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1 Introduction

A sufficient amount of cosmic inflation will expand microscopic features of the state of the
universe to all observable scales. The canonical assumption, that on small scales the initial
state of inflation is described by the Bunch-Davies (BD) vacuum, has produced extremely
successful predictions [1]. In [2] we have advocated the use of cosmic inflation as a probe
of the properties of the initial state (”the most powerful microscope in the Universe”), and
showcased specific possible deviations for the BD vacuum due to quantum entanglement
which could be tested in this manner.

Entangled states involve allowing other fields, such as spectator scalars [3] or tensor
metric perturbations [4] to become entangled with the scalar fluctuations in the quantum
state. A generic effect of such entanglement is the inducing of oscillations in the various
power spectra of the CMB which are already well constrained by current data [5, 6]. A
possible origin of such entangled states is discussed in [7, 8].

In prior work [3, 4] we calculated the predictions at the level of power spectra for various
examples of initial state entanglement and found interesting signatures which may already
be present in subtle features of the data (a more systematic analysis is underway [9]).

The power spectrum is mainly a probe of the linearized sector of field fluctuations. It can
also probe interactions at loop level, although these effects will typically be suppressed. To
understand the interacting aspects of the theory and to have a chance to lift the degeneracies
between different inflationary models, we need to compute higher point functions, such as
the bi and tri spectra. Data on these correlation functions has been gathered from both the
CMB and large scale structure (LSS). While LSS non-Gaussianity data has great potential
for improvements [10], CMB data, in particular from the Planck collaboration [11], provides
us the best bounds to date.
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In this paper we determine the shape of the bi-spectrum produced by entanglement
during inflation and compare it to the no-entanglement BD bi-spectrum. We also find that
the shape produced by entanglement differs from both the shape produced by an alternative
non-BD model [12] (for non-Gaussianity produced by other models with an excited state or
extra degrees of freedom see [13–16]) and that of many multi-field inflation models (i.e local
shape) [17]. Part of what drives this difference is the fact that there are new cubic operators
contributing to the bi-spectrum that would not have contributed for the BD state. These
operators are of the schematic form χ2ζ with various operators appearing. These contribute
because the state now depends on the spectator scalar field through entanglement, and the
contribution is proportional to the number of scalar fields. Thus, these operators can give
rise to new shapes and can be made to dominate over the operators giving the standard
contribution to the bi-spectrum. We also find that the magnitude of the bi-spectrum for
entangled states depends on how long inflation lasted. Non-BD states typically suffer from a
back-reaction problem due to the energy density of what can be thought of as particles built
upon the BD vacuum. The longer the inflationary period, the larger this effect and hence
there is a strong motivation to stay near the minimal number of e-folds needed to solve the
horizon and flatness problems. The same principle holds for this model of entanglement and
therefore, this may provide natural limits to how strong the enhancements can be.

In section 2 we first give a brief review of the construction of entangled states using
the field theoretic Schrödinger picture in the Gaussian approximation. We then extend this
method to allow for cubic deviations from Gaussianity. We use cosmological perturbation
theory, in the presence of the relevant cubic Hamiltonians, to compute the bi-spectrum in
terms of the cubic coefficient functions of the Schrödinger wavefunctional.

In section 3 we follow this use of cosmological perturbation with a second perturbative
expansion in the entanglement strength parameter. This parameter is necessarily constrained
to be small from observations of the CMB power spectrum so that a perturbative approach
is valid here.

In section 4 we present the resulting bi-spectrum generated by these extra terms and
the entanglement. We plot the shape function of this bi-spectrum and look at its equilateral,
flattened and squeezed triangle limits. In section 5 we present our conclusions.

2 Entanglement in the Schrödinger picture

The entangled states we use in this work [3] are best understood within the Schrödinger
picture field theory formalism. Here we think of a wave-functional Ψ [ζ(·), χ(·); τ ] which
gives the probability amplitude for finding the scalar metric perturbation ζ and spectator
χ field configurations on the spatial hypersurface specified by the conformal time τ . Note
that in this formalism, ζ(·), χ(·) are time independent; (·) denotes the slot for the spatial
variables. To compute observables we first solve the Schrödinger equation for Ψ [ζ(·), χ(·); τ ]
and then use this wave-functional to compute expectation values.

2.1 The Gaussian approximation

We recapitulate the discussion in ref. [3] using the continuum momentum space rather than
the box normalized one used previously.

