)

define the matter potential for neutrino oscillations, accounting for the energy densities of
charged leptons (ρ` = ρ`− + ρ`+ , where ` = e, µ since the τ density is negligible for the
relevant temperatures) and neutrinos. The latter term includes diagonal and off-diagonal
components from active neutrinos [38]. Finally, neutrino non-forward interactions are en-
coded in the collision term I(%), described in detail in appendix A. In eq. (2.2) we therefore
take into account neutrino oscillations in matter (first term in the right-hand side), neutrino
interactions with the particles of the cosmic plasma (last term in the right-hand side), and
the expansion of the Universe (second term in the left-hand side).

There are different ways that can be adopted to numerically solve the Boltzmann equa-
tions. Here we choose to discretise the momentum of the incoming neutrino and use, as in
previous studies, the comoving variables x ≡ me a, y ≡ p a and z ≡ Tγ a, with the electron
mass me chosen as an arbitrary mass scale and Tγ the photon temperature. The scale factor
a = 1/T that we use in order to compute comoving quantities is normalised according to
T 0 = T 0

γ = 1 at early times, where the temperature T is only initially equal to the photon
temperature, but later does not represent the real temperature of any of the particles in the
plasma. Written in terms of these variables, the evolution of the density matrix is [21, 34, 36]2

d%(y, x)

dx
=

√
3m2

Pl

8πρ

{
−i x

2

m3
e

[
MF

2y
− 8
√

2GFym
6
e

3x6

(
E`
m2
W

+
Eν
m2
Z

)
, %

]
+
m3
e

x4
I(%)

}
(2.4)

where mPl is the Planck mass and ρ is the total comoving energy density, i.e. the physical
energy density multiplied by a factor a4.

For the neutrino mixing matrix, which in principle is parametrisation-independent but
can be conveniently written in terms of mixing angles, we use the convention presented in
eq. (12) of [5], but extended to the full 4× 4 unitary U , without considering any of the CP
violating phases, which are all fixed to zero. Thus, the mixing matrix is

U = R34R24R14R23R13R12, (2.5)

where each Rij is a real rotation matrix described by the angle θij , containing cos θij in the
diagonal elements ii and jj, 1 in the remaining diagonal elements, sin θij (− sin θij) in the
off-diagonal element ij (ji) and zero otherwise:

[Rij ]rs = δrs + (cos θij − 1)(δriδsi + δrjδsj) + sin θij(δriδsj − δrjδsi) . (2.6)

Our complete case can therefore be described using six angles, of which θ12, θ13 and θ23

characterise the active neutrino mixing and can be obtained by standard three-neutrino global
fits. Specifically, we use the best-fit values from [1], focusing mainly on the normal ordering
of active neutrino masses, which is currently favoured (see e.g. [39, 40]). In addition, we
describe the active-sterile mixing using the parametrisation-independent entries of the fourth

2We omit the bar notation adopted for example in [21] to denote the quantities expressed in terms of the
comoving variables.
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column of the mixing matrix, which can be expressed as functions of the new angles θ14, θ24

and θ34 with the parametrisation in eq. (2.5):

|Ue4|2 = sin2 θ14,

|Uµ4|2 = cos2 θ14 sin2 θ24,

|Uτ4|2 = cos2 θ14 cos2 θ24 sin2 θ34,

|Us4|2 = cos2 θ14 cos2 θ24 cos2 θ34. (2.7)

The list of mixing parameters includes also the two standard mass splittings ∆m2
21, ∆m2

31

and the new ∆m2
41, which we use to define the diagonal mass matrix M. For the active-

sterile mixing parameters, we consider as benchmark the mass splitting ∆m2
41 = 1.29 eV2

and the mixing matrix element |Ue4|2 ' 0.012, as currently favoured by the fit of electron
antineutrino disappearance data from the DANSS [41, 42] and NEOS [43] experiments in the
context of the 3+1 scenario [12, 44, 45]. Since flavour oscillations are blind to global phases,
we substract the mass of the lightest neutrino, which does not enter the calculations as long
as neutrinos are ultra-relativistic.

In addition to the Boltzmann equations we need to solve the continuity equation for the
total energy density of radiation, which in terms of non-comoving variables is

dρ

dt
= −3H (ρ+ P ) , (2.8)

where P is the pressure. This last equation provides the evolution of the comoving photon
temperature z as a function of the comoving variable x, and can be conveniently written in
terms of r = x/z as in [46]. We also take into account the finite temperature QED corrections,
since the frequent interactions that keep particles in equilibrium in the cosmic plasma also
contribute as an effective correction to their masses. As a result of these corrections, the
evolution of z and neutrino interactions with electrons and positrons are modified. We
include these modifications as explained in [46–48].

When taking into account the electromagnetic corrections and the contribution coming
from the relevant charged leptons, eq. (2.8) can be rewritten to obtain the evolution of z as
a function of x [46] as

dz

dx
=

∑
`=e,µ

[
r2
`

r
J(r`)

]
+G1(r)−

1

2π2z3

∫ ∞
0

dy y3
s∑

α=e

d%αα

dx∑
`=e,µ

[
r2
`J(r`) + Y (r`)

]
+G2(r) +

2π2

15

, (2.9)

where the d%αα/dx are obtained from eq. (2.4) and r` = m`/me r. The expressions for the J ,
Y , G1 and G2 functions are written in eqs. (18)–(22) of [46] and can be found in appendix B.

Sterile neutrinos are produced via oscillations with the active species, which become
effective when the oscillation frequencies overcome the interaction rate. If ∆m2

41 ∼ 1 eV2,
active-sterile oscillations are faster than the standard ones, and therefore they may begin
to populate the mostly sterile state when the presence of muons in the cosmic plasma is
still important. For this reason we include not only electrons, but also muons in eq. (2.9)
and in the matter potentials of eq. (2.4). The presence of pions and other hadrons can be
neglected, however, since they interact evenly with active neutrinos and therefore their effect
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on oscillations is small when compared with that of charged leptons; furthermore, from the
point of view of the evolution of z, they act as an overall shift at late times.

