
J
C
A
P
0
7
(
2
0
1
9
)
0
2
7

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

K-essence and kinetic gravity braiding
models in two-field measure theory

R. Cordero,a O.G. Mirandab and M. Serrano-Crivellia

aDepartamento de F́ısica, Escuela Superior de F́ısica y Matemáticas
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1 Introduction

The dark matter and dark energy problem are fundamental issues to be solved in this century.
The discovery of the accelerating expansion of the Universe [1, 2] is one of the most intrigu-
ing and puzzling questions in cosmology today [3–8]. Many proposals have been discussed
in the literature, ranging from physics beyond the Standard Model of elementary particles,
such as supersymmetry, modifications of the gravitational theory (MOND), the cosmological
constant, quintessence field [9–11], brane cosmology scenario [12, 13] and k-essence mod-
els [14–21]. Among the former proposals the cosmological constant is the simplest choice
although it needs a finely tuned value. There are different approaches that try to model the
late-time accelerated expansion of the Universe including modified gravity at large distances
via extra dimensions or including a dark energy component that does not fulfill the strong
energy condition [22] or new proposals, as the case of k-essence theories.

In these kinds of models the scalar field plays an important role in order to describe the
dark energy problem. The scalar fields can reproduce the dynamical effects of the cosmolog-
ical constant at late times and could have a very interesting and adequate behaviour at early
times. Scalar field models with non-canonical kinetic terms have been proposed as an alterna-
tive to describe the dark energy component of the Universe. The k-essence type Lagrangians
were introduced in several contexts, for example, as a possible model for inflation [14, 23].
Later on k-essence models were analyzed as an alternative to describe the characteristics
of dark energy and as a possible mechanism of unifying dark energy and dark matter [24].
Purely kinetic k-essence models [25–28] are, in some sense, as simple as quintessence because
they depend only on a single function F by means of the expression for the density Lagrangian
L = F (X), where the kinetic term is X = −gµν∂µφ∂νφ, gµν is the metric of the spacetime,
and φ is the scalar field. Among these fields generalized galileons [29–32] have been studied
in detail recently. They have the capacity to induce an accelerated expansion of the Uni-
verse when no matter interaction is present an additionally at short distances they possess
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the Vainshtein screening mechanism. These scalar field models are second-order derivative
theories but with the appreciated property that their equations of motions are second order.
A nice example of this kind of models is the so-called kinetic gravity braiding models that
are constructed by means of a Lagrangian that contain a D’Alambertian operator and an
arbitrary function of a non-canonical kinetic terms [33]. The kinetic gravity braiding models
have the characteristic that the energy density contains the Hubble parameter and the pres-
sure depends on the second derivatives of the scalar fields which give rise to very interesting
effects [34–37].

Recently, the Two Field Measure Theory (TMT) has also been proposed as a possible
tool in the search for an explanation to the observations that leads to the dark energy and
dark matter hypothesis [38, 39]. In this theory, a new measure is defined to build an action
that has extra contributions, additional to the usual measure of general relativity (

√
−g).

Different actions have been studied in this context [40–42].
In this work, we study both k-essence and kinetic gravity braiding models that could

lead to rich and interesting results in the framework of the TMT. We will show that any
k-essence model, in the TMT, will lead to dark matter and dark energy in a natural way. On
the other hand, the kinetic gravity braiding models present a richer spectrum of possibilities.
Even in the simplest cases for these models can get either a cosmological constant or stiff
matter [43, 44].

The paper is organized as follows. In section 2 the TMT is presented where its motiva-
tion is enhanced. The next section contains the equations of motion for a general k-essence
model in the context of the TMT. Besides it is shown that any arbitrary k-essence model can
describe a dark matter and dark energy behavior in an unified way. In section 4, we apply
the TMT to kinetic gravity braiding models, starting with a discussion about the imperfect
fluid form of these models and then, we investigate what kind of fluid appears when a TMT
contribution is added. Finally we give our conclusions.

2 The two field measure theory

In order to discuss the k-essence theories in the context of the TMT, we will describe in this
section the main characteristic of the TMT, following closely the discussion given in [45].

We will work in a Friedmann-Robertson-Walker metric

ds2 = gttdt
2 − a2 (t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (2.1)

where k = −1, 0, 1, with the metric signature (+,−,−,−)1 and we will set gtt = 1 in the
following calculations.

