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Abstract. Solutions have been found for gravity coupled to electromagnetic field and a set of
charged and uncharged perfect fluids for Bianchi Types VI(−1), VIII, IX. It has been assumed
that the anisotropy is “frozen”, γµν = α(t)2mµν , where γµν andmµν are the spatial metric and
some constant matrix respectively. This, according to previous works, results in the existence
of a conformal Killing vector field proportional to the fluid velocity of the comoving matter,
which guarantees the absence of parallax effects and the independence of the temperature
(assuming black body spectrum) from the direction of observation. The electromagnetic field
“absorbs” the “frozen” anisotropy and the remaining equations are dynamically equivalent
with the equations of ΛCDM . There are solutions with flat, negative and positive effective
spatial curvature corresponding to the three FLRW classes. Three equations of state for
the charged perfect fluid were studied: non-relativistic w = 0, relativistic w = 1

3 and dark
energy-like w = −1. For the first two cases, maximum values exist for the scale factor, in
order for the weak energy conditions to be respected, which depend upon the geometric and
charged fluid parameters. A minimum value for the scale factor exists (for the solutions to be
valid) in all the cases and Types, indicating the absence of initial spacetime singularity (big
bang). This minimum value depends upon the geometric and electromagnetic parameters.
The number of essential constants in the final form of each metric is the minimum without
loss of generality due to the use of the constant Automorphism’s group. A known solution,
with the anisotropy absorbed via one free scalar field is reproduced with our method and
contains the minimum possible number of parameters.
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1 Introduction

The most recent data of Planck collaboration [1] indicate spatial homogeneity and isotropy
of the CMB at large-scales. So far, the model used to describe the observations is the
so called ΛCDM with the underlying geometry of an FLRW metric. As it is known, the
characteristic of an FLRW metric is that it is spatially homogeneous and isotropic, thus it
seems the simplest possible candidate to describe the observations. A question arises: does
the observational data of the CMB uniquely fix the spacetime metric?

J. Ehlers, P. Geren and R. K. Sachs have addressed to some extend, in the form of a
theorem known as (EGS), the question of whether isotropy of CMB implies the isotropy of
the spacetime metric [2]. Generalizations of this theorem were presented in [3]. Further work
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in this direction can be found in [4–6]. A set of spacetimes which maintain the homogeneity
but lacks isotropy, come by the name Bianchi Types. The anisotropy of these spacetimes is in
general dynamical, which would cause large-scale anisotropies in CMB far from the observed
values, [7–9]. As it was proven in [10], a spacetime which admits a conformal Killing vector
field proportional to the velocity vector field of the comoving matter, leads to a parallax-free
universe. Furthermore, its existence guarantees that the temperature T of the radiation field
(assuming black body spectrum) will be independent of the direction of observation [11].
Note that, in order for the Bianchi Types to admit such a conformal Killing vector field,
their anisotropy must be “frozen” and not dynamical i.e. γµν = α(t)2mµν , where γµν and
mµν are the spatial metric and some constant matrix respectively.

The next question would concern the nature of the fields capable to “absorb” this
“frozen” anisotropy. In [12] the authors studied the case of Bianchi Type III with the exis-
tence of one free scalar field. They manage to find a possible solution. The distance-redshift
relations and the estimation of the cosmological parameters in this particular model were
studied in [13]. Models which are shear-free but anisotropic were studied in [14–17]. The
investigation of spatial distribution of supernovae in terms of Bianchi models with FLRW
behavior was addressed in [18]. An interesting and extensive work was carried out by Mikjel
Thorsrud in [19] were he used a set of n independent p-form gauge fields in order to “ab-
sorb” the anisotropy. He has proven that the only Bianchi Type whose the anisotropy can
be absorbed by only one free scalar field with positive energy density, is the Locally Rota-
tionally Symmetric (LRS) Bianchi Type III, previously studied in [12]. Finally, cosmological
perturbation theory in anisotropic backgrounds was employed in the following works, [20–24].

The existence of electromagnetic fields in the Bianchi spacetimes have been studied by
many authors though the years. Solutions with large scale magnetic fields have been found
in [25]. In the work [26] the authors have reduced the propagation problem of electromagnetic
waves for the case of Bianchi Type I, to the integration of a second order differential equation.
M.S. Madsen studied the behavior of scalar electrodynamics under symmetry breaking by
the Higgs mechanism in the class of Bianchi Type I spacetime [27]. M. Wollensak has
shown that solutions analogous to plane wave solutions in flat spacetime, must obey two
transversal conditions when there are at least two scale factors [28]. Exact solutions of a
mass-less dilaton field interacting with an electromagnetic field have been found for Bianchi
Types I and III as well as the Kantowski-Sachs, in [29]. The search for singularities in
spaces conformal related to Bianchi Types, under the presence of nonlinear electrodynamics
have been studied in [30]. The author Kei Yamamoto showed, by using dynamical system
analysis, that a family of plane-wave solutions of the Einstein-Maxwell’s equations are the
stable attractor for expanding universes in the case of Bianchi Class B spacetimes [31]. The
quantum analysis of a Bianchi III LRS geometry coupled to a source free electromagnetic field
was presented in [32]. Most recently, some of the solutions found in [33] have the property of
being electromagnetic pp-wave spacetimes and also belong to a special case of a 3D “Bianchi”
Type (i.e. spacetimes which admit a two dimensional group with simply transitive action on
two dimensional surfaces).

This work aims to “absorb” the “frozen” anisotropy by use of electromagnetic field. As
it was proven in [12, 19], the free electromagnetic field cannot succeed. To this end, we will
assume the existence of a charged fluid carrying a four-current density, interacting with the
electromagnetic field. This combination of matter sources, is more likely to have appeared
during the Big Bang nucleosynthesis and the Photon epoch where the temperature of the
universe remained too high in order for neutral atoms to appear. Thus, we consider that this
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choice is somehow physically justified. Furthermore, the group of constants Automorphisms
will be used at the spatial metric. The importance of this lies in the following; once the
Automorphisms are used the metric is cleared of all the non-essential constants (non-essential
in the sense that there is coordinate transformation capable to absorb them). The number
of the remaining essential constants will be the minimum and this is advantageous when
the solutions are compared with observational data, since we can identify exactly which
of the constants possess a specific physical meaning, for instance, the only constant in the
Schwarzschild metric is related to the mass of the compact object. Thus, we achieve the
simplest possible form of the solutions, without loss of generality. As we shall see, solutions
can be found only for the cases of Bianchi Type VI(−1), VIII, IX. We reproduce the solution
of Bianchi Type III in the presence of a free scalar field with our method in order to make
that clear.

The structure of the paper is organized as follows: in section 2 the mathematical pre-
liminaries concerning with the basic equations used and the group of Automorphisms are
presented. The basic assumption for the spacetime to admit a conformal Killing vector field
is introduced in section 3 as well as the application of the group of constant Automorphisms.
In section 4 the reproduction of the solution involving one free scalar field is presented. The
section 5 is dedicated to the “absorption” of the “frozen” anisotropy via electromagnetic field
in interaction with a charged fluid. A discussion of the overall results and things to come
can be found in section 6. Finally, an appendix is also included.