Although it is not necessary for our calculations, it is interesting to estimate the effective
temperature of neutrinos. This can be used in order to approximate the final neutrino
distribution as a Fermi-Dirac, with an error that is typically at most of the order of one
percent for active neutrinos. For the sterile neutrino, we will comment later that the final
momentum distribution function depends on whether the thermalisation is complete or not.
An estimate of the comoving neutrino temperature w ≡ Tν a can be obtained from eq. (2.9),
considering the process of neutrino decoupling but neglecting electron-positron annihilations
assuming they were always relativistic. This implies that the effective neutrino temperature
will follow the one of photons until the e+e− annihilations start to transfer energy to the
photon fluid, after neutrino decoupling, and will remain constant at later times.

In this paper we use the above equations to compute the evolution of neutrino flavours
in cosmology by means of a new code named FortEPiaNO (FORTran-Evolved PrimordIAl

Neutrino Oscillations), which is described in details appendix B. The code considers a
grid of neutrino momenta, distributed according to the Gauss-Laguerre quadrature method,
to parametrise the density matrix, and evolves the differential equations presented above
over a wide range of comoving temperatures, through the adaptive solver for stiff problems
DLSODA. FortEPiaNO can be used to compute oscillations with up to six neutrinos in a flexible
way. As a comparison, when we only consider the standard case of three active neutrinos,
we obtain Neff = 3.044, with very small variations due to the technical settings. Instead,
within the 1+1 neutrino approximation, the code leads to results in reasonable agreement
with LASAGNA [27] in the relevant range.

3 Thermalisation of the light sterile neutrinos

After discussing the evolution of the cosmological energy and entropy densities in the range of
relevant temperatures, in this section we describe our main results concerning the production
and thermalisation of sterile neutrinos via oscillations and later we report how they are
affected by the choice of the mixing parameters.

3.1 Energy and entropy conservation

Although all processes are well known, the analysis of cosmological thermodynamics at the
epoch when active-sterile oscillations become effective provides a better understanding of
how the new states are thermalised. The chain of relevant processes, considering that they
are independent (or happen at different scales, as if they were instantaneous from the point
of view of the other), involve the following particles in equilibrium:

µ± +
(−)
ν e,µ,τ + e± + γ → g1 =

57

4
, (3.1a)

(−)
ν e,µ,τ + e± + γ → g2 =

43

4
, (3.1b)

(−)
ν s +

(−)
ν e,µ,τ + e± + γ → g3 =

50

4
, (3.1c)

e± + γ → g4 =
22

4
, (3.1d)

γ → g5 =
8

4
, (3.1e)
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where, as usual, in each case g denotes the degrees of freedom of the relativistic particles
involved, assuming that they share the same temperature. In the first process, from eq. (3.1a)
to eq. (3.1b), muons and antimuons annihilate into active neutrinos, e± and photons. In
the next two transitions sterile neutrinos are populated through oscillations (eq. (3.1b) to
eq. (3.1c)) and active neutrinos decouple when weak interactions become ineffective (eq. (3.1c)
to eq. (3.1d)), respectively. Finally, the fourth process, from eq. (3.1d) to eq. (3.1e), represents
the electron-positron pair annihilations into photons. We have neglected the presence of pions
and other hadrons before eq. (3.1a) because they act as an overall shift in z evolution, since
their abundance is even smaller than that of muons.

If we now use the comoving temperature z defined in the previous section, for any
process in the early Universe the conservation of the entropy density implies that

gs
after z

3
after = gs

before z
3
before , (3.2)

while, if the energy density is preserved,

gafter z
4
after = gbefore z

4
before . (3.3)

When the temperatures of all the species in thermal equilibrium are the same, g = gs. We
show in figure 1 the evolution of the comoving densities ρ (energy) and s (entropy, defined
as a3 times the physical entropy density) of all relativistic particles, comparing one 3+1
case (solid lines) where the sterile state is thermalised with the standard case of three active
neutrinos (dotted lines). The corresponding evolution of the comoving temperatures is shown
in figure 2, including a 3+1 case where the νs is not fully brought into equilibrium.

Starting at temperatures above 100 MeV, one can first note that µ± annihilations in-
crease the energy density of radiation. During this process the total number of degrees of
freedom is the same, but those corresponding to muon and antimuons disappear from the
relativistic bath of particles in equilibrium. As a result, the total entropy density is conserved
but the energy density of relativistic particles rises, as can be seen in figure 1. This leads,
from eq. (3.2), to a change in z, which increases as shown in figure 2 by an amount

z2 =

(
57

43

)1/3

z1 . (3.4)

The second process, the thermalisation of sterile neutrinos via oscillations, enlarges the
number of relativistic degrees of freedom. Since there is no energy injection from annihilating
or decaying particles, the total energy density is conserved (figure 1). However, now there
are new degrees of freedom in the game and the entropy density is increased with respect to
the three-neutrino case, as shown in figure 1. If sterile neutrinos are fully thermalised, the
comoving temperature of the particles in equilibrium (equivalently z) decreases, as can be
seen in figure 2, by an amount given by eq. (3.3),

z3 =

(
43

50

)1/4

z2 . (3.5)

The third process, neutrino decoupling, implies no energy injection, so the energy density
is conserved and no new degrees of freedom appear. The only change that happens is that
the neutrino degrees of freedom are now associated to decoupled particles. This means that,
if something happens to the plasma that changes its temperature, the neutrino comoving
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Figure 1. Evolution of the comoving energy (upper panel) and entropy (lower panel) densities of
the different components. We show the standard three-neutrino case (dotted lines) and a 3+1 case
(solid lines) using ∆m2

41 = 1.29 eV2, |Ue4|2 = 0.01 [44], |Uµ4|2 = |Uτ4|2 = 0, which gives Neff ' 4.05.

temperature w will be constant because it is only an effective parameter to describe their
frozen distribution function. Neutrino decoupling does not change z, ρ or s, because the
degrees of freedom of neutrinos contribute as if they were still coupled to the plasma. This
is shown, respectively, in figure 2 and in the two panels of figure 1. Hence,

z4 = z3 . (3.6)

The final process, electron-positron pair annihilations, takes place after neutrino decou-
pling, increasing the relativistic energy density but conserving the entropy density. Therefore,
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Figure 2. Evolution of z as a function of x for the standard three-neutrino case (black) compared
with some 3+1 cases (all using ∆m2

41 = 1.29 eV2 [44], the angles not specified in the legend are set to
zero). One of the 3+1 cases corresponds to Neff ' 3.5 (cyan), the others to Neff ' 4.05.

from eq. (3.2), the change in z, which is not felt by the decoupled neutrinos, is given by

z5 =

(
11

4

)1/3

z4 . (3.7)