Much as any other non-trivial quantum mechanics problem, we start from the exactly
soluble Gaussian problem of the free theory and then perturb around it. The quadratic action
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for the ζ-χ system is:

S2 =

∫
d4x a(τ)2

{
z
(
ζ ′2 − (∂iζ)2

)
+

1

2

(
χ′2 − (∂iχ)2 − a(τ)2m2

χχ
2
)}

, (2.1)

where a(τ) is the scale factor, z = εM2
Pl, ε is the slow-roll parameter. From this we find the

canonically conjugate momenta and the quadratic Hamiltonian:

Πζ = 2za(τ)2ζ ′, Πχ = a(τ)2χ′, (2.2)

H2 =

∫
d3x

{
Π2
ζ

4za(τ)2
+

Π2
χ

2a(τ)2
+(za(τ)2)(∂iζ)2+

1

2
a(τ)2(∂iχ)2+

1

2
a(τ)4m2

χχ
2

}

=

∫
d3k

(2π)3

{
Π
ζ~k

Π
ζ−~k

4za(τ)2
+

Π
χ~k

Π
χ−~k

2a(τ)2
+(zk2a(τ)2)ζ~kζ−~k+

1

2
a(τ)2(k2+a2(τ)m2

χ)χ~kχ−~k

}
,

(2.3)

where we’ve decomposed the fields into spatial momentum modes in the second equation:

ζ(~x) =

∫
d3k

(2π)3
ζ~ke
−i~k·~x, Πζ(~x) =

∫
d3k

(2π)3
Π
ζ~k
e−i

~k·~x, (2.4)

and likewise for χ, Πχ.
The Gaussian ansatz we use that allows for entanglement between ζ and χ is:

ΨG [ζ, χ; τ ] = N(τ) exp

[
−1

2

(
〈A(τ)ζζ〉+ 〈B(τ)χχ〉+ 〈C(τ) (ζχ+ χζ)〉

)]
, (2.5)

where our notation in general is:

〈Sφ1 . . . φn〉 ≡
∫ ( n∏

i=1

d3ki
(2π)3

)
(2π)3δ(3)

 n∑
j=1

~ki

 S(~k1, . . . ,~kn)φ1(~k1) . . . φn(~kn). (2.6)

Inserting this ansatz into the Schrödinger equation i∂τΨG = H2ΨG, using the following
commutation relations:[

Π
ζ~k
, ζ~q

]
= −i(2π)3δ(3)(~k + ~q),

[
Π
χ~k
, χ~q

]
= −i(2π)3δ(3)(~k + ~q) (2.7)

to identify Π
ζ~k

= −i(2π)3δ/δζ−~k (and likewise for χ) and matching powers of the modes

yields [3]:

iA′k(τ) =

(
A2
k

2za2
+
C2
k

a2

)
− 2za2k2

iB′k(τ) =

(
B2
k

a2
+

C2
k

2za2

)
− a2(k2 + a2m2

χ)

i
C ′k(τ)

Ck(τ)
=

(
Ak

2za2
+
Bk
a2

)
i
N ′(τ)

N(τ)
=
[
(2π)3δ(3)(~q = ~0)

] ∫ d3k

(2π)3

(
Ak

2za2
+
Bk
a2

)
. (2.8)
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We have defined Ak ≡ A(~k,−~k) and likewise for the other kernels. We have also made
use of the fact that rotational invariance dictates that these kernels will only depend on
the magnitude k of ~k. Note the appearance of (2π)3δ(3)(~q = ~0) in the equation for the
normalization factor; this is the comoving volume V of the spatial box we quantize the system
in. We can neglect this by dividing by the normalization factor 〈ΨG|ΨG〉 when calculating
observables.

The equations for the kernels Ak, Bk are Riccatti type equations and can be converted
from a set of non-linear first equations to linear second order ones. Setting

iAk(τ) = α(τ)2
(
f ′k(τ)

fk(τ)
− α′(τ)

α(τ)

)
iBk(τ) = a(τ)2

(
g′k(τ)

gk(τ)
− a′(τ)

a(τ)

)
, (2.9)

with the definition of α2 = 2za2. Doing this converts eqs. (2.8) into

f ′′k (τ) +

(
k2 − α′′

α

)
fk(τ) =

C2
k

α2a2
fk(τ)

g′′k(τ) +

(
ω2
χk −

a′′

a

)
gk(τ) =

C2
k

α2a2
gk(τ)

C ′k(τ)

Ck(τ)
= −

(
f ′k(τ)

fk(τ)
+
g′k(τ)

gk(τ)
− α′(τ)

α(τ)
− a′(τ)

a(τ)

)
, (2.10)

where ω2
χk ≡ k2 + a2m2

χ.
We can solve the equation for the entanglement kernel Ck: Ck(τ) = λk(α(τ)a(τ))/

(fk(τ)gk(τ)). The parameter λk measures the entanglement strength and as shown in ref. [3],
requiring ΨG to be normalizable, implies |λk| < 1/2. We see from eqs. (2.10) that the leading
correction to the modes fk, gk due to entanglement is of order λ2k. The same is true of the
two point functions 〈ζ~kζ−~k〉, 〈χ~kχ−~k〉 calculated from ΨG:

〈ζ~kζ−~k〉 =
BkR

AkRBkR − C2
kR

〈χ~kχ−~k〉 =
AkR

AkRBkR − C2
kR〈(

ζ~kχ−~k + ζ−~kχ~k

)〉
=

2CkR
AkRBkR − C2

kR

. (2.11)

Note that the cross field correlation is linear in λk and vanishes when there is no entanglement.
The entanglement parameter λk is not arbitrary. There are a number of constraints. First,
entanglement contributes to the energy density [3] and as such could in principle destabilize
the inflationary phase completely. Even if inflation does proceed, too large an entanglement
will distort the power spectrum beyond observational bounds. These two constraints imply
that we should take the entanglement to be small enough that we can perform a perturbative
analysis in λk. Within the context of [7], where entanglement is generated as a result of time
dependent kinetic mixing of the two fields, a small λk corresponds to minimal Bogoliubov
mixing of the two field modes. In a more complete analysis of the entanglement generating
scenarios in both [7, 8] the k dependence could be computed explicitly. However this will
require further calculation.
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2.2 Beyond the Gaussian approximation

To compute the three point function in the Schrödinger theory, we need to go beyond the
Gaussian approximation of the previous subsection. The appropriate tool for this task is
Schrödinger perturbation theory.