2 Mathematical preliminaries

2.1 Bianchi types

Let us start with the line element of a four dimensional manifold M

ds2
(4) =

(
−N2(t, x) +Ni(t, x)N i(t, x)

)
dt2 + 2Ni(t, x)dxidt+ γij(t, x)dxidxj , (2.1)

where i, j are coordinate indices running from 1 to 3. The 3+1 analysis has been used, where
N(t, x) is the lapse, Ni(t, x) the shift and γij(t, x) the metric of the spatial hypersurfaces
t = constant. Note also that Ni(t, x)N i(t, x) = γij(t, x)Ni(t, x)Nj(t, x) where γij(t, x) the
inverse of γij(t, x). It is well known that there are coordinates (t̃, x̃i), usually called Gaussian
normal coordinates [34], such that the line element (2.1) acquires the form

ds2
(4) = −dt̃2 + γ̃ij(t̃, x̃)dx̃idx̃j , (2.2)

or equivalently Ñ(t̃, x̃) = 1, Ñi(t̃, x̃) = 0. For simplicity, we omit the symbol “tilde” from
the coordinates and the spatial metric, thus

ds2
(4) = −dt2 + γij(t, x)dxidxj . (2.3)

Let us now restrict our attention to spatially (simply) homogeneous spacetimes. Recall that a
spacetime is called spatially (simply) homogeneous when a three dimensional isometry group
G acts simply transitively on the three dimensional hypersurfaces t = constant. When the
action is simply transitive, there exists an invariant basis of one-forms σα satisfying the curl
relations [35, 36]

dσλ = −1

2
Cλαβσ

α ∧ σβ ⇔ ∂iσ
λ
j − ∂jσλi = −Cλαβσαi σ

β
j , (2.4)

– 3 –



J
C
A
P
0
7
(
2
0
1
9
)
0
2
9

such that

Lξασβ = 0, (2.5)

where the Greek indices (α, β, . . .) run from 1 to 3 and count the different triads, Cλαβ are
the structure constants of the Lie algebra of the isometry group and have the property
Cλαβ = −Cλβα, {ξα} is the set of the Killing fields and Lξα the Lie derivative along them.
The corresponding Killing fields for each Bianchi Type can be found in [35, 37]. The line
element (2.3) can then be written in the manifestly homogeneous form

ds2
(4) = −dt2 + γαβ(t)σαi (x)σβj (x)dxidxj , (2.6)

or equivalently

ds2
(4) = −dt2 + γαβ(t)σα(x)σβ(x), (2.7)

where σa(x) = σαi (x)dxi. The case where spatial homogeneity was imposed on the original
line element (2.1) can be found in the appendix A.

2.2 Group of constant automorphisms

The group of coordinate transformations that preserve the hypersurface’s manifest homo-
geneity and, as a side effect, also generate symmetries of the Einstein’s equations are called
“rigid” symmetries [38]. For transformations of the form

t 7→ t̃ = t, (2.8)

xi 7→ x̃i = hi(xl), xi = f i(x̃l), (2.9)

the restrictions on the functions f i, in order for the manifest homogeneity to be preserved,
are summarized as follows

σαi (xl)
∂xi

∂x̃m
= Λαβσ

β
m(x̃l). (2.10)

The relations (2.10) must be regarded as the definition of the matrix Λαβ. A generalization
of this for the case of time dependent matrix Λαβ(t), as well as the implications of the above
equation (2.10) can be found in appendix A. The line element (2.6) can then be written as

ds2
(4) = −dt̃2 + γ̃αβ

(
t̃
)
σαi (x̃l)σβj (x̃l)dx̃idx̃j , (2.11)

with the abbreviation

γ̃αβ(t̃) = γµν(t̃)ΛµαΛνβ. (2.12)

The existence of local solutions to the equations (2.10) is guaranteed by the Frobenious
theorem if the following necessary and sufficient condition holds (for more on this subject
take a look at the appendix A):

ΛαµC
µ
βν = CαµσΛµβΛσν . (2.13)

The solutions of (2.13) form the so called constant Automorphisms group. Given the struc-
ture constants of the group, the matrix Λαµ is determined. The number of the independent,
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non-zero components of Λ provides the dimension of the group. How can someone use the
freedom provided by the matrix Λαβ? As we can see from (2.12), the spatial metric is time-
dependent while the matrix Λαβ is constant. Thus, a direct application of this equation does
not have much to offer, since we will not be able to simplify the spatial metric. However,
one could consider the equation (2.12) as Lie point transformations [39, 40] of the dependent
variable γµν since, as we have already stated, the group of Automorphisms generate symme-
tries of Einstein’s equations. The non-zero elements of Λ will be the parameters of the Lie
symmetry group. This is of great importance since it allows for the reduction of order of the
Einstein’s equations and in most of the cases the entire solution space to be found without
loss of generality. A series of papers aligned in this direction are [41–43]. Another way to
use the group of constant Automorphisms is in the special case that concerns the present
work, where

γµν(t) = a2(t)mµν , (2.14)

with mµν some constant symmetric matrix. Thus, the equivalent of the equation (2.12)
would be

m̃µν = mµνΛµαΛνβ. (2.15)

In that case, the matrix Λµα could be directly used for the simplification of the matrix
mµν and equivalently for the spatial metric without loss of generality. The form (2.14)
is going to be justified in the upcoming sections. Why to use the freedom provided by
Λµα? From a mathematical perspective, the expressions for the equations as well as the
objects involved will be greatly simplified. Furthermore, this is reflected to the fact that the
remaining arbitrary non-zero constants of m̃µν will be essential, or in other words, there will
be no further coordinate transformations that can absorb them. Thus, any possible physical
or geometrical meaning of the solutions, will be attached to these constants (like, e.g. the
integration constant appearing in the Schwarzschild metric, corresponding to the mass of a
point-like source, with proper unit conventions). As we shall see in the forthcoming sections,
the constants will be related to the effective spatial curvature of the spacetime.

2.3 System of equations

Let us write the equations of the system that we are going to study in this paper and
explaining each one of them. Apart from minor differences, we follow the conventions of [34].
We assume coordinates (t, xi), where the Latin characters (i, j, l, . . .) take values from 1 to
3, thus every object will be a function of these coordinates. The system consists of gravity
coupled to a set of fluids. For the purposes of this work, the total energy momentum tensor
Tµν(tot) splits into three parts: a part corresponding to electromagnetically uncharged matter

Tµν(u), a charged one Tµν(c) and the electromagnetic part Tµν(em), where the Greek indices µ, ν run
from 1 to 4.

Einstein’s Field Equations (EFE):

R(3) +K2 −KijK
ij = 2κρ(tot), (2.16)

DiK −DjKi
j = κq

(tot)
i , (2.17)

∂tKij − L ~NKij = NR
(3)
ij −N

(
2Ki

lKlj −KKij

)
−DjDiN − κN

[
π

(tot)
ij +

1

2

(
ρ(tot) − P (tot)

)
γij

]
. (2.18)
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We have used the 3 + 1 analysis and the adapted coordinate system, with the introduction
of the lapse (N) and shift (Ni). The symbol Di is used to denote the covariant derivative
related to the metric γij of the three dimensional hypersurfaces t = constant. The objects

R
(3)
ij , R

(3),Kij ,K, correspond to the Ricci tensor, Ricci scalar, extrinsic curvature, and the
trace of the extrinsic curvature of the hypersurfaces. The Lie derivative along the shift vector
is represented by L ~N and will be used wherever is needed. Note that Kij is expressed in terms
of γij , N and Ni as follows

Kij = − 1

2N
(∂tγij −DjNi −DiNj) . (2.19)

When it comes to the total energy momentum tensor, the fluid decomposition has been

employed along the vector field n =
(

1
N ,−

N i

N

)
normal to the hypersurfaces. The quantities

ρ(tot), P (tot), q
(tot)
i , π

(tot)
ij correspond to the density, isotropic pressure, flux and the traceless

part of the anisotropic pressure tensor. Finally, κ is the coupling constant κ = 8πG
c4

where G
the Newton’s gravitational constant and c the speed of light.