First it is important to consider an action that contains two different terms: the usual
metric, gµν , and an additional term with a new measure, Φ, in the same space-time:

S =

∫
L1
√
−gd4x+

∫
L2Φd4x. (2.2)

The new measure can be constructed, for instance, with four scalar fields, ϕa (a = 1, 2, 3, 4),

Φ = εµναβεijkl∂µϕ
i∂νϕ

j∂αϕ
k∂βϕ

l. (2.3)

1The signature in [45] is (−,+,+,+).
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It is assumed that the Lagrangians in these equations are independent from the fields ϕa. It
is also assumed that all fields are independent. Therefore, any relation among the fields will
be a consequence of the equation of motion.

In particular, it can be shown that the variation of the action will lead to the equation
of motion [46]

Aµi ∂µL2 = 0, (2.4)

with
Aµi = εµναβεijkl∂νϕ

j∂αϕ
k∂βϕ

l, (2.5)

and, since we have [46]

det (Aµi ) =
4−4

4!
Φ3 (2.6)

an important restriction can be obtained for Φ 6= 0:

L2 = constant. (2.7)

In this work, we will follow closely the work of Guendelman, et al. [38], where they consider
an action of the form

S =

∫
R

16πG

√
−gd4x+

∫
K (φ,∇µφ)√

−g
Φd4x+

∫
K (φ,∇µφ) d4x,

where

K (φ,∇µφ) = V (φ)
√
−g
√

1 + gµν∇µφ∇νφ (2.8)

is a field of the type of DBI theories. In this case, the restriction given by eq. (2.7) turns out
to be

K√
−g

= V (φ)

√
1 + φ̇2 = M, (2.9)

with M a constant and φ is a function of time, t. With the help of the energy-momentum
tensor

Tµν =
2√
−g

δSm
δgµν

, (2.10)

it is possible to obtain the energy density and pressure of the fluid which are given by

ε =

(
1 +

Φ√
−g

)
V (φ) φ̇√

1 + φ̇2

− V (φ)

√
1 + φ̇2 (2.11)

P = −V (φ)

√
1 + φ̇2,

where we have used the definitions for energy density and pressure [34] (given in section 4):

ε = Tµνu
µuν , P = −1

3
Tµν ⊥µν . (2.12)

By solving the Lagrange equation for the Lagrangian density in eq. (2.8)

− ∂

∂t

V (φ) Φφ̇√
1 + φ̇2

+
V (φ)

√
−gφ̇√

1 + φ̇2

 =
∂V

∂φ

(
Φ

√
1 + φ̇2 +

√
−g
√

1 + φ̇2

)
, (2.13)
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it is possible to find an expression for Φ in terms of φ [38]:

Φ =
C (r, θ)

V 2 −M2
−
√
−g, (2.14)

where C(r, θ) is an integration constant given by

C (r, θ) =
Dr2 sin θ√

1− kr2
, D = constant. (2.15)

Substituting Φ in the energy density and pressure gives

εT = M +
D

Ma3
, (2.16)

PT = −M. (2.17)

The parameter density is

ω =
PT
εT

=
−1

1 + D
M2a3

. (2.18)

The expression for εT has two contributions: a constant term, M , and a dust-like term a−3.
It is shown that the inhomogeneous perturbations correspond to a particle fluid. This is
achieved by computing the covariant derivative of the energy momentum tensor. The four
velocity is defined as

uµ =
∇µφ√
∇αφ∇αφ

. (2.19)

The energy momentum tensor has the perfect fluid form

Tµν = εduµuν +Mgµν , (2.20)

where

εd =

(
1 +

Φ√
−g

)
(∂αφ∂

αφ)V (φ)√
1 + gµν∂µφ∂νφ

. (2.21)

The covariant derivative of the second term in eq. (2.20) is zero due to the presence of the
metric tensor. The covariant derivative of the first term,

∇µ (εdu
µuν) = ∇µ (εdu

µ)uν + εdu
µ∇µuν , (2.22)

is also zero due to the orthogonality property of the vectors uν and uµ∇µuν and the conser-
vation of the current Jµ = εdu

µ.