We take the Hamiltonian to be of the form: H = H2 + µH3, where H3 consists of
terms in the full ζ-χ action that are of cubic order in the fields. The ζ contribution to H3

is that calculated originally in ref. [18] and generalized to Horndeski theories in ref. [19].
There are also terms consisting of one power of ζ and two of χ as in refs. [23, 24]. The
parameter µ serves as the expansion parameter controlling the perturbative approximation.
It can be made more explicit via arguments such as those in ref. [20], but we leave its exact
specification open for now.

Following the ideas in ref. [21], we generalize the Gaussian wave-functional to allow for
a non-trivial three-point function:

Ψ [ζ, χ; τ ] = (1 + µ∆ [ζ, χ; τ ])ΨG [ζ, χ; τ ]

∆ [ζ, χ; τ ] = 〈Z(τ)ζζζ〉+ 〈Y (τ)χχχ〉+
∑
i

(〈Wi(τ)χiζζ〉+ 〈Xi(τ)ζiχχ〉) , (2.12)

where we again use the abbreviated momentum integral notation of eq. (2.6). The sum over
i in ∆ accounts for each of the three momenta matched with a given mode:

∑
i

〈Wi(τ)χiζζ〉 ≡
∫  n∏

j=1

d3kj
(2π)3

 (2π)3δ(3)

 n∑
j=1

~ki

 (
W1(~k1,~k2,~k3; τ)χ~k1ζ~k2ζ~k2

+W2(~k1,~k2,~k3; τ)ζ~k1χ~k2ζ~k3 +W3(~k1,~k2,~k3; τ)ζ~k1ζ~k2χ~k3

)
. (2.13)

The Wi’s are symmetric in the momenta corresponding to the two ζ modes it multiplies and
likewise for Xi and the χ modes. The Z, Y kernels are fully symmetric in their momentum
arguments.

We now fix the various kernels in ∆ using perturbation theory with H3 acting as a per-
turbation on top of the quadratic Hamiltonian H2. The parameter µ serves as the expansion
parameter and we solve the Schrödinger equation order by order in µ:

i∂τΨ = HΨ⇒ i∂τΨG = H2ΨG; (i∂τ∆) ΨG + ∆i∂τΨG = H2(∆ΨG) +H3ΨG. (2.14)

If we use the Schrödinger equation for ΨG we can rewrite that for ∆ as

(i∂τ∆) ΨG = [H2,∆] ΨG +H3ΨG. (2.15)

Using our expressions for ∆ in eq. (2.12) as well as that for the quadratic Hamiltonian, we

– 5 –
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find the following set of equations for the kernels:

i∂τZ
~k1,~k2,~k3 = Z

~k1,~k2,~k3

(
3∑
i=1

Aki
α2

)
+

1

a2

3∑
i=1

W
~k1,~k2,~k3
i Cki + S

ζ~k1
ζ~k2

ζ~k3
Z (2.16)

i∂τY
~k1,~k2,~k3 = Y

~k1,~k2,~k3

3∑
i=1

Bki
a2

+
1

α2

3∑
i=1

X
~k1,~k2,~k3
i Cki + S

χ~k1
χ~k2

χ~k3
Y (2.17)

i∂τW
~k1,~k2,~k3
i = W

~k1,~k2,~k3
i

Bki
a2

+
∑
j 6=i

Akj
α2

+
Z
~k1,~k2,~k3

α2
Cki +

∑
j 6=i,l 6=,i,j

X
~k1,~k2,~k3
j

a2
Ckl+

+ S
χ~ki

ζ~kj
ζ~kl

Wi
(2.18)

i∂τX
~k1,~k2,~k3
i = X

~k1,~k2,~k3
i

Aki
α2

+
∑
j 6=i

Bkj
a2

+
Y
~k1,~k2,~k3

a2
Cki +

∑
j 6=i,l 6=,i,j

W
~k1,~k2,~k3
j

α2
Ckl+

+ S
ζ~ki

χ~kj
χ~kl

Xi
(2.19)

where S
ζ~k1

ζ~k2
ζ~k3

Z ,S
χ~k1

χ~k2
χ~k3

Y ,S
χ~ki

ζ~kj
ζ~kl

Wi
and S

ζ~ki
χ~kj

χ~kl
Xi

are the source terms derived from H3ΨG

that correspond to each given combination of field modes.
There are two cubic Hamiltonians that contribute to the source term H3ΨG. First, the

cubic Hamiltonian for ζ, which can be calculated from the cubic order ζ action [22]:

Sζ
3

3 =

∫
dx(3)dt

[
a3ε(2s+ ε− η)ζζ̇2 + aε(ε+ η)ζ(∂iζ)2 − 2a3ε2ζ̇∂iζ∂

i∂−2ζ̇
]
. (2.20)

Using the conjugate momenta Πζ
k in eq. (2.2), the cubic ζ Hamiltonian is:

Hζ3

3 = −
∫ 3∏

i

d3~ki δ

∑
j

~kj

[ 1

a2ε

ε− η
8

{
ζ1Π

ζ
2Π

ζ
3 + Πζ

2Π
ζ
3ζ1 + permutations.