Now we proceed with the conservation of the total energy momentum tensor which will
provide us with the equations of motion for the fluid parts.

Uncharged Matter Field Equations (UMFE):

∇νTµν(u) = 0⇒

∂tρ(u) − L ~Nρ(u) −
(
ρ(u) + P(u)

)
NK −Di

(
Nqi(u)

)
− qi(u)DiN −Nπij(u)Kij = 0, (2.20)

∂tq
(u)
i − L ~Nq

(u)
i −

(
ρ(u) + P (u)

)
DiN −NDiP

(u)

−NKq(u)
i −Dj

(
Nπ

(u)j
i

)
= 0. (2.21)

Charged Matter Field Equations (CMFE):

∇νTµν(c) +∇νTµν(em) = 0⇒

∇νTµν(c) − F
µσJσ = 0⇒

∂tρ(c) − L ~Nρ(c) −
(
ρ(c) + P(c)

)
NK −Di

(
Nqi(c)

)
− qi(c)DiN −Nπij(c)Kij = NEiJi, (2.22)

∂tq
(c)
i − L ~Nq

(c)
i −

(
ρ(c) + P (c)

)
DiN −NDiP

(c)

−NKq(c)
i −Dj

(
Nπ

(c)j
i

)
= −N

(
ρ(e)Ei +BijJ

j
)
,

(2.23)

where ∇µ is the covariant derivative related to the four dimensional spacetime, Fµσ the Fara-
day tensor and Jσ the four-current, which has as time component the charge density ρ(e) and
as spatial component the three-current Ji. We have also use the relation ∇νTµν(em) = −FµσJσ
which holds modulo the Maxwell’s equations. Note that Ei, Bij are the corresponding electric
and magnetic fields, with Bij = −Bji. The definition of Bij is Bij = Fij . When i, j run
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from 1 to 3, there is the correspondence Bij = εijkB
k where εijk is the totally antisymmetric

symbol. Thus, Bκ = 1
2ε
kijBij = 1

2ε
kijFij . The definition of Bij is valid for any dimension

therefore we choose to use this insted of Bκ. The next step are the Maxwell’s equations.

Maxwell’s Field Equations (MFE):

DiE
i = µ0ρ(e),

∂tE
i − L ~NE

i −Dj

(
NBij

)
−NKEi + µ0NJ

i = 0, (2.24)

D[lBij] = 0,

∂tBij − L ~NBij + 2D[i(NEj]) = 0. (2.25)

The only comments here are that the symbol [] stands for total anti-symmetrization of the
indices enclosed and µ0 is the magnetic permeability of vacuum. Finally, due to (MFE) the
conservation of charge follows:

Charge Conservation Field Equations (CCFE):

∇µJµ = 0⇒ ∂tρ(e) − L ~Nρ(e) −NKρ(e) +Di

(
NJ i

)
= 0. (2.26)

2.4 The system of equations for Bianchi Types

We present the equations of the previous section under the assumption of spatial homo-
geneity provided by the existence of a simply transitive group acting on the hypersurfaces
t = constant.

(EFE)

R(3) +K2 −KαβK
αβ = 2κρ(tot), (2.27)

Kα
βCαβλ +Kλ

βCαβα = κq
(tot)
λ , (2.28)

K̇αβ = NR
(3)
αβ −N

(
2Kα

λKλβ −KKαβ

)
−N ε

(
KαλC

λ
εβ +KβλC

λ
εα

)
− κN

(
π

(tot)
αβ +

ρ(tot) − P (tot)

2
γαβ

)
,

(2.29)

where the extrinsic and the Ricci curvature are given by the following expressions

Kαβ = − 1

2N

(
γ̇αβ +NλCελβγεα +NλCελαγεβ

)
, (2.30)

Rµν = −1

2
Cαβµ

(
Cβαν + γβεγαζC

ζ
εν

)
+

1

4
γµαγνβγ

ζτγεθCαζεC
β
τθ

− 1

2
Cβτβγ

τα
(
Cζαµγνζ + Cζανγµζ

)
. (2.31)

(UMFE)

ρ̇(u) −
(
ρ(u) + P(u)

)
NK +Nqµ(u)C

α
µα −Nπ

αµ
(u)Kαµ = 0, (2.32)

q̇(u)
µ +Nβq(u)

α Cαβµ −NKq(u)
µ +N

(
Cαβαπ

(u)β
µ + π(u)β

α Cαβµ

)
= 0. (2.33)
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(CMFE)

ρ̇(c) −
(
ρ(c) + P(c)

)
NK +Nqµ(c)C

α
µα −Nπ

αµ
(c)Kαµ = NEαJα, (2.34)

q̇(c)
µ +Nβq(c)

α Cαβµ −NKq(c)
µ +N

(
Cαβαπ

(c)β
µ + π(c)β

α Cαβµ

)
= −N

(
ρ(e)Eµ +BµαJ

α
)
. (2.35)

(MFE)

CαµαE
µ = −µ0ρ(e),

Ėµ + EβNαCµβα +N

(
BµλCαλα +

1

2
CµλαB

λα

)
−NKEµ + µ0NJ

µ = 0, (2.36)

Bµ[αC
µ
βλ] = 0,

Ḃµν +Nα
(
BµλC

λ
αν +BλνC

λ
αµ

)
−NEλCλµν0. (2.37)

(CCFE)

ρ̇(e) −NKρ(e) −NCαµαJµ = 0. (2.38)

Every quantity of the above equations is only t dependent, thus the (·) denotes derivative
with respect to t. For the electric and magnetic field, as well as the current density, we have
assumed that Ei(t, x) = Eα(t)σαi (x), Bij(t, x) = Bαµ(t)σαi (x)σµj (x) and Ji(t, x) = Jα(t)σαi (x).
The reason why this is an assumption is explained in the appendix D.