3 k-essence models and the two field measure theory

Once we have introduced the TMT and the restriction on the new Lagrangian, L2, we turn
our attention to the specific case of k-essence models where we have the function

K (φ, ∂µφ) = G2 (φ,X)
√
−g, (3.1)
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that represents the more general k-essence models [15], with X = ∇αφ∇αφ/2 being the
kinetic term. In this case the restriction on L2 will be given as

G2 (φ,X) = M3, (3.2)

with M3 an arbitrary constant. We can therefore consider the following action in the TMT:

Sm =

∫ [
G2 (φ,X) Φ +G2 (φ,X)

√
−g
]
d4x. (3.3)

If we vary this action with respect to the metric, gµν , and employ the usual expression for
the energy momentum tensor given in eq. (2.10), we obtain

Tµν =

(
1 +

Φ√
−g

)
G2,X ∇µφ∇νφ− gµνG2. (3.4)

Through this paper we are using the abbreviated notation, G,X = dG/dX or G,X = ∂G/∂X.
From this tensor, we can write down the total energy and pressure, that includes the

contribution from TMT, as

εT =

(
1 +

Φ√
−g

)
2XG2,X −G2, (3.5)

PT = −M3. (3.6)

We can find an expression for Φ by using the Lagrange equations. For this purpose we use
the following relations

∂Lm
∂φ

= G2,φ ψ, (3.7)

∂Lm
∂φ̇

= −G2,X φ̇ψ, (3.8)

where ψ = Φ +
√
−g and Lm is given by

Lm = G2 (φ,X) Φ +G2 (φ,X)
√
−g. (3.9)

The Lagrange equations will be then expressed as

√
2X

d

dφ

(
ψG2,X

√
2X
)

= G2,φ ψ. (3.10)

If we use now the restriction (3.2) on G2, we can find a relation between G2,X and G2,φ:

dG2 = G2,φ dφ+G2,X dX, (3.11)

G2,φ = −G2,X
dX

dφ
. (3.12)

If we calculate the differential in the left hand side of equation (3.10)

d
(
ψG2,X

√
2X
)

= G2,X
√

2Xdψ + ψ

(
G2,XX

√
2X +

G2,X√
2X

)
dX, (3.13)
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we can substitute this expression and eq. (3.12) in the eq. (3.10) and find that

dψ

ψ
=

(
− 1

X
− G2,XX

G2,X

)
dX, (3.14)

which can be solve to give

ψ =
C3 (r, θ)

XG2,X
. (3.15)

From this last expression for ψ we obtain Φ

Φ =
C3 (r, θ)

XG2,X
−
√
−g. (3.16)

Finally, by adopting a particular expression for the constant C3 we cancel out the dependence
on the energy density in the spatial variables,

C3 (r, θ) =
D3r

2 sin θ√
1− kr2

, (3.17)

where D3 is a constant. After this last step, the total energy density and the total pressure
will be written as

εT =
D3

a3
−M3, (3.18)

PT = M3. (3.19)

As in the previous section, for this case the inhomogeneous perturbations also correspond to
dust particles. The energy momentum tensor, eq. (3.4), can be expressed as

Tµν = εduµuν −Mgµν , (3.20)

where uµ is given by eq. (2.19) and εd is now

εd =

(
1 +

Φ√
−g

)
(∇αφ∇αφ)G2,X . (3.21)

The expression in eq. (3.20) is exactly the same as eq. (2.20). The only change is in the
expression for εd. Therefore, the covariant derivative of the tensor (3.4) is zero, as it is
expected.

We can see that we have obtained a general result for k-essence theories in the TMT.
In this formulation, we will always obtain a dependence a−3 for the energy density and a
cosmological constant therefore it is possible to model dark energy and dark matter. This
is a general result for any k-essence action and, therefore, it applies for particular k-essence
action as, for example, linear actions

K (φ, ∂µφ) = V (φ) (1 +AX) , (3.22)

where A is a constant and X = 1
2g
µν∂µφ∂νφ; or logarithmic actions

K (φ, ∂φ) = V (φ)
1

b
ln

(
c?Xβ

1− α?Xβ

)
, (3.23)

where α?, c?, b and β are constants.
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4 Kinetic gravity braiding models and the TMT

As we have seen, the TMT ensures that a general k-essence action will be able to model both
dark matter and dark energy. In this section, we pay attention to a different case, where
we consider the kinetic gravity braiding models, and we will show that its behaviour in the
TMT can be more complex.