This value is the well-known ratio between the photon temperature before and after electron-
positron pair annihilations. Independently of the processes that took place earlier, the ratio of
photon and neutrino comoving temperatures always remains the same after e± annihilations.
As shown in figure 2, the final z/w is very close to (11/4)1/3 ' 1.401. It is worth commenting
that the final energy density appears to be higher in the standard three-neutrino case than
in the 3+1 example (see the black curves in the upper panel of figure 1). This is again a
consequence of the conservation of entropy during e± annihilations. Since the energy density
of electrons and positrons is larger when there is no sterile neutrino, the amount of energy
that they can transfer to photons is also increased.3

This simplified description is valid when the four physical processes follow a sequential
order without overlap. In the real cases some of them coincide to some extent and the
computed values of z will differ from that found from eqs. (3.4)–(3.7). For instance, the
production of sterile neutrinos can take place when µ± annihilations are still effective, while
it is well known that active neutrino decoupling is not an instantaneous process: some relic
e± annihilations to neutrinos exist, leading to the value Neff = 3.045 [21].

3Note that in our normalisation we use T 0
γ = 1 at very early times, but what we observe today as T now

γ (one
of the best constrained quantities in cosmology) is the final photon temperature at the end of the evolution.
A proper interpretation of physical quantities in our results (such as the cosmological energy density) would
therefore require to compute the expected photon temperature T ′γ after neutrino decoupling which reproduces
T now
γ in a given cosmology, and to renormalise according to T ′γ instead of T 0

γ . However, a ratio such as Neff

is unaffected.
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Figure 3. Evolution of Neff in the absence of active-sterile mixing and for some 3+1 cases (all using
∆m2

41 = 1.29 eV2 [44], the angles not specified in the legend are set to zero). One of the 3+1 cases
corresponds to Neff ' 3.5 (cyan), one to Neff ' 3.13 (violet) and the others to Neff ' 4.05. Since
the number of effective neutrino species is not well defined in the intermediate range, we report in
separate scales the value at early times N in

eff (left axis) and at late times Nnow
eff (right axis).

3.2 Effective number of neutrinos

The thermalisation of a new relativistic particle in the early Universe affects the energy
density of radiation. This is usually quantified with the effective number of neutrino species,
Neff , that is defined before neutrino decoupling as

N in
eff ≡

8

7

ρν
ργ
, (3.8)

while after photons have been heated by electron-positron annihilations we have

Nnow
eff =

8

7

(
11

4

)4/3 ρν
ργ
. (3.9)

The evolution of the effective number of neutrinos is reported in figure 3 for a few
representative cases. One can see from this figure that the final Neff is slightly larger than
three when only active neutrinos are considered (black curve), but can grow up to four when
an additional state is present. For the 3+1 cases in the plot we consider again the benchmark
mass splitting ∆m2

41 = 1.29 eV2, but consider several choices for the mixing angles. The red
curve in the plot represents the case |Ue4|2 = 0.01, which also arises as the preferred value from
the combination of DANSS and NEOS results, while the other two mixing matrix elements
|Uµ4|2 and |Uτ4|2 are fixed to zero. In such case, the final value of the effective number of
neutrinos is very close to 4 (actually Neff ' 4.05). A similar final result is obtained when
we use one of the other two angles instead (blue and green curves), but the thermalisation
of sterile neutrinos occurs slightly before. Finally, the last two cases shown only lead to
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Figure 4. Evolution of %αα for different values of y as a function of x, for the ee and ss diagonal
entries. We consider the 3+1 case using ∆m2

41 = 1.29 eV2, |Ue4|2 = 0.01 [44], |Uµ4|2 = |Uτ4|2 = 0.

incomplete thermalisation: the mixing is not large enough to allow a full energy transfer
between the sterile and the active states. Thus, when the active neutrinos decouple from the
rest of the plasma the sterile state is not fully populated. For instance, we get Neff ' 3.5
for |Ue4|2 = 0.001 (cyan line), which is just outside the 3σ allowed region by DANSS and
NEOS [12, 44, 45].

3.3 Momentum distributions of the neutrinos

The energy distribution function of the sterile neutrino is initially empty, when oscillations
are still suppressed. Once they become effective, the first sterile neutrinos to appear possess
very small momenta and start to reach thermal equilibrium with the active neutrinos. This
can be seen in figure 4, where we show the evolution of the momentum distribution functions
of sterile (dashed-dotted lines) and electron (solid lines) neutrinos for different values of the
comoving momentum y. As anticipated, we can see that the lowest momenta are populated
at earlier times. It is also interesting to note that the increment in the neutrino temperature
due to muon annihilations is simultaneous to the creation of sterile neutrinos (visible as a
bump in the blue curve at 0.01 . x . 0.1).

A similar comparison is shown in figure 5, where we now depict the evolution of the
distribution functions at different values of the mixing angles, all for the same comoving
momentum y = 5. When the mixing is not large enough, oscillations start later, so that
the sterile neutrino does not have time to reach equilibrium and its momentum distribution
remains at a fraction of that of active neutrinos. For the same final values of Neff (see for
instance those that lead to Neff ' 4.05), the thermalisation may be slightly different (see
0.01 . x . 0.1), but the equilibrium distribution is the same.

Until now we have discussed only the diagonal elements of the density matrix. The
most interesting things, however, appear in the off-diagonal entries, which are responsible for
the energy transfer between active and sterile neutrinos. In figure 6 we show the evolution of
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Figure 5. Evolution of %αα for y = 5 as a function of x, for various cases within the 3+1 scheme.
The mass splitting is always ∆m2

41 = 1.29 eV2 [44], while the angles not specified in the legend are
set to zero. The 3+1 cases lead to ∆Neff = 1.01 (red, green and blue), ∆Neff = 0.45 (cyan) and
∆Neff ' 0.10 (violet and orange).
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Figure 6. Evolution of %αβ for y = 5 as a function of x, for the different off-diagonal entries
of various cases with 3+1 neutrinos. We always have ∆m2

41 = 1.29 eV2 [44], while the angles not
specified in the legend are set to zero. All the 3+1 cases correspond to ∆Neff = 1.01.

the off-diagonal components at y = 5 for three selected cases, for which only one among the
matrix elements (|Ue4|2, |Uµ4|2 or |Uτ4|2) is different from zero. It can be easily seen that a
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Figure 7. Final neutrino momentum distribution %αα, for the different diagonal entries. We show
both the standard active neutrino case (black) and some 3+1 cases (all with ∆m2