3 Primary assumption and use of automorphisms

As we have already pointed out in the introduction, it has been proven that a spacetime
which admits a conformal Killing vector field proportional to the vector field of the comoving
radiation fluid, will be parallax-free and the temperature (assuming black body spectrum)
will not depend on the direction of observation. For the Bianchi Types to admit such a
conformal Killing vector field the following needs to be assumed

γµν = a(t)2mµν , (3.1)

where mµν is a 3×3 constant symmetric matrix. Note that, the indices µ, ν are triad indices
and run through 1 to 3. The inverse is given by

γµν =
1

a(t)2
mµν , such that γλµγµν = δλν ⇒ mλµmµν = δλν . (3.2)

Under this assumption and with the previously justified choices Ni(t, x) = 0, N(t, x) = 1,
the line element of the spacetime becomes

ds2
(4) = −dt2 + α(t)2mµνσ

µ(x)σν(x). (3.3)

With the phrase “frozen” anisotropy we refer to the existence of only one scale factor α(t),
and thus there is coordinate t̃ such that the line element can be written in the “conformal”
time gauge as

ds2
(4) = α̃(t̃)

[
−dt̃2 +mµνσ

µ(x)σν(x)
]
, (3.4)
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The conformal Killing vector field in the original and/or final coordinates is given by

ξ(c) = α(t)n, or, ξ(c) = ã(t̃)ñ (3.5)

where n = ∂t or ñ = 1
α̃(t̃)

∂t̃ is the unit normal to the surfaces t = constant and which in our

analysis corresponds to the comoving vector field. It is easy to verify that for each Bianchi
Type, the following holds

Lξ(c)gIJ = 2α̇(t)gIJ , (3.6)

where gIJ the spacetime metric associated with the line element (3.3), (I, J = 1, 2, 3, 4). The
equations now become

(EFE)

H2 = κ
ρ(tot)

3
− R̃

6

1

a2
, (3.7)

Ḣ +H2 = −κ1

6

(
ρ(tot) + 3P (tot)

)
, (3.8)

q(tot)
µ = 0, (3.9)

π(tot)
µν =

1

κ

(
R̃µν −

1

3
R̃mµν

)
, (3.10)

where the time dependence has been suppressed and H = ȧ
a is the Hubble function. We

provide more details of how these equations came up in the appendix B. Note that R̃µν is
constant and is given by (2.31) where γµν is replaced by mµν , hence R̃ = mµνR̃µν . By the
redefinition R̃ = 6 k (where k is the representative of the spatial curvature in FLRW metric)
the equations (3.7), (3.8) are the same in form as the ones where the underlying geometry is
that of FLRW metric. For this to happen, the total flux of the fluids should be zero, (3.9),
while the anisotropic pressure should be given by (3.10). The “frozen” anisotropy of Bianchi
Types is absorbed, once the equations (3.9), (3.10) are satisfied. Let us also provide the rest
of the equations.

(UMFE)

ρ̇(u) + 3
(
ρ(u) + P(u)

)
H + qµ(u)C

α
µα = 0, (3.11)

q̇(u)
µ + 3q(u)

µ H +
(
Cαβαπ

(u)β
µ + π(u)β

α Cαβµ

)
= 0. (3.12)

(CMFE)

ρ̇(c) + 3
(
ρ(c) + P(c)

)
H + qµ(c)C

α
µα = EαJα, (3.13)

q̇(c)
µ + 3q(c)

µ H +
(
Cαβαπ

(c)β
µ + π(c)β

α Cαβµ

)
= −

(
ρ(e)Eµ +BµαJ

α
)
. (3.14)

(MFE)

CαµαE
µ = −µ0ρ(e),

Ėµ + 3EµH +

(
BµλCαλα +

1

2
CµλαB

λα

)
+ µ0J

µ = 0, (3.15)

Bµ[αC
µ
βλ] = 0,

Ḃµν − EλCλµν = 0. (3.16)
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(CCFE)

ρ̇(e) + 3ρ(e)H − CαµαJµ = 0. (3.17)

Before we proceed in the search of fluids which will “absorb” this “frozen” anisotropy,
let us see how the Automorphisms will prove useful. The equations (3.1) and (2.12) provides
us with the relation

m̃µν = mαβΛαµΛβν , (3.18)

thus we can use the constant Automorphisms in order to simplify as much as possible the
matrix mαβ. This is of great importance, since the remaining components of mαβ will
correspond to essential constants, in the sense that there will be no coordinate transformation
able to absorb them. The number of constants that remained in the metric after the use of
Automorphisms is the minimum. For completeness, we provide in a table the matrices, Λαµ,
mαβ for each one of the Bianchi Types. The structure constants for the Bianchi Types
that we use in this work can be found in [35, 37, 44]. In order to be compatible with our
conventions, an overall minus sign is needed Cαβµ → −Cαβµ. We present only the non-zero
independent structure constants for each Type in the table below, as we have used them in
order to obtain the result.

Note that the constant m1 appearing in the metrics of Types III, VI should be bounded
in the domain (−1, 1). In all the other cases, the constants m1, m2, m3, should be positive in
order for mαβ to be positive definite and the spacetime metric to have a Lorentzian signature.
Also, for the Types VIII, IX the Automorphism matrices are given below.

Λµ(1)α =

cosh(b1) sinh(b1) 0
sinh(b1) cosh(b1) 0

0 0 1

 , Λα(2)β =

cosh(b2) 0 sinh(b2)
0 1 0

sinh(b2) 0 cosh(b2)

 ,

Λβ(3)ν =

1 0 0
0 cos(b3) −sin(b3)
0 sin(b3) cos(b3)

 ,

Λµ(4)α =

cos(b1) −sin(b1) 0
sin(b1) cos(b1) 0

0 0 1

 , Λα(5)β =

cos(b2) 0 −sin(b2)
0 1 0

sin(b2) 0 cos(b2)

 ,

Λβ(6)ν =

1 0 0
0 cos(b3) −sin(b3)
0 sin(b3) cos(b3)

 .

Another way to list the different Bianchi Types, is based on the Behr decomposition in which
the structure constants are decomposed as follows

Ckij = εijlη
lk + al

(
δki δ

l
j − δkj δli

)
, (3.19)

where al, η
lk are given by

ai = −1

2
Cjij , (3.20)

ηmk = C
(k
ij ε

m)ij . (3.21)

– 10 –



J
C
A
P
0
7
(
2
0
1
9
)
0
2
9

Bianchi Type, Structure Constants Automorphism Metric

I

eb1 b2 b3
b4 eb5 b6
b7 b8 eb9

 1 0 0
0 1 0
0 0 1



II, C1
23 = −1

eb5+b6 − b3b4 b1 b2
0 eb5 b3
0 b4 eb6

 1 0 0
0 1 0
0 0 m1



III, C1
13 = −1

eb1 0 b2
0 eb3 b4
0 0 1

  1 m1 0
m1 1 0
0 0 m2



IV, C1
13 = −1, C1

23 = −1, C2
23 = −1

eb1 b2 b3
0 eb1 b4
0 0 1

 1 0 0
0 m1 0
0 0 m2



V, C1
13 = −1, C2

23 = −1

eb1 b2 b3
b4 eb5 b6
0 0 1

 1 0 0
0 1 0
0 0 m1



VI(h), h 6= {0, 1}, C1
13 = −1, C2

23 = −h

eb1 0 b2
0 eb3 b4
0 0 1

  1 m1 0
m1 1 0
0 0 m2



VII(h), h ≥ 0, C1
13 = −h, C2

13 = 1, C1
23 = −1, C2

23 = −h

eb1 −b2 b3b2 eb1 b4
0 0 1

 1 0 0
0 m1 0
0 0 m2



VIII, C1
23 = 1, C2

13 = 1, C3
12 = −1 Λµ(1)αΛα(2)βΛβ(3)ν

m1 0 0
0 m2 0
0 0 m3



IX, C1
23 = −1, C2

13 = 1, C3
12 = −1 Λµ(4)αΛα(5)βΛβ(6)ν

m1 0 0
0 m2 0
0 0 m3


Table 1. This table contains the structure constants, the constant Automorphisms matrices and the
irreducible form of the target space spatial metric for each Bianchi Type.