It is well known that the most general scalar field theories in four dimensions that have
second order (or less) equations of motion are described by the Lagrangian [47]

L =

5∑
i=2

Li, (4.1)

where

L2 = K (φ,X) , (4.2)

L3 = −G3 (φ,X)�φ, (4.3)

L4 = G4 (φ,X)R+G4,X

[
(�φ)2 − (∇µ∇νφ) (∇µ∇νφ)

]
, (4.4)

L5 = G5 (φ,X)Gµν (∇µ∇νφ)− 1

6
G5,X

[
(�φ)3 − 3 (�φ) (4.5)

(∇µ∇νφ) (∇µ∇νφ) + 2 (∇µ∇αφ) (∇α∇βφ)
(
∇β∇µφ

)]
.

Here Gi,X ≡ ∂Gi/∂X, R is the Ricci scalar, and Gµν is the Einstein tensor.
We will consider now the kinetic gravity braiding action L3

K
(
φ,X, φ̈

)
= −G3 (φ,X)�φ

√
−g. (4.6)

In order to have a better understanding of the kinetic gravity braiding case, we will
discuss first the hydrodynamic fluid picture and show how the kinetic gravity braiding results
can be generalized for the TMT case.

4.1 The imperfect fluid in kinetic gravity braiding models and the TMT theory

We can start our discussion by considering first the kinetic gravity braiding action with-
out TMT:

Sφ =

∫
d4x
√
−g � φG (X,φ) , (4.7)

where we can write X and �φ in covariant form, that is, X = ∇µφ∇µφ/2, � φ = ∇µ∇µφ
and the function G is arbitrary.

From the computations in ref. [33], the equation of motion for the field φ is

∇µJµ = Pφ, (4.8)

where

Jµ = (LX − 2Gφ)∇µφ−GX∇µX, (4.9)

Pφ = −∇λφ∇λGφ. (4.10)
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The corresponding energy-momentum tensor, Tµν , is given by

Tµν =
2√
−g

δSφ
δgµν

= LX∇µφ∇νφ− gµνP −∇µG∇νφ−∇νG∇µφ. (4.11)

In ref. [34], that we follow closely in this subsection, the authors rewrite these expressions
using the hydrodynamic fluid picture. Let’s define some useful quantities used to describe
relativistic fluids. We set a local rest frame defining the four-velocity, uµ,

uµ ≡
∇µφ√

2x
, (4.12)

which is normalized, uµu
µ = 1. The four-acceleration is

aµ ≡ u̇µ ≡ uν∇νuµ, (4.13)

where the acceleration is orthogonal to the velocity, uµa
µ = 0, and the dot represents the

material derivative along uλ,

˙( ) =
d

dτ
( ) = uλ∇λ ( ) . (4.14)

The expansion, θ, and the diffusivity, κ, are defined

θ = ∇µuµ, κ = 2XGX . (4.15)

Under these scheme, the current in eq. (4.9) is written as

Jµ =
(
−2φ̇Gφ + κθ

)
uµ − κaµ. (4.16)

When dissipation is modeled, the usual condition that diffusion kµ must satisfy is uµκ
µ = 0,

that is, the diffusion is only spatial [48]. The last term in eq. (4.16) corresponds to the
diffusion, say κµ = −κaµ (note that uµκ

µ = 0 is satisfied through uµa
µ = 0). The equation

of motion, eq. (4.8), takes a nice form if one use the density of charge, n, defined as

n ≡ uµJµ = −2φ̇Gφ + κθ. (4.17)

In the case, the aforementioned equation for φ, eq. (4.8), becomes

ṅ+ θn−∇µ (κaµ) = Pφ. (4.18)

Expressing the energy-momentum tensor requires of the energy density, ε, and the total
isotropic pressure, P,

ε ≡ Tµνu
µuν = −2XGφ + θmκ, (4.19)

P ≡ −1

3
Tµν ⊥µν= −2XGφ − κṁ. (4.20)

The energy-momentum is

Tµν = εuµuν− ⊥µν P + uµqν + uνqµ, (4.21)
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where m =
√

2X = φ̇ is the chemical potential and qµ = −mκaµ is the heat flux that, again,
must be purely spatial (uµq

µ = 0). Finally, the conservation of Tµν leads to

uν∇µTµν = ε̇+ θ (ε+ P)−∇λ
(
mκaλ

)
+mκaλa

λ = 0. (4.22)

Up to this point, the action is such that the only contribution comes from the usual
measure

√
−g d4x. Now we want to include the contribution from TMT:

S =

∫
d4x
√
−g � φG (X,φ) +

∫
d4x Φ � φG (X,φ) . (4.23)

Notice the replacement of
√
−g by Φ in the second integral of this last expression. The new

equation of motion becomes:

∇µ [2Gφ∇µφ−�φGX∇µφ+GX∇µX] (4.24)

+
Φ√
−g
∇µ [2Gφ∇µφ−�φGX∇µφ+GX∇µX]

+
1√
−g
∇µ (G∇µΦ) = ∇λφ∇λGφ +

Φ√
−g
∇λφ∇λGφ

+ �φGX∇λφ
∇λΦ√
−g
− ∇

λΦ√
−g
∇λG.