}
− a2 ε(ε+ η)

3

{
~k2 · ~k3 + p.m.

}
ζ1ζ2ζ3

]
− 1

a2
1

12

{
~k2 · ~k3
k23

[
Πζ

1ζ2Π
ζ
3 + Πζ

3ζ2Π
ζ
1

]
+ permutations

}
(2.21)

where we have symmetrized the mixed conjugate momentum and ζ terms.
The second Hamiltonian does not contribute to the BD bi-spectrum but is relevant here.

It involves interaction terms that are schematically of the form ζχ2 [23, 24]. Their explicit
form is:

Hζχ2

3 = −
∫ 3∏

i

d3~ki δ

∑
j

~kj

[ ε

2a2
1

2
{ζ1Πχ

2Πχ
3 + Πχ

2Πχ
3 ζ1 + permutations}

− εa2

2

1

3

{
~k2 · ~k3 + permutations.

}
ζ1χ2χ3

]
− 1

a2
1

12

{
~k2 · ~k3
k23

[
Πχ

1χ2Π
ζ
3 + Πζ

3χ2Π
χ
1

]
+ permutations

}
. (2.22)
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These will contribute to source terms for the cubic kernels, which in turn will contribute
to the bi-spectrum. These terms can dominate over pure ζ3 terms due to the fact that they
are proportional to the number of scalars present; because of this, and the fact that their
contributions to the bi-spectrum are qualitatively different from the BD ones, we will focus
our attention on these terms in the remainder of this paper.

2.3 The Schrödinger picture approach to calculating the bi-spectrum

In this subsection we introduce the Schrödinger picture approach to calculating the bi-
spectrum. This is a novel use of Schrödinger field theory. It gives the same answer as
the interaction picture calculation [18], but generalizes to states such as the entangled one
used here in a more intuitive way than is possible in the interaction picture.

The entangled three-point function is defined by taking the expectation value of
〈ζ~k1ζ~k2ζ~k3〉 using the entangled cubic state of eq. (2.12):

〈ζ~k1ζ~k2ζ~k3〉 =

∫
D2ζ~q D2χ~q

{
(1 + µ∆∗ [ζ, χ; τ ]) ζ~k1ζ~k2ζ~k3 (1 + µ∆ [ζ, χ; τ ]) |ΨG|2

}
(2.23)

where ∆ [ζ, χ; τ ] is defined in eq. (2.12) and the Gaussian probability density is

|ΨG|2 = exp

[
− d3~q

(2π)3
(
AqR ζ~qζ−~q +BqR χ~qχ−~q + CqR {ζ~qχ−~q + ζ−~qχ~q}

)]
. (2.24)

Performing the functional integrals over the complex fields we get:

〈Ψ|ζ~k1ζ~k2ζ~k3 |Ψ〉 = 12(2π)3δ

(∑
i

~ki

)
1

A1RB1R − C2
1R

1

A2RB2R − C2
2R

1

A3RB3R − C2
3R[

ZRB1RB2RB3R − 8 YRC1RC2RC3R + 4

3∑
l=1

∑
i 6=l

∑
j 6=i,l

XlRCiRCjRBlR

− 2
3∑
l=1

∑
i 6=l

∑
j 6=i,l

WlRBiRBjRClR

]
(2.25)

where we only keep the lowest order term in the expansion parameter µ and R denotes the
real part of the various kernels. Note that 〈ζ~k1ζ~k2ζ~k3〉 has contributions from the spectator

field χ3 term (∝ Y ) and the mixed terms χζ2 (∝ Wi) and ζχ2 (∝ Xi) thanks to the powers
of the entanglement kernel Ck multiplying each of them. If the entanglement vanishes, i.e.
Ck = 0, we recover the standard BD bi-spectrum.

3 The bi-spectrum in the small entanglement strength limit

Solving the equations for the kernels in the cubic wavefunction is generally a difficult under-
taking. On the other hand, the fact that the BD state does give an extraordinarily accurate
description of the CMB power spectrum tells us that the deviations from the BD state should
be small. We make use of this fact to simplify our calculations by perturbing in the entangle-
ment parameter λk and keeping only the lowest non-trivial order result for the expectation
value in eq. (2.25).