More information, as well as the expression of the Ricci tensor and scalar of the hypersurfaces
in terms of al, η

lk can be found in [45]. In this way, one can use the form of the Ricci scalar
given in this reference and verify the validity of the results presented in the following table.

The next step is to calculate the Ricci tensor, the Ricci scalar and then the traceless

anisotropic pressure tensor as it is given from (3.10). We provide a table with π
(tot)
αβ and the

Ricci scalar in order to comment about whether the hypersurface has positive, negative or
zero curvature.

The following abbreviations were used, for Type VI: f = (−1 +h)
[
−2 + h(−1 + 3m2

1)
]
;

for Type VIII: f1 = m1 (2m1 +m2 +m3) − (m2 −m3)2, f2 = m2 (2m2 +m1 −m3) −
(m1 +m3)2, f3 = m3 (2m3 +m1 −m2) − (m1 +m2)2; and for Type IX: f4 =
m1 (2m1 −m2 −m3) − (m2 −m3)2, f5 = m2 (2m2 −m1 −m3) − (m1 −m3)2, f6 =
m3 (2m3 −m1 −m2)− (m1 −m2)2.
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Bianchi Type π
(tot)
αβ R̃

I

0 0 0
0 0 0
0 0 0

 0

II 1
κ

 2
3m1

0 0

0 − 1
3m1

0

0 0 −1
3

 − 1
2m1

< 0

III 1
κ

1
3(1−m2

1)

−1+3m2
1

m2

2m1
m2

0
2m1
m2

2
m2

0

0 0 −1

 − 4−3m2
1

2m2(1−m2
1)
< 0

IV 1
κ

1
3m1

 2
m2

−3m1
m2

0

−3m1
m2
−m1
m2

0

0 0 −1

 −1+12m1
2m1m2

< 0

V

0 0 0
0 0 0
0 0 0

 − 6
m1

< 0

VI, h 6= 0, 1 1
κ


(−1+h)(1+2h−3m2

1)
3(1−m2

1)m2

2(−1+h)2m1

3(1−m2
1)m2

0

2(−1+h)2m1

3(1−m2
1)m2

f

3(1−m2
1)m2

0

0 0 −(−1+h)2

3(1−m2
1)

 −4(1+h+h2)−3(1+h)2m2
1

2(1−m2
1)m2

< 0

VII, h ≥ 0 1
κ


2−m1(1+m1)

3m1m2

h(−1+m1)
m2

0
h(−1+m1)

m2

−1+m1(2m1−1)
3m2

0

0 0 − (−1+m1)2

3m1

 −1+m1(−2+12h2+m1)
2m1m2

< 0

VIII 1
κ


f1

3m2m3
0 0

0 f2
3m1m3

0

0 0 f3
3m1m2

 −m1[m1+2(m2+m3)]+(m2−m3)2

2m1m2m3
< 0

IX 1
κ


f4

3m2m3
0 0

0 f5
3m1m3

0

0 0 f6
3m1m2

 −m1[m1−2(m2+m3)]+(m2−m3)2

2m1m2m3

Table 2. The traceless anisotropic pressure tensor and the Ricci scalar R̃ is presented in this table.
Also, due to the value and the sign of R̃, the curvature of the spatial hypersurface is characterized as
positive, negative or zero.

For Type IX we haven’t used an inequality symbol and the reason is that in this Type
all the three cases can be achieved. Specifically,

R̃(IX) =

≥ 0, m2 +m3 − 2
√
m2m3 ≤ m1 ≤ m2 +m3 + 2

√
m2m3,

< 0, otherwise.
(3.22)

It is in the limit of zero anisotropy that the Bianchi Type IX has a positive Ricci scalar. To
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make this clear, let as assume a small perturbation

mi = 1 + ε̃i, i = 1, 2, 3, (3.23)

ε̃i � 1, (3.24)

where 1 is the background value (leading to the closed FLRW). Under this assumption, the
last entry of the table 2 becomes

−m1 [m1 − 2(m2 +m3)] + (m2 −m3)2

2m1m2m3
=

3

2
− 1

2
(ε̃1 + ε̃2 + ε̃3) +O

(
ε̃2
)
. (3.25)

Thus, the background value of the Ricci scalar is positive as it should. The corrections on
the other hand, can assume any value. For more information on this subject, we provide the
following works [46, 47].

The Types I and V correspond to flat and open FLRW spaces respectively, thus will
not concern us further. The closed FLRW is provided from Type IX when m1 = m2 =
m3, therefore this case will not concern us either. These cases will not concern us because
their traceless anisotropic pressure tensor is zero, thus correspond to spatially isotropic and
homogeneous spacetimes (FLRW), while we are interesting in the cases where anisotropy is

present. Now, we study the fields which will “absorb” the anisotropy represented by π
(tot)
αβ .

4 “Absorption” via free scalar field

In this section, there is no electromagnetic field, neither an electrically charged fluid nor four
current, thus the equations (CMFE), (MFE) and (CCFE) are identically satisfied. When
it comes to the uncharged fluid, we assume that it consists of a set of perfect fluids (dust,
radiation, cosmological constant), and one free scalar field. Furthermore, those fluids are
non-interacting. Taking all that into account we may write

ρ(tot) = ρ(d) + ρ(r) + ρ(Λ) + ρ(φ), (4.1)

P (tot) = P (d) + P (r) + P (Λ) + P (φ), (4.2)

q(tot)
µ = q(φ)

µ , (4.3)

π(tot)
µν = π(φ)

µν , (4.4)

where (d) corresponds to dust, (r) to radiation, (Λ) to cosmological constant and (φ) to scalar
field. Thus, the total flux and the traceless anisotropic pressure tensor are equated to those
of the free scalar field. The four dimensional energy momentum tensor and the corresponding
(3 + 1) fluid quantities for the scalar field are given below

Tµν = M

(
∂µφ∂νφ−

1

2
gµν∂σφ∂

σφ

)
, (4.5)

where M is some constant. Note that, the µ, ν are coordinate-basis indices and run from 1
to 4.

ρ(φ) =
M

2

[
(∂tφ)2 + ∂iφ∂

iφ
]
, P (φ) =

M

2

[
(∂tφ)2 − 1

3
∂iφ∂

iφ

]
, (4.6)

q
(φ)
i = M∂tφ∂iφ, (4.7)

π
(φ)
ij = M

(
∂iφ∂jφ−

1

3
γij∂lφ∂

lφ

)
. (4.8)
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The equations (3.9), (4.3), (4.7), combined lead to either ∂tφ = 0 or ∂iφ = 0. If the later
holds, from (4.8) we get zero traceless anisotropic pressure tensor. Thus, the only choice for
our purpose is ∂tφ = 0. Furthermore, the term ∂iφ is necessarily expressed in the Bianchi
basis, ∂iφ(t, x) = φασ

a
i (x), where φα some constant array, satisfying the following condition

φαC
α
βλ = 0. (4.9)

The indices α, β, λ run from 1 to 3. A rigorous proof of this statement can be found in the
appendix C. Taken that into account the fluid quantities become

ρ(φ) =
M

2a2
φαφ

α, P (φ) = − M

6a2
φαφ

α, (4.10)

q(φ)
α = 0, π

(φ)
αβ = M

(
φαφβ −

1

3
mαβφλφ

λ

)
, (4.11)

where φαφ
α = φαm

αβφβ.
By use of the equations of state for the three perfect fluids, and the previously said

about the scalar field, the equations (EFE) and (UMFE) become

(EFE)