Making use of the expressions in eqs. (4.9) and (4.10), this equation can be reduced to

∇µ
[(√
−g + Φ

)
Jµ
]

+∇µ (G∇µΦ) = Pφ
(√
−g + Φ

)
+Gφ∇λ∇λΦ. (4.25)

The energy-momentum tensor can be expressed similar to equation (4.21):

Tµν =

[
ε+ ε

Φ√
−g

+
√

2XGuα
∇αΦ√
−g

+G�φ
Φ√
−g
− 2
√

2XGuλ
∇λΦ√
−g

]
uµuν

− ⊥µν
[
P + P Φ√

−g
−
√

2XGuα
∇αΦ√
−g
−G�φ Φ√

−g

]
+

[
qν + qν

Φ√
−g
−
√

2XG ⊥λν
∇λΦ√
−g

]
uµ

+

[
qµ + qµ

Φ√
−g
−
√

2XG ⊥λµ
∇λΦ√
−g

]
uν . (4.26)

From this tensor, the energy density, εT , the pressure, PT and the energy flow, Qν , are:

εT = ε+ ε
Φ√
−g

+
√

2XGuα
∇αΦ√
−g

+G�φ
Φ√
−g
− 2
√

2XGuλ
∇λΦ√
−g

, (4.27)

PT = P + P Φ√
−g
−
√

2XGuα
∇αΦ√
−g
−G�φ Φ√

−g
, (4.28)

Qν = qν + qν
Φ√
−g
−
√

2XG ⊥λν
∇λΦ√
−g

. (4.29)

These expressions contain the energy density, ε, and pressure, P, of the kinetic gravity braid-
ing models (Lagrangian 4.7) given by eqs. (4.19), (4.20), respectively. From the definition of
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Qν , the condition uνQ
ν = 0 is satisfied. The expression for the conservation of the energy-

momentum tensor can be written as eq. (4.22):

uν∇µTµν = ˙εT + θ (εT + PT ) +∇µQµ −Qνaν + uνQ
µ∇µuν = 0. (4.30)

5 Some solutions to the equation of motion in cosmology

In order to describe our Universe, we must take into account the cosmological principle. This
tells us that the field φ is only time-depend. An equivalent form of the equation of motion,
eq. (4.25), is obtained by means of Lagrange equations:

d2

dt2

[
∂L
∂φ̈

]
− d

dt

[
∂L
∂φ̇

]
+
∂L
∂φ

= 0. (5.1)

From this point of view, the equation for φ, not written in a covariant way, is:

Gφ

(
φ̈+ 3Hφ̇

) [√
−g + Φ

]
− d

dt

[(
3Hφ̇2GX − 2Gφφ̇+ 3HG+Gφφ̇

) [√
−g + Φ

]]
(5.2)

+
d

dt

(
G
d

dt

[√
−g + Φ

])
= 0.

Now that we have the equation of motion for the field φ, eq. (4.25), and the expressions
for the energy density and pressure, eqs. (4.27), (4.28), respectively, we want to calculate
an expression for the new measure field, Φ, so that we can find the behaviour of the fluid
represented by the above equations. The approach is to consider special cases for the new
measure Φ and the function G in the kinetic gravity braiding action eq. (4.23) and try to solve
the differential equation (5.1). We will consider the following cases G = cte and G = G(X).
From the definition of four velocity, eq. (2.19), the only non-zero component is:

u0 = φ̇. (5.3)

The expansion coefficient, θ, becomes

θ = ∇0u
0 = ∂0u

0 + Γ0
µ0u

0 = 3H. (5.4)

An isotropic and homogeneous Universe is modeled via a perfect fluid, meaning that the
energy flow Qν vanish for all ν, as can be verified from eq. (4.29). The energy density and
pressure, eqs. (4.27), (4.28), take the structure:

εT = ε

(
1 +

Φ√
−g

)
− φ̇G√
−g

a3 d

dt

[
Ψ

a3

]
+G�φ

Φ√
−g

, (5.5)