– 7 –
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We start by expanding the mode functions found from the quadratic wavefunctional
in terms of λ2k as dictated by the right hand side of the mode equations in eq. (2.10), since
Ck ∝ λk. We thus write

fk = fBD
k (τ)

(
1 + λ2Fk(τ)

)
, gk = gBD

k (τ)
(
1 + λ2Gk(τ)

)
(3.1)

The equations for the cubic kernels can be simplified by making the following change of
variables:

Z =
Z̄

f̃1f̃2f̃3
, Y =

Ȳ

g̃1g̃2g̃3
(3.2)

Wi =
W̄

g̃if̃j f̃l
, Xi =

X̄

f̃ig̃j g̃l
, i, j, l = 1, 2, 3, (3.3)

where f̃k, fk and g̃k, gk mode functions are related to each other by fk = αf̃k where α =
√

2εa
and gk = ag̃k.

Using eqs. (3.2)–(3.3) the equations of motion for the cubic kernels simplify to:

iZ̄ ′ = λ
∑
i

W̄i

g2i
+ f̃1f̃2f̃3

[
S(0)Z + S(2)Z

]
(3.4)

iX̄ ′i = −λ

 Ȳ

g2i
+
∑
i 6=j 6=l

W̄j

f2l

+ f̃ig̃j g̃l

[
S(0)Xi

+ S(2)Xi

]
(3.5)

iȲ ′ = λ
∑
i

X̄i

f2i
+ g̃1g̃2g̃3 S(1)Y (3.6)

iW̄ ′i = −λ

 Z̄

f2i
+
∑
i 6=j 6=l

X̄j

g2l

+ g̃if̃j f̃l S
(1)
Wi
. (3.7)

The superscripts in the source terms indicate the power of λ associated with that source
term (see appendix A for the explicit form). When there is no entanglement, i.e. λ = 0 the
only two kernels that have a source term generated by their respective cubic Hamiltonians
at zeroth order in λk are Z̄ and X̄i, while Ȳ and W̄i will vanish at this order:1

iZ̄ ′BD = f̃1f̃2f̃3

[
S(0)Z

]
(3.8)

iX̄ ′i BD =
∑
i 6=j 6=l

f̃ig̃j g̃l

[
S(0)Xi

]
(3.9)

iȲ ′BD = 0 (3.10)

iW̄ ′i BD = 0 (3.11)

1Note, however, that while the source term for Xi (∝ ζχ2) does not vanish when there is no entanglement,
it will no longer contribute to the 〈ζ3〉 bi-spectrum since it is multiplied by the entanglement parameter Ck

as can be seen in eq. (2.25). In this case it will only contribute to the 〈ζχ2〉 bi-spectrum.
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We can then expand Z̄, Ȳ , W̄i, X̄i in powers of λ:

Z̄(τ) = Z̄BD(τ) + λZ̄(1)(τ) + λ2Z̄(2)(τ) +O(λ3), (3.12)

X̄i(τ) = X̄BD
i + λX̄

(1)
i (τ) + λ2X̄

(2)
i (τ) +O(λ3) (3.13)

Ȳ (τ) = λȲ (1)(τ) + λ2Ȳ (2)(τ) +O(λ3) (3.14)

W̄i(τ) = λW̄
(1)
i (τ) + λ2W̄

(2)
i (τ) +O(λ3), (3.15)

where, without loss of generality, we have set Ȳ BD = 0 and W̄BD
i = 0 to satisfy the relations

above.

Using these expansions in eqs. (3.4)–(3.7) and matching powers of λ yields a series of

equations for the entanglement part of the cubic coefficients (Z̄(1), Z̄(2), X̄
(1)
i . . .). Each order

O(λn) can be found by integrating over the solutions of the previous order:

O(λ0) : iZ̄ ′BD = f̃BD
1 f̃BD

2 f̃BD
3 S

(0)
Z , iX̄ ′BDi = f̃BD

i g̃BD
j g̃BD

l S
(0)
Xi
, (3.16)

O(λ1) : iW̄
(1)′
i = −λ

 Z̄BD

f2BDi
+
∑
i 6=j 6=l

X̄BD
j

g2BDl

+ g̃BD
i f̃BD

j f̃BD
l S

(1)
Wi
, (3.17)

O(λ2) : iZ̄(2)′ = λ2
∑
i

W̄
(1)
i

g2BDi
+ f̃BD

1 f̃BD
2 f̃BD

3

[
λ2

(∑
i

Fi

)
S(0)Z + S(2)Z

]
. (3.18)

Here we have only included the terms that will contribute up to O(λ2) overall in the
bi-spectrum.

Next, we expand the bi-spectrum in eq. (2.25) in orders of the entanglement parameter
λ. The real part of the quadratic coefficients are [3]:

AkR =
1

2|f̃k|2
, BkR =

1

2|g̃k|2
, (3.19)

CkR = Re
(

λ

f̃kg̃k

)
= λ

cos(θkf + θkg)

|f̃k||g̃|
, (3.20)

where each mode function f̃k = |f̃k|eiθkf is expressed in terms of its magnitude and k-
dependent phase θkf . Using these, the bi-spectrum of eq. (2.25) can be rewritten:

〈Ψ|ζ~k1ζ~k2ζ~k3 |Ψ〉 = 12 δ

∑
j

~kj

∏
i

(
1

1− 4λ2 cos2(Θi)

)
8

[
ZR|f̃1|2|f̃2|2|f̃3|2 (3.21)