H2 =
κ

3

(
ρ(d) + ρ(r) + ρ(Λ)

)
− 1

6

(
R̃− κMφαφ

α
)

a2
, (4.12)

Ḣ +H2 = −κ
6

(
ρ(d) + 2ρ(r) − 2ρ(Λ)

)
, (4.13)

M

(
φαφβ −

1

3
mαβφλφ

λ

)
=

1

κ

(
R̃αβ −

1

3
R̃mαβ

)
. (4.14)

(UMFE)

ρ̇(d) + 3ρ(d)H = 0, (4.15)

ρ̇(r) + 4ρ(r)H = 0, (4.16)

ρ̇(Λ) = 0. (4.17)

The (UMFE) for the scalar field were identically satisfied. Once a solution is given
for (4.14), the equations are identical in the form with those of ΛCDM with an effective

hypersurface curvature given by k(eff) = 1
6

(
R̃− κMφαφ

α
)

. We will not extend further since

already has been found in [12, 19], that the only case for which (4.14) admits a solution and
the field has a positive energy density is Type III. We present the solution by use of our
method, cleared from any non-essential constants and without loss of generality.

ds2
(4) = −dt2 + a(t)2

(
m2dx

2 + e−2xdy2 + dz2
)
, φ = ± z√

κm2M
, (4.18)

H2 =
κ

3

(
ρ

(d)
0

a(t)3
+

ρ
(r)
0

a(t)4
+ ρ

(Λ)
0

)
+

1

2m2a(t)2
, (4.19)

where the well known solutions of the equations (4.15), (4.16) and (4.17) were used

ρ(d) =
ρ

(d)
0

a(t)3
, ρ(r) =

ρ
(r)
0

a(t)4
, ρ(Λ) = ρ

(Λ)
0 , (4.20)
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where ρ
(d)
0 , ρ

(r)
0 , ρ

(Λ)
0 some constants. The constant m1 was equated to zero in order for a

solution to exist. Finally, the effective curvature is k(eff) = − 1
2m2

, which means that it
corresponds to an effectively open universe. The parameter m2 is related to the curvature
of the universe and is the only one related to the geometry. There is also the possibility to
normalize the constant M such that M = 1

κm2
and

φ = ±z. (4.21)

5 “Absorption” via electromagnetic field

In this case, we consider the existence of a charge fluid which interacts with the electromag-
netic field, in addition to the usual non-interacting perfect fluids (dust, radiation, cosmological
constant). The charge fluid will also be considered to be a perfect fluid with an equation of
state P (c) = wρ(c). That having been said, we have

ρ(tot) = ρ(d) + ρ(r) + ρ(Λ) + ρ(c) + ρ(em), (5.1)

P (tot) = P (d) + P (r) + P (Λ) + P (c) + P (em), (5.2)

q(tot)
µ = q(em)

µ , π(tot)
µν = π(em)

µν , (5.3)

In this section, the indices µ, ν, λ are triad indices running from 1 to 3. Alongside
with the assumption that we made in the mathematical preliminaries about the electric and
magnetic fields in Bianchi Types, the fluid quantities for the electromagnetic field are

ρ(em) =
1

2µ0

(
EµE

µ +
1

2
BµνB

µν

)
,

P (em) =
1

6µ0

(
EµE

µ +
1

2
BµνB

µν

)
, (5.4)

q(em)
µ = − 1

µ0
BµνE

ν ,

π(em)
µν =

1

µ0

(
BµλBν

λ − a2

3
BλσB

λσmµν − EµEν +
a2

3
EλE

λmµν

)
. (5.5)

The electromagnetic field has an equation of state of the form P (em) = 1
3ρ

(em). Note
also that the inner products are calculated with γµν . Let us write the equations to be solved.

(EFE)

H2 =
κ

3

(
ρ(d) + ρ(r) + ρ(Λ)

)
− R̃

6

1

a2
+
κ

3

(
ρ(c) + ρ(em)

)
(5.6)

Ḣ +H2 = −κ
6

(
ρ(d) + 2ρ(r) − 2ρ(Λ)

)
− κ

6

[
(1 + 3w) ρ(c) + 2ρ(em)

]
, (5.7)

− 1

µ0
BµνE

ν = 0, (5.8)

1

µ0

(
BµλBν

λ − a2

3
BλσB

λσmµν − EµEν +
a2

3
EλE

λmµν

)
=

1

κ

(
R̃µν −

1

3
R̃mµν

)
. (5.9)

(UMFE)

ρ̇(d) + 3ρ(d)H = 0, ρ̇(r) + 4ρ(r)H = 0, ρ̇(Λ) = 0. (5.10)
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(CMFE)

ρ̇(c) + 3(1 + w)ρ(c)H − EµJµ = 0, ρ(e)Eµ +BµνJ
ν = 0. (5.11)

(MFE)

CαµαE
µ = −µ0ρ(e),

Ėµ + 3EµH +

(
BµλCαλα +

1

2
CµλαB

λα

)
+ µ0J

µ = 0, (5.12)

Bµ[αC
µ
βλ] = 0,

Ḃµν − EλCλµν = 0. (5.13)

(CCFE)

ρ̇(e) + 3ρ(e)H − CαµαJµ = 0. (5.14)

As we can see, the equations (5.6), (5.7) have a contribution from the electromagnetic
field and the charged fluid. It is not obvious as in the case of a free scalar field that those
two components will contribute only to the spatial curvature. In the subsections to follow,
we present the solutions found.

5.1 Type VI(−1) or A3,4 or E(1, 1)

In this section we will present, to some extent, how we have found the solutions, but in the
forthcoming ones only the results will be presented. All the solutions were found with the
Mathematica c© software. Let us start by providing the following objects Eµ, Bµν , Jµ:

Eµ = (E1(t), E2(t), E3(t)) , (5.15)

Bµν =

 0 B1(t) −B2(t)
−B1(t) 0 B3(t)
B2(t) −B3(t) 0

 , (5.16)

Jµ = (J1(t), J2(t), J3(t)) . (5.17)

By use of the structure constants for this Type, we found out the following results:

Ḃµν(t)− Eλ(t)Cλµν = 0⇒
Ḃ1(t) = 0, (5.18)

E1(t)− Ḃ2(t) = 0, (5.19)

E2(t)− Ḃ3(t) = 0. (5.20)

From (5.18) it follows that B1(t) = β. The solutions to the equations (5.8), (5.9) result

E1(t) = 0, E2(t) = 0, B2(t) = 0, B3(t) = 0, (5.21)

E3(t) =

√
−κm2β2 + 2µ0a(t)2

√
κa(t)

, m1 = 0. (5.22)
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Next we write the equations (5.12) as

ρ(e)(t) = 0, (5.23)

J1(t) = 0, (5.24)

J2(t) = 0, (5.25)

J3(t) +
2α̇(t)

√
κ
√
−κm2β2 + 2µ0α(t)2

= 0, (5.26)

the last of which implies J3(t) = − 2α̇(t)
√
κ
√
−κm2β2+2µ0α(t)2

. Altogether we acquire

Eµ =

(
0, 0,

√
−κm2β2 + 2µ0α2(t)√

κα(t)

)
, (5.27)