PT = P
(

1 +
Φ√
−g

)
− φ̇G√
−g

a3 d

dt

[
Ψ

a3

]
−G�φ Φ√

−g
, (5.6)

where we have computed the covariant derivatives using the fact that Ψ =
√
−g + Φ is a

scalar density of weight one. If we take the equation of motion, eq. (5.2), together with the
restriction (2.7) in the form

G�φ = B, (5.7)
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where B is a constant, we can check the validity of the continuity equation,

˙εT + 3H (εT + PT ) = 0. (5.8)

The next step is to find the form of the new measure, Φ, to give the complete description
of the fluid. We have to solve the system of two equations, the equation of motion and the
restriction, with three unknowns: the new measure contained in Ψ , the scale factor a and
the field φ. So we need an extra equation. When we just have a k-essence action, there is
no appearance of the scale factor, a, or of the Hubble factor, H = ȧ/a, but in the kinetic
gravity braiding action, the presence of H is behind the D’Alembertian operator acting on
φ. We know that the dynamics of the Universe is governed by Friedmann equations so, the
fluid represented by εT and PT must obey:(

ȧ

a

)2

=
8πG

3
εT −

k

a2
, (5.9)

ä

a
= −4πG

3
(εT + PT ) . (5.10)

Here, G is the Newton’s constant and k is the spatial curvature.

5.1 Stiff matter

The equation of motion, eq. (5.2) can be written in the following way

Ψ
Gφ
G
B +

d

dt

[
a3 d

dt

(
GΨ

a3

)
−Ψ

GX
G
φ̇B

]
= 0 (5.11)

with the help of the restriction (5.7). If we set B = 0 the solution of the equation of motion
can be obtained from the simplified relation

d

dt

(
GΨ

a3

)
=
A

a3
, (5.12)

where A is an integration constant. Considering the following form of the restriction

G�φ = G
(
φ̈+ 3Hφ̇

)
= G

1

a3

d

dt

(
a3φ̇
)

= 0,

then its solution can be cast as φ̇ = C/a3 where C is a constant. Taking into account this
solution the expressions for the energy density can also be simplified:

εT = PT = A
φ̇√
−g

, (5.13)

which turns out to be the equation of state for stiff matter [43, 44].
For a complete description of the model, we need to solve the equation for the new

measure Φ, eq. (5.12). However, if we use Friedmann equation, eq. (5.9), we can obtain the
time dependence of the energy density and pressure, eq. (5.13). We consider a flat Universe,
k = 0, (

ȧ

a

)2

= −FAstiff

a6
, (5.14)
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where we set
√
−g = αa3, Astiff = AC/α, F = 8πG/3 and α is a constant. The solution of

the Friedmann equation is

a3

3
=
√
−FAstiff (t− t0) +

a3
0

3
. (5.15)

The energy density and pressure as a functions of time are:

εT = PT = −Astiff

9

[√
−FAstiff (t− t0) +

a3
0

3

]−2

. (5.16)

It is very interesting to note that when A = 0 and, therefore, Ψ = D a3

G (where D is a
constant) there is not any effect of the braided fields in the dynamics of the Universe because
εT = 0.

5.2 Function G is constant

The equation of motion, eq. (5.2), forms a total derivative and can be simplified:

d

dt

[
G
d

dt
Ψ− 3HGΨ

]
= 0,

Ga3 d

dt

Ψ

a3
= A. (5.17)

where A is a real number. Another equation that must fulfill the fields comes from the
restriction of TMT models

G�φ = G
(
φ̈+ 3Hφ̇

)
= G

1

a3

d

dt

(
a3φ̇
)

= B,

where B is a constant. The energy density and pressure can also be simplified:

εT = −A φ̇√
−g

+B
Φ√
−g

, (5.18)

PT = −A φ̇√
−g
−B Φ√

−g
. (5.19)

The terms ε and P coming from the contribution of the kinetic gravity braiding model are
zero, eqs. (4.19), (4.20), because their dependence on the derivatives of G.

Cosmological constant. If we select A = 0 and B 6= 0, we get

εT = −PT = B
Φ√
−g

. (5.20)

From the equation of motion, eq. (5.17), the new measure Φ = Da3 (D is a constant coming
from the integration). In this case, the energy density and pressure are constants εT = −PT =
BD/α. As in the stiff matter case, we can use Friedmann equation for a flat Universe to
obtain the expected exponential expansion of Universe

a

a0
= exp

[√
FACC (t− t0)

]
, (5.21)

where ACC = BD/α.