41 = 1.29 eV2 and
matrix elements |Ue4|2 = |Uµ4|2 = |Uτ4|2 = 0 unless stated otherwise). The 3+1 cases correspond
to ∆Neff = 1.01 (|Ue4|2 = 10−2, red), ∆Neff = 0.45 (|Ue4|2 = 10−3, cyan) and ∆Neff ' 0.10
(|Uµ4|2 = 10−4, violet), respectively. The black dashed line with dots represents the analytical
expression in the Dodelson-Widrow (DW) approximation [49] with the neutrino temperature and
∆Neff obtained from the corresponding coloured curves.

strong resonance in the corresponding density matrix entry occurs just before the diagonal
entry is populated. When |Ue4|2 is non zero, for example, the energy is first transferred from
the %ee to the %es component, and from there to the diagonal entry %ss. At early times, the
presence of effective weak interactions makes possible to restore the %es to zero at the end of
the resonance, but this does not happen at late times, when the various %αβ remain different
from zero, with an absolute value that dependens on the leading standard mixing angle.

Finally, let us analyse the final shape of the momentum distribution functions after
the neutrino decoupling is complete. In figure 7 we show the final diagonal elements of the
density matrix, multiplied by a factor y2 (the quantity that is integrated in the calculation
of the number density of neutrinos). Several cases are shown in the figure, corresponding
to different assumptions about the neutrino sector. The black curve is computed using only
active neutrinos, while the red, cyan and violet ones are obtained fixing |Ue4|2 = 10−2,
|Ue4|2 = 10−3 and |Uµ4|2 = 10−4, respectively, being the other active-sterile angles fixed to
zero. These cases lead to Neff ' 4.05, Neff ' 3.5 and Neff ' 3.13, so the cyan and violet curves
correspond to a sterile neutrino not fully thermalised. The difference between the black and
the red curves, when the sterile is completely thermalised, is only due to the fact that the
neutrino temperature is smaller when part of the energy is transferred to the sterile state.
Instead, the |Ue4|2 = 10−3 or |Uµ4|2 = 10−4 cases are more interesting, because the sterile
state shares the same temperature of the active neutrino and its momentum distribution
function is simply rescaled by a factor ∆Neff . To check this, we plot the analytic expression
obtained using f(y) = ∆Neff [exp(y/w) + 1]−1 over the points of the y grid that we used.
The analytic expression matches reasonably well the computed result.
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The above expression for f corresponds to what was found by Dodelson and Widrow [49]
(DW), who derived it assuming non-resonant oscillations between two neutrino states, and is
usually adopted as one of the two possible ways to parametrise the momentum distribution
function of the sterile neutrino in phenomenological analyses (see e.g. [50, 51]). The other
possibility is to assign to the sterile neutrino a momentum distribution that has a different
temperature with respect to the one of active neutrinos, i.e. f(y) = [exp(y/ws) + 1]−1, where

ws ≡ Ts a = (Ts/Tν)w and Ts/Tν = ∆N
1/4
eff (see e.g. [28, 30, 31, 50, 51]). Thus, we show that

this latter possibility, denoted as thermal distribution, is inaccurate to study the 3+1 sterile
neutrino case, for which we find that the DW approximation is excellent.

3.4 Dependence on the active-sterile mixing parameters

Let us now discuss the main novelty of our paper, namely the different impact of the three
active-sterile mixing angles θ14, θ24 and θ34 on the thermalisation process when considering
the full oscillation paradigm of the 3+1 scheme. We anticipate that a general conclusion is
the following: the effect of the three angles is quite similar but not exactly equal.

A first comparison can be performed in the case when only one of the mixing angles is
non zero. We show4 in figure 8 the iso-Neff contours obtained when varying only θ14, θ24 or
θ34. One can see that, for the same value of the mixing parameter, θ14 always corresponds to
the smallest final Neff . In other words, a larger θ14 is required to achieve the same Neff with
respect to θ24 or θ34. These latter two angles have a very similar effect at small ∆m2

41, but
θ34 is slightly more effective for larger ∆m2

41. This is due to the fact that when θ24 is not zero,
the thermalisation is mainly generated by νµ ↔ νs oscillations which, at high temperatures,
are affected by the matter potential created by the few muons that are still present in the
plasma, therefore slowing down the population of the sterile states.

In the same figure 8 we can also compare the Neff ≥ 3.9 lines with the preferred regions
for |Ue4|2 at 99.7% CL from DANSS+NEOS [12, 44, 45] and the exclusion curves for |Uµ4|2
at 99.7% CL from muon (anti)neutrino disappearance [52]. Note that the blue curve is not
shown in the bottom panel, corresponding to inverted mass ordering for the active neutrinos,
as it is derived under the assumption of normal ordering. While the DANSS+NEOS region
is also derived assuming normal ordering, it does not extend to regions where ∆m2

41 becomes
comparable to |∆m2

31|, and is therefore valid in both cases. The iso-Neff contours in figure 8
can be very well approximated by straight lines for each mixing angle, as shown in previous
analyses, see e.g. [25, 28, 32]. In particular, our results for the 3+1 case are in reasonable
agreement (within few percent of the total Neff) with those obtained with the LASAGNA code
in the 1+1 approximation.

In the following, let us consider what happens when we increase the values of the
angles that were earlier always fixed to zero. An example is shown in the four panels of
figure 9. The iso-Neff contours change when we vary ∆m2

41 and |Ue4|2 while the two re-
maining matrix elements |Uµ4|2 or |Uτ4|2 assume different values. It is interesting that these
contours remain similar to those in figure 8 when the largest mixing comes from |Ue4|2, but
saturate as a consequence of the other mixing channels when |Ue4|2 is smaller than one of
the other two mixing matrix elements. We include in the same panels the preferred 99.7%
CL regions by DANSS+NEOS [44]. One can conclude that the current preferred value for

4Since we consider the sterile neutrino in a 3+1 scheme, we restrict ourselves to the case m4 > m3 (normal
ordering) or m4 > m2 (inverted ordering), i.e. ∆m2

41 > ∆m2
31 ' 2.5 × 10−3 eV2 and ∆m2

41 > ∆m2
21 '