Bµν =

 0 β 0
−β 0 0
0 0 0

 , (5.28)

Jµ =

(
0, 0,− 2α̇(t)

√
κ
√
−κm2β2 + 2µ0α(t)2

)
. (5.29)

In order to express the line element and the Faraday tensor in the coordinate basis, let us
recall the one-form basis components for this Type [35]

σλi =

e−z 0 0
0 ez 0
0 0 1

 , (5.30)

and find out the expressions for Ei(t, x) = Eα(t)σαi (x), Bij(t, x) = Bαµ(t)σαi (x)σµj (x) and
Ji(t, x) = Jα(t)σαi (x). The Faraday tensor F and the four-current J are then given by
F = −Eidt ∧ dxi + Bijdx

i ∧ dxj , J = −ρ(e)dt + Jidx
i, where j > i, i, j = 1, 2, 3. Note that

xi = (x, y, z). Finally, let us provide the expressions for the line element, the Faraday tensor
and the four current

ds2
(4) = −dt2 + a(t)2

(
e−2zdx2 + e2zdy2 +m2dz

2
)
, (5.31)

F = −
√
−κm2β2 + 2µ0a(t)2

√
κa(t)

dt ∧ dz + βdx ∧ dy, (5.32)

J = − 2ȧ(t)
√
κ
√
−κm2β2 + 2µ0a2(t)

dz, (5.33)

where ∧ stands for the wedge product dt ∧ dz = dt ⊗ dz − dz ⊗ dt. The original parameter
m1 is equal to zero and thus only m2 remains. This metric admits only the three original
Killing vectors fields of the Bianchi Type VI(h).

In order for the four current as well as the Faraday tensor to be real, the scale factor
has to be bounded from below.

−κm2β
2 + 2µ0a

2(t) ≥ 0⇒ a2(t) ≥ κm2β
2

2µ0
. (5.34)
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w ρ(c) H2 k(eff)

0 − 2
κm2a(t)2

+
ρ
(c)
0

a(t)3
κ
3

(
ρ
(d)
0 +ρ

(c)
0

a(t)3
+

ρ
(r)
0

a(t)4
+ ρ

(Λ)
0

)
0

1
3 − 1

κm2a(t)2
+

ρ
(c)
0

a(t)4
κ
3

(
ρ
(d)
0

a(t)3
+

ρ
(r)
0 +ρ

(c)
0

a(t)4
+ ρ

(Λ)
0

)
+ 1

3m2a(t)2
− 1

3m2
< 0

−1 1
κm2a(t)2

+ ρ
(c)
0

κ
3

(
ρ
(d)
0

a(t)3
+

ρ
(r)
0

a(t)4
+ ρ

(Λ)
0 + ρ

(c)
0

)
+ 1

m2a(t)2
− 1
m2

< 0

Table 3. The current density ρ(c), the square of the Hubble function H2 and the effective curvature
k(eff) are presented for three cases of equations of state for the charged fluid: non-relativistic w = 0,

relativistic w = 1
3 and dark energy w = −1.

This minimum value depends on the constant value of the magnetic field β, the parameter
related to the geometry m2, and the two constants of nature involved, κ, µ0.

When it comes to the charged fluid, we have studied three cases of equations of state,
non-relativistic matter (w = 0), relativistic matter (w = 1

3), and dark energy matter (w =
−1). In the table 3, we present the energy density of the charged fluid, the right hand side
of the equation (5.6) and the effective curvature.

The energy density of the electromagnetic field is the same for all the cases, ρ(em) =
1

κm2a(t)2
> 0. For a(t) positive ∀t ∈ R, the term of ρ(c) involving the constant ρ

(c)
0 dominates

at the limit a(t) → 0 for the first two cases. Thus, ρ
(c)
0 has to be positive in order for the

energy density to be positive at that limit. In order to respect the weak energy condition [48]
through the whole evolution of the scale factor, an upper bound has to be imposed for these
two cases.

w = 0→ a(t)2 ≤

(
κm2ρ

(c)
0

2

)2

, w =
1

3
→ a(t)2 ≤ κm2ρ

(c)
0 . (5.35)

Considering the third case, the constant ρ
(c)
0 dominates at a(t)→∞ thus by use of the same

argument as before, ρ
(c)
0 > 0. There is no upper bound in this case. Note also that the

energy density of the charge fluid has a contribution to the usual matter with which it shares

the same equation of state, for instance, when w = 0 ⇒ ρ(c) ∼ ρ
(c)
0

a(t)3
and so on. This is due

to the matter character of the fluid. Except from that, there is a contribution which scales
as ∼ 1

a(t)2
and is related to the term

∫
EiJidt; the interaction of the charged fluid with the

electromagnetic field. For the usual matter, w = 0, w = 1
3 , this term has a negative sign

corresponding to energy losses. On the other hand, when w = −1 the sign is positive; in
some sense the fluid gains energy from the interaction with the electromagnetic field. A more
detailed explanation is given in the Discussion.

5.2 Type VIII or A3,8 or SU(1, 1)

The solutions found in this Type are separated into two cases. The structure of the text
followed is almost identical to the previous Type.
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5.2.1 Case 1, m2 > m1

ds2
(4) = − dt2 + a(t)2

[
m1dx

2 − 2m1sinhy dxdz +
(
m2 −m1sin2 x

)
dy2

− 2m1cosx sinx coshy dydz +
[(
m2 −m1cos2 x

)
cosh2y +m1sinh2y

]
dz2
]
, (5.36)

F = −
√

2m2m1µ0a(t)2 − κ(m2 −m1)A(t)2√
κm2m1a(t)2

[
sinx dt ∧ dy − cosx cosh(y)dt ∧ dz

]
+A(t)

[
− cosx dx ∧ dy + sinx coshy dx ∧ dz − cosx sinhy dy ∧ dz

]
, (5.37)

J = −
2
√
m2m1ȧ(t)

√
κ
√

2m2m1µ0a(t)2 − κ(m2 −m1)A(t)2
[sinx dy + cosx coshy dz] . (5.38)

The function A(t) has to be determined from the following first order differential equation

Ȧ(t) =

√
2m2m1µ0a(t)2 − κ(m2 −m1)A(t)2√

κm2m1a(t)2
. (5.39)

Even though we are not able to find the analytical expression for A(t) in terms of a(t), that
doesn’t affect the “absorption” of the anisotropy neither the expression for H2. This function
appears only in the Faraday tensor and the four current, thus for every solution a(t) of the
resulting ΛCDM equations, a solution of the previous equation will be given, if possible,
analytically. The parameter m3 was given in terms of m1 and m2 as m3 = m2 −m1, hence
the condition m2 > m1. Same as before, there is a bound for the scale factor

a(t)2 ≥ κ(m2 −m1)A(t)2

2m2m1µ0
. (5.40)

Considering the effective ΛCDM equations and the upper bounds for the scale factor of the
first two cases for the equation of state, they have the same form as in Type VI(−1). The only
difference being that the parameter m2 of Type VI(−1) is replaced by the difference m2−m1

of the parameters m2,m1 of Type VIII.

w = 0→ a(t)2 ≤

(
κ(m2 −m1)ρ

(c)
0

2

)2

, w =
1

3
→ a(t)2 ≤ κ(m2 −m1)ρ

(c)
0 . (5.41)

The energy density of the electromagnetic field is ρ(em) = 1
κ(m2−m1)a(t)2

> 0.