– 12 –
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In the general case when both, A and B, are non zero we could not obtain analytical
expressions for a, εT ,PT .

It is interesting to note that a general cosmological constant behavior of the Universe
can be obtained if it is chosen the new measure as Φ = −

√
−g and therefore Ψ = 0. The

eq. (5.2) for the field φ is trivially satisfied and the expressions for the energy density and
the pressure are the same as in eq. (5.20).

5.3 Function G depends only on X

The energy density and pressure are represented by eqs. (5.5), (5.6). The contributions of
the kinetic gravity braiding model, eqs. (4.19), (4.20), becomes:

ε = 6Hφ̇XGX , (5.22)

P = −2XGX φ̈. (5.23)

The equation of motion, eq. (5.2), is a total derivative:

d

dt

[
G
d

dt
Ψ−

(
3Hφ̇2GX + 3HG

)
Ψ

]
= 0,

G
d

dt
Ψ−

(
3Hφ̇2GX + 3HG

)
Ψ = A, (5.24)

where A is a constant. The restriction of the model is still necessary:

G
1

a3

d

dt

(
a3φ̇
)

= B, (5.25)

with B a constant. The next step is to try to solve the system together with the Friedmann
equation. A simple case is when A = 0 and G = X in eq. (5.24). The equation of motion
give us a solution for Φ in terms of the scale factor a:

dΨ

dt
= 9HΨ, → Ψ = Ca9,

Φ = Ca9 − αa3. (5.26)

We have used that Ψ = Φ +
√
−g and

√
−g = αa. The energy density and pressure coming

from the kinetic gravity braiding model are:

ε = 6HX
√

2X, P = −2Xφ̈. (5.27)

If one uses these expressions, together with the restriction (5.25), in eqs. (5.5), (5.6) we obtain
the total energy density and pressure:

εT = B
C

α
a6 −B, (5.28)

PT = −3B
C

α
a6 +B. (5.29)

The equation of state parameter is defined by ω = PT /εT . The figure 1 shows the parameter
ω as function of the scale factor a for some particular values of the free parameters. It starts
as a cosmological constant when a = 0 and tends to ω = −3 for large values of the scale
factor. For this case the model has the behavior of phantom dark energy [49–52].
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Ω

Figure 1. Equation of state parameter for the energy density and pressure given by eqs. (5.28), (5.29).
We take C = α = 1 and B = −50

6 Conclusions

The dark energy problem is one of the most intriguing challenges in modern cosmology. The
scalar fields are one of the most usual fields employed to model dark energy. The TMT
model introduces an additional measure which has a very interesting property that unified
in a same description the dark matter and energy for the DBI action. In this paper we have
investigated, in the context of TMT, a general form of purely kinetic k-essence field and we
have shown the same unification.

Furthermore, we studied the properties of the kinetic braiding models in the TMT
framework and found the general expressions for the equations of motion. We shown that
the kinetic gravity braiding models, in the general case, can be described as an imperfect
fluid with corresponding modified expressions for the energy density, the pressure and the
heat flux that reduce to the original kinetic gravity braiding relations when the new measure
is zero.

We have shown that, independent of the kinetic gravity braiding model, by an adequate
selection of the new measure it is possible to obtain the cosmological scenarios that include
stiff matter or a cosmological constant. For the stiff matter case, and by means of a particular
value of the integration constant, there exists a cosmological scenario where the scalar field
does not have any effect in the dynamics of the Universe.

In trying to find the behavior of the fluid represented by kinetic gravity braiding model
in the TMT framework, we split the task in two simple cases depending on the form of G.
The first one, when G is constant, lead us to a cosmological constant scenario even when in
the original kinetic gravity braiding model the energy density and the pressure is zero. It
is very interesting to note that this behavior is the opposite situation with respect to the
stiff matter special case where the effects of the scalar field disappear on the dynamics of the
Universe. The second case, taking G as a linear function of X, gave us expressions of the
energy density and pressure, that for a particular choice of the free parameters, reproduce a
phantom dark energy behavior, a case that can be of interest for neutrino physics [53].

Finally, we have shown that the kinetic gravity braiding models give rise to a variety of
interesting cosmological effects. A general form of the function G opens a window to study
its cosmological consequences in more detail.
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