7.5×10−5 eV2, respectively. Thus, the new squared mass difference does not significantly alter the oscillations
of the three active neutrinos.
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Figure 8. Comparison of the effect on Neff when varying only one of the active-sterile angles,
for normal (upper panel) or inverted (lower panel) mass ordering. Dashed, dashed-dotted and dotted
lines indicate that only θ14, θ24 or θ34, respectively, is different from zero. The different colours encode
three discrete levels of Neff as indicated in the text boxes. Red lines show the allowed regions (99.7%
CL) from DANSS+NEOS [44] on |Ue4|2, while blue lines show the constraints (99.7% CL) from muon
(anti)neutrino disappearance [52] on |Uµ4|2.

|Ue4|2 would lead to a contribution of Neff ' 4, regardless of the values of |Uµ4|2 or |Uτ4|2
and despite the fact that θ14 is the angle which makes the thermalisation less effective. In
light of current cosmological constraints, which prefer Neff . 3.3 [14] (Planck data TT, TE,
EE+lowE+lensing+BAO, 95% CL), this indicates a strong tension between CMB observa-
tions and neutrino oscillation experiments, as noted in many previous analyses.
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Figure 9. Final Neff in the 3+1 case for different values of ∆m2
41 and |Ue4|2 when considering normal

ordering for the active neutrinos. The other two active-sterile components of the mixing matrix take
the values as labelled. The black closed contours represent the 3σ preferred regions and the green
star the best-fit point from [44].

Finally, let us discuss in more detail the simultaneous effect of all three active-sterile
mixing angles. To do so, we propose an adapted version of the ternary plot which is sometimes
shown for discussing the flavour composition of high-energy neutrino fluxes, see e.g. [54]. In
figure 10 we show, for three selected values of ∆m2

41, the effect on the final value of Neff when
all three mixing angles are non zero. Instead of a proper ternary plot, for which we should
have fixed |Ue4|2 + |Uµ4|2 + |Uτ4|2 = 1, we show combinations of the mixing matrix elements
such that

∑
log10 |Ui4|2 = −13. With this choice we avoid the use of a linear scale in the

mixing matrix elements that would make the plot mostly filled with only Neff ' 4. The panels
in figure 10 reflect the fact that the thermalisation is more effective when the mass splitting
grows, because oscillations start earlier and have more time to develop. Although these plots
look really symmetric, a more accurate inspection of the upper panel shows that the centre
of the darker region (corresponding to small Neff) is not located exactly at the centre of the
triangle, a consequence of the different interactions and masses of the three active neutrinos.
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4 Conclusions

The existence of a fourth neutrino state, insensitive to weak interactions but mixed with the
three active neutrinos, could provide an explanation for the anomalies found in some short-
baseline oscillation experiments. While we expect that new oscillation data will confirm
or refute this solution, it is interesting to obtain complementary information from other
terrestrial, astrophysical and cosmological observations. In this regard, it is important to
calculate the contribution of sterile neutrinos to the cosmological energy density of radiation,
since it is well constrained by present data, for instance from CMB measurements.

We have presented in this paper a novel calculation of the thermalisation of the mostly
sterile neutrino state in the early Universe in the 3+1 scheme, solving the momentum-
dependent kinetic equations for the distribution functions. For the first time, we consider
the simultaneous effect of all mixing angles involved in neutrino oscillations, fixing those ex-
clusive of active neutrinos to the values obtained in global-fit analyses but leaving the three
active-sterile angles as free parameters. For this purpose we have developed a new numerical
code, FortEPiaNO,5 that follows the evolution of the Boltzmann equations in a momentum-
grid basis, accounting for the full oscillation mixing matrix, the relevant processes of weak
interactions and the expansion of the Universe.

We have studied the evolution of the comoving energy and entropy densities of the ele-
mentary particles in the cosmic plasma, from the epoch of muon-antimuon pair annihilations
until the decoupling process of active neutrinos is complete. We show that the population of
sterile states when flavour oscillations become effective slightly increases the entropy density
of the relativistic plasma and reduces its comoving temperature with respect to the standard
three-neutrino case. The final energy density of the plasma is also slightly reduced in the 3+1
scenario. Our code also provides the evolution of the momentum distributions of each neu-
trino state. In particular, we show that the so-called Dodelson-Widrow approximation [49]
for the final energy spectrum of sterile neutrinos is in very good agreement with our full
calculations, while the thermal distribution approximation is inaccurate.

Our main results concern the dependence of the final value of Neff on the mixing pa-
rameters of the 3+1 scheme (the three new mixing angles and the squared mass difference
∆m2

41). Focusing on the effect of one single angle, i.e. neglecting the other two, for the same
∆m2

41 the angle θ14 leads always to smaller Neff due to the delay in the thermalisation process
of the mostly sterile state caused by the matter potential from electrons and positrons in the
plasma. Instead, the individual effect of θ24 or θ34 is similar but not equal. We have also
shown how the value of Neff is modified when all three mixing angles possess non-zero values.
While we get Neff = 3.044 in the absence of active-sterile mixing, in agreement with previous
calculations, we find, as expected, that the 3σ preferred region from the analysis of oscillation
data from NEOS + DANSS leads to a value of Neff ' 4, in tension with the cosmological
bounds. Of course, when more than one active-sterile mixing angle is included the tension
is enlarged, since the presence of more channels favours the population of sterile neutrinos.
Thus, if the existence of active-sterile mixing is confirmed, a new ingredient to suppress
the thermalisation of the fourth neutrino state will be required, such as the presence of a
neutrino-antineutrino asymmetry (see e.g. [25, 36]) or secret neutrino interactions [55, 56].

In conclusion, our analysis is a new step towards understanding better the effects of
active-sterile oscillations in the early Universe. While the obtained values of Neff can be
directly compared with the preferred range of this parameter from cosmological fits (except

5This code will be publicly available at https://bitbucket.org/ahep cosmo/fortepiano public.
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for the larger values of ∆m2
41, for which neutrinos become non-relativistic at the relevant

epochs), in the future we plan to extend this work performing a detailed calculation of
the bounds on the active-sterile mixing parameters from the full set of oscillation data and
cosmological measurements, along the lines of [28, 30, 31, 35].
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A Collision integrals

Neutrino interactions are encoded in the matrices of couplings GL and GR, for left- or right-
handed particles,

GL = diag(gL, g̃L, g̃L, 0) , GR = diag(gR, gR, gR, 0) , (A.1)

where gL = sin2 θW + 1/2, g̃L = sin2 θW − 1/2, gR = sin2 θW , and θW is the weak mixing
angle.