− 22λ
∑
l

WlR cos(Θl)|f̃i|2|f̃j |2|f̃l||g̃l|+ 24λ2
∑
l

XlR cos(Θl) cos(Θ2)|f̃i||g̃i||f̃j ||g̃j ||f̃l|2

− 26λ3YR cos(Θ1) cos(Θ2) cos(Θ3)|f̃1||g̃1||f̃2||g̃2||f̃3||g̃3|

]

where Θk ≡ θkf + θkg and again, R denotes the real part of each coefficient. Using our
expansion of the mode functions in powers of λk, we can deduce the form of the leading
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correction to the BD bi-spectrum:

〈ζ~k1ζ~k2ζ~k3〉 = 12δ

(∑
i

~ki

)[
ZBD
R |f̃BD

1 |2|f̃BD
2 |2|f̃BD

3 |2 (3.22)

+ λ2

{
ZBD
R

[∑
i

(
2FiR + 4 cos2(θi)

)
+ Z

(2)
R

]
|f̃BD

1 |2|f̃BD
2 |2|f̃BD

3 |2

− 22
∑
i

[
W

(1)
iR cos(θi)|f̃BD

j |2|f̃BD
l |2|f̃BD

i ||g̃BD
i |
]

+ 24
∑
i

[
X

(0)
iR cos(θj) cos(θl)|f̃BD

i |2|f̃BD
j ||g̃BD

j ||f̃BD
l ||g̃BD

l |
]}]

At zeroth order the ZBD kernel reproduces the standard BD bi-spectrum. At quadratic order
in λk, we see contributions coming from the higher order Z(2) term as well as the mixed field
kernels Wi and Xi. As previously mentioned, each scalar field contributes a copy of the Wi

and Xi terms so that in the limit of large numbers of scalars (which do not have to be that
large as we will see below) they will dominate. We will therefore focus on these contributions
for the remainder of the paper.

4 The shape of the entangled bi-spectrum

We are now in a position to compute the ζ 3-point function taken in the entangled state,
turn this into the bi-spectrum, which in its turn can be compared to the data obtained by
the Planck satellite [11].

Using the homogeneity and isotropy of the FRW background, the bi-spectrum can be
expressed as follows,

Bζ(k1,k2,k3) = (2π)3δ(k1 + k2 + k3)
∆2
ζ(k∗)

(k1k2k3)2
S(k1, k2, k3) (4.1)

where ∆2
ζ(k∗) is the dimensionless power spectrum evaluated at the end of inflation, and

S(k1, k2, k3) is the shape function of the bi-spectrum. One final simplification can be used
if the power spectrum is scale invariant (or nearly scale invariant). In this case, the shape
function only depends on ratios of the magnitudes of the momenta:

x2 =
k2
k1
, x3 =

k3
k1
. (4.2)

In practice, when comparing to data, the bi-spectrum of a particular inflationary model
has to be matched to a shape template. From a computational perspective, the easiest shapes
to match to are those that can be factorized into separate functions for each of the momenta.
This requirement can be relaxed at the cost of making the comparison more computational
expensive.

The most standard templates are the equilateral (k1 = k2 = k3), local, which is max-
imized in the squeezed limit (k3 � k2 ≈ k1), and flattened (k1 ≈ k2 + k3) triangle shapes.
Other more complex templates for oscillatory and feature models have also been used in
analyzing the Planck data [11].

– 10 –
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Figure 1. The shape function x22x
2
3SEM(x2, x3) of the entangled bi-spectrum vs. the no-entanglement

BD bi-spectrum shape x22x
2
3S

BD
Z (x2, x3). The lowest curve (green) is the BD shape, the middle curve

(blue) is the entangled shape with one spectator field and the top curve (orange) is the entangled
shape with four spectator fields. The initial time scale is set to x0 = 0.9 which corresponds to a short,
nearly minimal length of entangled inflation. The entanglement strength parameter is set to λ = 0.1.

As a first step, it is useful to look at one or more of the three triangle limits (equilateral,
squeezed and flattened), as a way to ascertain if the bi-spectrum in question exhibits enhance-
ments in any of these. Different enhancements in one or more of these limits can help distin-
guish different models of inflation and indicate which templates might be most effective to use.

In what follows we will start by plotting the entangled shape function and compare it
to the no-entanglement scenario. Then we will look more closely at the equilateral, flattened
and squeezed limits of the entangled bi-spectrum. Generally, non-BD models will produce
enhancements in the flattened limit as well as the squeezed limit [25, 26], and multi-field infla-
tion models are usually characterized by large enhancements in the squeezed limit. Looking
at these limits will therefore give us a first glance on possible distinguishing features between
these models.