The full collision terms are defined by the sum of the contributions from neutrino-
electron/positron scattering and e± annihilation into neutrinos. We neglect other reactions,
such as µ± annihilation (which only affects at very early temperatures when everything is in
equilibrium) and neutrino-neutrino scattering. We therefore have [21]

I[%(y)] =
G2
F

(2π)3y2
(Iusc +Iuann) , (A.2)

Iusc =
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where E2
i =

√
x2 + y2

i + δm2
e and

Πs
1(y, y3) = y y3D1 +D2(y, y3, y2, y4), (A.5)

Πa
1(y, y2) = y y2D1 −D2(y, y2, y3, y4), (A.6)

Πs
2(y, y2)/2 = y E2 y3E4D1 +D3 − y E2D2(y3, y4, y, y2)− y3E4D2(y, y2, y3, y4), (A.7)

Πs
2(y, y4)/2 = y E2 y3E4D1 +D3 + E2 y3D2(y, y4, y2, y3) + y E4D2(y2, y3, y, y4), (A.8)

Πa
2(y, y3)/2 = y y2E3E4D1 +D3 + y E3D2(y2, y4, y, y3) + y2E4D2(y, y3, y2, y4), (A.9)

Πa
2(y, y4)/2 = y y2E3E4D1 +D3 + y2E3D2(y, y4, y2, y3) + y E4D2(y2, y3, y, y4), (A.10)

where the functions Di have the following definitions [57]:

D1(a, b, c, d) =
16

π

∫ ∞
0

dλ

λ2

∏
i=a,b,c,d

sin(λi) , (A.11)

D2(a, b, c, d) = −16

π

∫ ∞
0

dλ

λ4

∏
i=a,b

[λi cos(λi)− sin(λi)]
∏
j=c,d

sin(λj) , (A.12)

D3(a, b, c, d) =
16

π

∫ ∞
0

dλ

λ6

∏
i=a,b,c,d

[λi cos(λi)− sin(λi)] . (A.13)

The three functions can be written in a more efficient way for the calculation, since they can
be solved analytically, see e.g. [58] for the complete expressions.

Finally, the functions that define the phase space factors in the collision terms are [21]:

F absc

(
%(1),f (2)

e ,%(3),f (4)
e

)
= f (4)

e (1−f (2)
e )

(
Ga%(3)Gb(1−%(1))+(1−%(1))Gb%(3)Ga

)
−f (2)

e (1−f (4)
e )

(
%(1)Gb(1−%(3))Ga+Ga(1−%(3))Gb%(1)

)
, (A.14)

F abann

(
%(1),%(2),f (3)

e ,f (4)
e

)
= f (3)

e f (4)
e

(
Ga(1−%(2))Gb(1−%(1))+(1−%(1))Gb(1−%(2))Ga

)
−(1−f (3)

e )(1−f (4)
e )

(
Ga%(2)Gb%(1) +%(1)Gb%(2)Ga

)
, (A.15)

where %(i) = %(yi) and f
(i)
e = fFD(yi, z) represent the momentum distribution function of

the various particles. The full expression for these functions should take into account the
lepton asymmetry and distinguish the momentum distributions of leptons/neutrinos from
those of antilepton/antineutrinos. Since we do not include lepton asymmetry, we just report
the expressions without the heavier notation required to distinguish the various terms.

The code we use can compute the collision terms according to eqs. (A.3) and (A.4),
but the integrals are very expensive. For the non-diagonal terms of the collision matrix we
therefore use the damping approximation, in the form

Iαβ(%) = −Dαβ%αβ, (A.16)

for α 6= β. The expressions for the coefficients Dαβ depend on the elements considered. The
coefficients were derived for example in [59], see also [19, 60], and can be written as

Deµ/F = Deτ/F = 15 + 8 sin4 θW , (A.17)

Dµτ/F = 7− 4 sin2 θW + 8 sin4 θW , (A.18)

Des/F = Deτ/F = 29 + 12 sin2 θW + 24 sin4 θW , (A.19)

Dµs/F = Dτs/F = 29− 12 sin2 θW + 24 sin4 θW , (A.20)

where F = 7π4y3/135 is a common normalisation coefficient.
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B FortEPiaNO

We present here the main features of our code, FORTran-Evolved PrimordIAl

Neutrino Oscillations (FortEPiaNO). The code will be publicly available at the url
https://bitbucket.org/ahep cosmo/fortepiano public.

B.1 Equations

FortEPiaNO was used in this article to compute oscillations with four neutrinos, but the code
is actually written in order to accept up to six neutrinos. Neutrinos, including the sterile, are
always treated as ultra-relativistic particles, which is a good approximation if the neutrino
masses do not exceed O(a few keV), i.e. neutrinos are still fully relativistic at decoupling.
For larger masses, neutrinos may start to become non-relativistic before decoupling, and in
that case one should take into account the effect of the mass.

When using N neutrinos, the mixing matrix is defined as

U = R(N−1)N . . . R1NR(N−2)(N−1) . . . R1(N−1) . . . R34R24R14R23R13R12, (B.1)

following and extending the convention presented in eq. (12) of [5], where the rotation
matrices are defined as in eq. (2.6). It enters the calculation of the rotated mass matrix
MF = UMU †, where the diagonal mass matrix is M = diag(m2

1, . . . ,m
2
N ). Other matrices

that we need to define are

E` = diag(ρe, ρµ, 0, . . .) , Eν = Sa

(∫
dyy3%

)
Sa with Sa = diag(1, 1, 1, 0, . . .) , (B.2)

while the interaction matrices become

GL = diag(gL, g̃L, g̃L, 0, . . .) , GR = diag(gR, gR, gR, 0, . . .) . (B.3)

Finally, concerning the collision terms, we use all the definitions presented in section A, but
with N × N matrices. It is easy to see from the definitions of eqs. (A.14) and (A.15) that
the collision terms vanish when considering the interactions corresponding only to sterile
neutrinos. When more than one sterile neutrino is considered, the damping terms between
the different sterile neutrinos are therefore set to zero.

To summarise, the code computes the evolution of the N ×N neutrino density matrix

%(x, y) =


%ee %eµ %eτ %es1 . . .
%µe %µµ %µτ %µs1
%τe %τµ %ττ %τs1
%s1e %s1µ %s1τ %s1s1

...
. . .