In figures 1–2 we show plots of the shape function of the entangled bi-spectrum computed
to O(λ2), and compare it to the no-entanglement BD shape. The shape function coming from
the mixed ζ − χ Hamiltonian is:

SEM(x2, x3, x0) = SBD
Z (x2, x3) + n λ2(SW (x2, x3, x0) + SX(x2, x3, x0)) (4.3)

where SBD
Z is the shape function for the no-entanglement part, the subscript EM denotes

the entangled-mixed contribution to the bi-spectrum composed by the SW and SX , the third
and fourth line of the bi-spectrum in eq. (3.22). Note that these terms are proportional
to the number of spectator scalar fields n. In figure 1 from bottom to top we have the no-
entanglement BD shape (green), the entangled mixed shape for one scalar field (blue) and the
same for 4 spectator fields (orange). For the purpose of comparison between these scenarios
we have plotted all terms proportional to slow roll parameter ε. Increasing the number of
spectator fields can substantially increase the enhancements compared to the standard, no-
entanglement scenario. These plots were done for a fixed value of λ = 0.1. Since both the
number of spectator fields n and the entanglement parameter λ2 multiply the new portion of
the bi-spectrum, these two parameters are partially degenerate when varied over. However,
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(a) x22x
2
3SEM(x2, x3) for x0 = 0.1 (b) x22x

2
3SEM(x2, x3) for x0 = 0.3

Figure 2. The shape function x22x
2
3SEM(x2, x3) of the entangled bi-spectrum with one spectator field

for long entangled inflation. In plot (a) x0 = 0.1 and in plot (b) x0 = 0.3. As the length of entan-
gled inflation increases the shape functions starts exhibiting oscillatory features. The entanglement
strength parameter is set to λ = 0.1.

since λ < 0.5, enhancements that correspond to a larger combined value of nλ2 can indicate
the presence of multiple spectators in this scenario.

The largest enhancement is in the equilateral limit. However the extra terms also
contribute to the squeezed and flattened limits as will be shown in the next subsection. The
finite time integral introduces a new scale k0, which corresponds to the wavenumber that
exits the horizon at the time entanglement turns on: τ0 (i.e. k0 = −1/τ0). The corresponding
dimensionless ratio is x0 ≡ k0/k1. In what follows, x0 = 1 corresponds to the minimal
amount of entangled inflation, such that entanglement begins when the first visible modes
exit the horizon. As x0 decreases the period of entanglement increases, and finally the limit
where x0 → 0, corresponds to eternal inflation. We will see that, as expected, taking x0 → 0
will introduce divergences in the bi-spectrum. In figure 2 we show plots of the entangled
mixed bi-spectrum eq. (4.3) for different initial entangling times: x0 = 0.3, 0.1. As the length
of entangled inflation is extended, the shape of the bi-spectrum starts acquiring oscillatory
features which could help put a bound on x0. Note however, as discussed in [3] entangled
inflation cannot be extended arbitrarily since it would cause divergences in the energy density.

The oscillations in the bispectrum are correlated with the oscillations in power spectrum
since they arise in both cases from terms with sines or cosines of the initial entangling scale
x0. This can be seen in the perturbative expression in λk of the two-point function with a
massless spectator [3]:

〈ζ~kζ−~k〉|τ→0− = 〈ζ~kζ−~k〉BD

[
1 + λ2k

[
4− 2 sin2G

(
− x

x0

)
+ 2 sinG

(
− x

x0

)]]
(4.4)

where G(x) = −2x+ tan−1 x− tan−1 1
x .

4.1 Equilateral, flattened and squeezed limits

In this subsection we look at the three triangle limits described above: equilateral, flattened
and squeezed. The Wi, as well as Z(2), portion of the entangled bi-spectrum have terms
proportional to:

∝ 1

(k2 + k3 − k1)p
(4.5)
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Z ratio in the flattened limit for

multiple spectators.
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Figure 3. The ratio of the entangled mixed bi-spectrum over the no-entanglement BD bi-spectrum
as a function of entanglement time parameter x0 in the flattened limit (figure (a)) and squeezed limit
(figure (b)) for 1 (blue), 5 (orange) and 10 (red) spectator scalar fields. The green line shows the ratio
of one with respect to the BD case.

where p is some power. At first glance it may look as though these terms will diverge in
the flattened and squeezed limits, as k2 + k3 → k1 and k2 ≈ k1, k3 → 0. In practice, such
divergences arise when assuming a non-BD state back to the infinite past τ → −∞; in
other words, if we take the limit of the bi-spectrum integrals to be τ ∈ [−∞, 0]. However,
realistically the entanglement behavior (or any non-BD state effect) cannot be pushed back
to the infinite past, and therefore there should be a cutoff at large momenta where the
entangled state is no longer valid and must be replaced. One way of implementing this is
by setting the bi-spectrum integration limits to τ ∈ [τ0, 0] starting from some finite time τ0
when entanglement begins. This finite integration exactly cancels out the divergences that
would otherwise arise in the flattened and squeezed limits. An example of such a term in the
Wi kernel is:

k22

(
k1k3

(k2 + k3 − k1)2
+

k1 − k3
(k2 + k3 − k1)

)(
1− ei(k2+k3−k1)τ0

)
(4.6)

where this can be seen explicitly; the exponential factor from the finite time integration
regulates this term, allowing the flattened and squeezed limits to be finite. This differs from
other non-BD models [25] and some multifield models which have large enhancements in
flattened and squeezed limits, and may help distinguish between these differing models.