 , (B.4)

which is the same for neutrinos and antineutrinos, and of the comoving photon temperature z.
The momentum dependence of the density matrix % is taken into account using a discrete
grid of momenta, as described in section B.3. The differential equations which the code
solves are the following, written in terms of the comoving coordinates x ≡ me a, y ≡ p a and
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z ≡ Tγ a [21, 34, 36, 46]:

d%(y)

dx
=

√
3m2

Pl

8πρ

{
−i x

2

m3
e

[
MF

2y
− 8
√

2GFym
6
e

3x6

(
E`
m2
W

+
Eν
m2
Z

)
, %

]
+
m3
e

x4
I(%)

}
,

dz

dx
=

∑
`=e,µ

[
r2
`

r
J(r`)

]
+G1(r)−

1

2π2z3

∫ ∞
0

dy y3

sNs∑
α=e

d%αα

dx∑
`=e,µ

[
r2
`J(r`) + Y (r`)

]
+G2(r) +

2π2

15

, (B.5)

where r = x/z and r` = m`/me r. The expressions for the J , Y , G1 and G2 functions, which
take into account the electromagnetic corrections to electron and photon masses, are written
in eq. (18)–(22) of [46]. We report them here for completeness:

J(r) =
1

π2

∫ ∞
0

duu2 exp(
√
u2 + r2)[

exp(
√
u2 + r2) + 1

]2 , (B.6)

Y (r) =
1

π2

∫ ∞
0

duu4 exp(
√
u2 + r2)[

exp(
√
u2 + r2) + 1

]2 , (B.7)

K(r) =
1

π2

∫ ∞
0

du
u2

√
u2 + r2

1

exp(
√
u2 + r2) + 1

, (B.8)

G1(r) = 2πα

[
1

r

(
K

3
+ 2K2 − J

6
−KJ

)
+G3

]
, (B.9)

G2(r) = −8πα

(
K

6
+
J

6
− 1

2
K2 +KJ

)
+ 2παrG3 , (B.10)

G3(r) =
K ′

6
−KK ′ + J ′

6
+K ′J +KJ ′ , (B.11)

where the prime denotes derivative with respect to r and we dropped the explicit dependence
on r in the expressions for the G functions. For the sake of computational speed, we calculate
and store lists for all the terms of eq. (B.5) which do not depend on the neutrino density
matrix at the initialisation stage, and compute their values through interpolation during the
real calculation. The same happens for the energy densities of charged leptons, for which
performing an interpolation is much faster than computing an integral.

Finally, in order to estimate the effective comoving neutrino temperature w ≡ Tν a,
which is not needed for the calculation but useful to understand the final results, we use
an equation similar to (B.5), but considering only relativistic electrons, i.e. fixing re = 0 in
eq. (B.5).

B.2 Solver and initial conditions

We solve the differential equations with the DLSODA routine from the ODEPACK6 Fortran pack-
age [61, 62]. ODEPACK is a collection of solvers for the initial value problem for systems of
ordinary differential equations. It includes methods to deal with stiff and non-stiff systems,

6https://computation.llnl.gov/casc/odepack/odepack home.html.
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and some of the provided subroutines automatically recognise which type of problem they
are facing.

The specific solver we use, DLSODA, is a modification of the Double-precision Livermore
Solver for Ordinary Differential Equations (DLSODE) which includes an automatic switch-
ing between stiff and non-stiff problems of the form dy/dt = f(t, y). In the stiff case,
it treats the Jacobian matrix df/dy as either a dense (full) or a banded matrix, and as
either user-supplied or internally approximated by difference quotients. It uses Adams meth-
ods (predictor-corrector) in the non-stiff case, and Backward Differentiation Formula (BDF)
methods (the Gear methods) in the stiff case. The linear systems that arise are solved by
direct methods (LU factor/solve). For more details, see the original publications [61, 62].

The initial conditions for DLSODA are defined as follows. The initial time xin is an input
parameter of the code, and reasonable values would correspond to temperatures between a
few hundreds and a few tens of MeV. The initial comoving photon temperature is computed
evolving eq. (B.5) from even earlier times (z0 = 1 at T0 = 10mµ, x0 = me/T0) until xin. The
obtained value zin is then considered as the temperature of equilibrium of the entire plasma.
Concerning the neutrino density matrix at xin, all off-diagonal elements and the diagonal ones
for sterile neutrinos are fixed to zero, while the diagonal elements corresponding to active
neutrinos are Fermi-Dirac distributions with a temperature zin. For typical values that we
use in the code, we have zin−1 = 2.9×10−4 for xin = 0.001 (which we use for the 3+1 cases)
or zin = 1.098 for xin = 0.05 (suitable for the three-neutrino case, see [21]).

B.3 Momentum grid

In order to follow the evolution of eq. (B.4), we discretise its dependence on y and evolve each
of the momentum in x. One of the most interesting ways to make the code more precise and
faster is related to the choice of the yi. Discretising the momenta with a linear or logarithmic
spacing works, but it is not the most efficient way to generate the grid. Inspired by one of the
methods used in CLASS (see [63]), we deeply tested and finally considered a spacing based on
the Gauss-Laguerre integration method. The crucial point of the calculation is to compute
the energy density of neutrinos, given by

ρα =
1

π2

∫ ∞
0

dy y3 %αα(y), (B.12)

where %αα(y) will be close to a Fermi-Dirac distribution and in any case always exponentially
suppressed. The Gauss-Laguerre quadrature (see e.g. [64]) is a method that is designed to
optimise the solution of integrals of the type

I =

∫ ∞
0

dx yα e−y f(y) '
N∑
i

w
(α)
i f(yi) , (B.13)

where f(y) is a generic function, yi are the N roots of the Laguerre polynomial LN of order
N , and wi are relative weights, which are obtained using

w
(α)
i =

yi

(N + 1)2[L
(α)
N+1(yi)]2

. (B.14)

The weights can be computed for example using the gaulag routine from [64]. Since our
momentum distribution function is not directly proportional to e−y, we consider f(x) =
ey %αα(y), in order to rescale the weights appropriately.
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For the simple purpose of integrating the Fermi-Dirac distribution, very few points are
typically required. CLASS, for example, uses order of ten points for integrating the neutrino
distribution. In our case the non-thermal distortions must be computed accurately, and in
particular when evolving the thermalisation of a sterile neutrino we need more precision on the
small momenta. On the other hand, we do not want to compute the momentum distribution
function at very high y, which gives a very small contribution to the total integral. We
therefore use a truncated list of nodes yi over which to compute the evolution of %, selecting
only the Ny ≤ N nodes for which yi < 20. In this way we can increase the number of points
at small y and the resolution on the thermalisation processes without having to compute a
large number of points at high momentum. The number of points we can use is limited by
the accuracy of the algorithm that computes the wi. For the gaulag routine [64], our setup
allows to reach Ny ∼ 50 when N ∼ 350. This number of momentum nodes is already large
enough to reach a precision much better than one per mille on Neff , which is the same we
could obtain with a linear spacing of the points and Ny = 100 [21]. Since the evaluation of
the collision integrals scales as N2

y and the number of derivatives in eq. (B.5) scales with Ny,
this ensures a significant gain. We further comment on this point in the next sections.

B.4 Numerical calculation of 1D and 2D integrals

Most of the processing time is spent to compute the collision integrals discussed in section A,
which are two-dimensional integrals in the momentum. We compute the integrals using a
two-dimensional version of the Gauss-Laguerre method, which has been tested to be precise
enough, ∫ xN

x1

∫ yM

y1

dx dy f(x, y) =

N∑
i=1

M∑
j=1

wiwj fij . (B.15)

This works under the assumption that f(x, y) is exponentially suppressed both in x and
y. Such assumption is valid in our case, as the functions Fab always contain products of
momentum distribution functions, which are typically very close to the Fermi-Dirac. The
only exception is the case of the additional neutrino, for which the distribution can be very
different from the Fermi-Dirac, but in any case it is always exponentially suppressed, since
the lowest momenta are always populated first and its momentum distribution can never
exceed the one of standard neutrinos.

When using a linear/logarithmic spacing of points, instead we perform the integrals
using a composite two-dimensional Newton-Cotes formula of order 1 [65]:∫ xN

x1

∫ yM

y1

dx dy f(x, y) =
N−1∑
i=1

M−1∑
j=1

(xj − xi)(yj − yi)
[
fij + fi+1,j + fi,j+1 + fi+1,j+1

4

]
,

(B.16)
where we used the short notation fi,j = f(xi, yj), while i and j run over the grid of momenta
we are using, which contains N = M = Ny points for each dimension. This avoids us the
need to interpolate the density matrix in points outside the momentum grid.

The integrals therefore require N2
y evaluations of the integrands at each evaluation: this

means that reducing the value of Ny by a factor of two gives a factor four faster calculation
of the integrals. The actual gain in the code is even larger, since the DLSODA algorithm needs
to explore less combinations of variations in the %αβ(yl) for the different yl in the momentum
grid. Our goal is therefore to obtain with a coarse grid a result that is in reasonable agreement
with the one obtained using a fine grid.
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In order to obtain the maximum speed, we study the accuracy of each function that
enters the code in comparison with the analytical results, were they can be obtained. The
number of points and the integration methods adopted in all the integrals, for example,
have been carefully studied to achive a reasonable precision with a short computation time.
For the two-dimensional integrals, the selected momentum grid fully defines the integration
procedure, and the precision is always good when using a reasonable number of points.
Depending on the function, we may adopt the Gauss-Laguerre, Newton-Cotes or Romberg
integration [66] methods for the one-dimensional integrals. In particular, for the electron and
muon energy densities and for most of the funcions that enter the calculation of eq. (B.5) we
use a Gauss-Laguerre method on a dedicated grid of up to 110 points for the most complicated
functions. In one single case, the K ′(r) function derived from eq. (B.8), the result obtained
with the Gauss-Laguerre method did not reach the requested precision and we decided to use
a Romberg integration instead. Although this requires a longer computation time, it only
affects the initialisation stage, as in the code we interpolate over the pre-computed values.
The number of points and the interpolation range have also been studied in order to obtain
sufficiently precise results for all the computations required in the code.

B.5 Precision of the final results

We have tested our code with the results available in the literature and verified the robustness
of our findings against changes in the settings used in the calculations. In particular, we refer
to the high-precision results in the three-neutrino case of [21], from which we have adopted
all the equations.

Concerning the value of Neff that we obtain using only active neutrinos, we verified that
we can reach much better than per mille stability on Neff = 3.044 using Ny ≥ 20 points
spaced with the Gauss-Laguerre method, if the tolerance for DLSODA7 is 10−6. This means
that using Ny = 50 instead of Ny = 20 does not significantly alter the result. If we want to
consider a linear or logarithmic spacing for the momentum grid, a minimum of 40 grid points
must be employed in order to reach the same level of stability. Another possible setting that
can give us a faster execution of the code is the precision used for DLSODA. We verified that
once the tolerance for DLSODA is smaller than 10−5, the results are already stable at a level
much better than per mille (actually closer to the 0.1 per mille) with respect to the most
precise case considered here (Ny = 50, tolerance 10−6). Using a tolerance of 10−4 gives a
value of Neff which is stable at the level of few per mille, and still better than 1%.

If we repeat the same exercise in the 3+1 scheme, using ∆m2
41 = 1.29 eV2, |Ue4|2 =

0.012 [44] and |Uµ4|2 = |Uτ4|2 = 0, we find similar conclusions. A tolerance of 10−5 gives
results very close to those obtained with 10−6, while any larger tolerance gives larger fluctu-
ations depending on Ny. With 10−4, the precision remains of the order of 0.5%, so it is still
safe to compute the value of Neff on a grid of active-sterile mixing parameters using this level
of precision. With Ny = 20, a single run takes a few minutes on four cores, and the running
time is not significantly affected by changes in the DLSODA tolerance. When more precision
is required, however, the algorithm may have troubles in resolving some of the resonances,
and in that case the run can take much longer because of the adaptive nature of the solver.

Another parameter that we tested is the initial value of x, xin. Apart for fluctuations
which are compatible with those obtained varying Ny, the result is stable against variations
in 5× 10−4 ≤ xin ≤ 5× 10−2. The largest values of xin may be inappropriate for high values

7For simplicity, we assume the same numerical value for both the relative and absolute tolerance. The
algorithm will always match the most stringent of the two requirements.
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of ∆m2
41, as it is important for the solver to start the evolution before the sterile state starts

to oscillate significantly with the active ones. Smaller values, on the contrary, may create
numerical problems in DLSODA due to the very small initial value zin− 1, and are never really
required for our purposes.
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