While all the integrals are finite, the extra terms generated by entanglement will induce
enhancements in both the flattened and squeezed limits. In figure 3 we show examples of the
flattened2 (a) and squeezed (b) limit of the ratio of the entangled bi-spectrum shape SEM
and the no-entanglement BD shape function SBD

Z , for all initial entangling scales x0. The
enhancements, compared to the standard scenario, are generally larger for the flattened limit
rather then the squeezed limit for a given number of spectator fields. As mentioned above
largest enhancements, however, are in the equilateral limit as can be seen in figure 4, with the
three triangle limits compered directly in plot (a) and with the equilateral limit for multiple
spectator fields in plot (b).

2In this plot we chose the flattened limit where x2 = x3 → 0.5 as an illustrative example.
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Figure 4. (a) The ratio of the entangled mixed bi-spectrum over the no-entanglement BD bi-spectrum
as a function of entanglement time parameter x0 for the equilateral (blue), flattened (orange) and
squeezed (green) limits. The enhancement with respect to the BD case is largest for the equilateral
limit for most values of x0. (b) The ratio of the entangled mixed bi-spectrum over the no-entanglement
BD bi-spectrum as a function of entanglement time parameter x0 in the equilateral limit for 1 (blue),
5 (orange) and 10 (red) spectator scalar fields. The green line shows the ratio of one with respect to
the BD case.

It is plausible that a full comparison of this entanglement model with current data could
result in tight constraints on the entanglement strength parameter λ and number of spectator
fields n. We reserve a full analysis and comparison with data to future work.

5 Conclusion and discussion

In this work we calculated the bi-spectrum produced by entanglement between the curvature
perturbations and a spectator scalar field during inflation. The bi-spectrum captures the
higher order interactions of a theory and therefore can help further distinguish between
inflationary models.

Using the field theoretic Schrödinger picture to describe the entangled state required the
use of Schrödinger perturbation theory to calculate the corrections to the ζ 3-point function.
We found that terms in the cubic Hamiltonian that involve mixing between the spectator
field χ and ζ were the most interesting ones to focus on, not least due to the fact that the
effect they generate on the three point function can be enhanced by having many scalars
entangle with the curvature perturbation.

We argued that the entangled bi-spectrum shape, computed to first order in λ, differs
from the non-BD model and the local shape non-Gaussianity typical of many multi-field
models. In particular while these shapes differ moderately with respect to the short entan-
gled inflation shape, more complex oscillatory shapes arise as entanglement is extended to
the far past.

To further gain some intuition about the behavior of the entangled bi-spectrum we
also looked at the equilateral, flattened and squeezed limits. In all three cases entanglement
induces enhancements to the signal, with the largest being in the equilateral limit. The
larger the entanglement parameter the larger the over all enhancement. Varying the length
of entangled inflation will also affect the magnitude of these enhancements. For shorter
entangled inflation (x0 ' 0.4) the enhancements, for values of λ that are not visibly excluded
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by angular power spectrum data (λ / 0.1), get no larger then two times the BD bi-spectrum
value in the case with one spectator field. However, for longer entangled inflation, and/or
more spectator fields, the enhancements increase and could be used to exclude long entangled
inflation and put a bound on the allowed number of entangled fields. In a full analysis to
constrain this model, the effect of the tensor to scalar ratio r (and other relevant cosmological
parameters) will also have to be taken into account.

The enhancement and features that appear in the entangled bi-spectrum shape can
serve as a way to distinguish between this model and similar models, in a complementary
way to the use of the angular power spectrum.

We conclude that the bi-spectrum provides an interesting set of new signals that expands
the opportunities to test the initial state entanglement ideas beyond the signatures already
explored in the power spectra [3, 4]. These new signals allow us to further advance the goals
of using inflation as “the most powerful microscope in the Universe” [2] to explore the nature
of the initial state.
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A Source terms at each order in the entanglement

Grouping together for each power of λ the source terms generated by acting the ζ3 and ζχ2

cubic Hamiltonian on the Gaussian entangled state gives:

S(0)Z = −ε− η
4εa2

{A2A3 + p.m.} − a2 ε(ε+ η)

3

(k21 + k22 + k23)

2
(A.1)

− 1

a2
1

6

{
~k2 · ~k3
k23

A1A3 + p.m

}

S(0)Xi
= − ε

2a2
{BjBl} − a2

ε

3

(k21 + k22 + k23)

2
− 1

2a2
1

3

{
~ki · ~kl
k2i

BjAi +
~ki · ~kj
k2i

BlAi

}
(A.2)

S
(1)
Wi

= −ε− η
εa2

{AjCi +AlCi.} −
2

a2
1

3

{
~kl · ~kj
k2j

AjCi +
~kj · ~kl
k2l

AlCi

}
(A.3)

− ε

2a2
{BiCj +BiCl} −

1

2a2
1

3

{
~kl · ~kj
k2j

AjCi +
~kj · ~kl
k2l

AlCi

}
S(2)Z = − ε

2a2
{C2C3 + p.m.} (A.4)

The zeroth order sources S(0)Z and S(0)X don’t have any entanglement kernels Ck, the first

order source S(1)W is proportional to one power of Ck and the second order source S(2)Z has
two powers of Ck.
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