5.2.2 Case 2, m3 > m1

ds2
(4) = − dt2 + a(t)2

[
m1dx

2 − 2m1sinhy dxdz +
(
m3 −m1cos2 x

)
dy2

+ 2m1cosx sinx coshy dydz +
[(
m3 −m1sin2 x

)
cosh2y +m1sinh2y

]
dz2
]
, (5.42)

F = −
√

2m3m1µ0a(t)2 − κ(m3 −m1)A(t)2√
κm3m1a(t)2

[
cosx dt ∧ dy − sinx coshy dt ∧ dz

]
+A(t)

[
sinx dx ∧ dy + cosx coshy dx ∧ dz + sinx sinhy dy ∧ dz

]
, (5.43)

J = −
2
√
m3m1ȧ(t)

√
κ
√

2m3m1µ0a(t)2 − κ(m3 −m1)A(t)2
[cosx dy − sinx coshy dz] . (5.44)
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w ρ(c) H2 k(eff)

0 − 2
κ(m2−m1)a(t)2

+
ρ
(c)
0

a(t)3
κ
3

(
ρ
(d)
0 +ρ

(c)
0

a(t)3
+

ρ
(r)
0

a(t)4
+ ρ

(Λ)
0

)
0

1
3 − 1

κ(m2−m1)a(t)2
+

ρ
(c)
0

a(t)4
κ
3

(
ρ
(d)
0

a(t)3
+

ρ
(r)
0 +ρ

(c)
0

a(t)4
+ ρ

(Λ)
0

)
+ 1

3(m2−m1)a(t)2
− 1

3(m2−m1) < 0

−1 1
κ(m2−m1)a(t)2

+ ρ
(c)
0

κ
3

(
ρ
(d)
0

a(t)3
+

ρ
(r)
0

a(t)4
+ ρ

(Λ)
0 + ρ

(c)
0

)
+ 1

(m2−m1)a(t)2
− 1

(m2−m1) < 0

Table 4. The current density ρ(c), the square of the Hubble function H2 and the effective curvature
k(eff) are presented for three cases of equations of state for the charged fluid: non-relativistic w = 0,

relativistic w = 1
3 and dark energy w = −1.

The function A(t) is determined from the same equation as before with m2 replaced by m3.
The parameter m2 was given in terms of m1 and m3 as m2 = m3 −m1, hence the condition
m3 > m1. The maximum values for the scale factor and the effective equations are the same
with the ones of the previous case, where m2 has to be replaced by m3. This metric as well
as the previous one, admits only the original three Killing fields of the Bianchi Type VIII.

5.3 Type IX or A3,9 or SU(2)

Finally, we present the solutions found for Type IX. There are three families in this Type.

5.3.1 Case 1, m2 > m3, m3 = m2 −m4, m4 > 0

ds2
(4) = − dt2 + a(t)2

[
m2dx

2 + 2m2siny dxdz +
(
m2 −m4sin2 x

)
dy2

− 2m4cosx sinx cosy dydz +
[
m2 −m4cos2 x cos2 y

]
dz2
]
, (5.45)

F = −
√
m2 −m4

√
m4µ0a(t)2 − κA(t)2

√
κm2a(t)

[
sinx dt ∧ dy + cosx cosy dt ∧ dz

]
+A(t)

[
− cosx dx ∧ dy + sinx cosy dx ∧ dz + cosx siny dy ∧ dz

]
, (5.46)

J = − m4
√
m2 −m4ȧ(t)

√
κm2

√
m4µ0a(t)2 − κA(t)2

[sinx dy + cosx cosy dz] . (5.47)

The function A(t) has to be determined from the following first order equation differential

equation Ȧ(t) =
√
m2−m4

√
m4µ0a(t)2−κA(t)2√
κm2a(t)

. The parameter m4 was introduced for the sim-

plification of the expressions, while m1 was equal to m2. Same as before, there is a bound
for the scale factor

a(t)2 ≥ κA(t)2

m4µ0
. (5.48)

In the table below, we present the effective equations

The energy density of the electromagnetic field is given by ρ(em) = m4

2κm2
2a(t)2

> 0. Note

that this metric admits only the three original Killing fields. Another important feature is the

– 20 –



J
C
A
P
0
7
(
2
0
1
9
)
0
2
9

w ρ(c) H2 k(eff)

0 − m4

κm2
2a(t)2

+
ρ
(c)
0

a(t)3
κ
3

(
ρ
(d)
0 +ρ

(c)
0

a(t)3
+

ρ
(r)
0

a(t)4
+ ρ

(Λ)
0

)
− m2+m4

4m2
2a(t)2

m2+m4

4m2
2

> 0

1
3 − m4

2κm2
2a(t)2

+
ρ
(c)
0

a(t)4
κ
3

(
ρ
(d)
0

a(t)3
+

ρ
(r)
0 +ρ

(c)
0

a(t)4
+ ρ

(Λ)
0

)
− 3m2+m4

12m2
2a(t)2

3m2+m4

12m2
2

> 0

−1 m4

2κm2
2a(t)2

+ ρ
(c)
0

κ
3

(
ρ
(d)
0

a(t)3
+

ρ
(r)
0

a(t)4
+ ρ

(Λ)
0 + ρ

(c)
0

)
− m2−m4

4m2
2a(t)2

m2−m4

4m2
2

> 0

Table 5. The current density ρ(c), the square of the Hubble function H2 and the effective curvature
k(eff) are presented for the three cases of equations of state for the charged fluid: non-relativistic

w = 0, relativistic w = 1
3 and dark energy w = −1.

non-zero effective curvature when w = 0 and the fact that the effective curvature is always
positive. Nevertheless, the scale factor has to be bounded for the first two cases

w = 0→ a(t)2 ≤

(
κm2

2ρ
(c)
0

m4

)2

, w =
1

3
→ a(t)2 ≤ 2κm2

2ρ
(c)
0

m4
. (5.49)

5.3.2 Case 2, m3 > m2, m2 = m3 −m4, m4 > 0

ds2
(4) = − dt2 + a(t)2

[
m3dx

2 + 2m3siny dxdz +
(
m3 −m4cos2 x

)
dy2

+ 2m4cosx sinx cosy dydz +
[
m3 −m4sin2 x cos2 y

]
dz2
]
, (5.50)

F = −
√
m3 −m4

√
m4µ0a(t)2 − κA(t)2

√
κm3a(t)

[
cosx dt ∧ dy − sinx cosy dt ∧ dz

]
+A(t)

[
sinx dx ∧ dy + cosx cosy dx ∧ dz − sinx siny dy ∧ dz

]
, (5.51)

J = − m4
√
m3 −m4ȧ(t)

√
κm3

√
m4µ0a(t)2 − κA(t)2

[cosx dy − sinx cosy dz] . (5.52)

The function A(t), the boundaries and the effective equations are the same as previously
with the only difference being the replacement of m2 from m3. The original parameter m1

was equal to m3. This metric admits the same Killing fields as the previous one.

5.3.3 Case 3, m3 > m1, m3 = m1 +m4, m4 > 0

ds2
(4) =− dt2 + a(t)2

[
m1dx

2 + 2m1siny dxdz + (m1 +m4)dy2 +
[
m1 +m4cos2 y

]
dz2
]
,

(5.53)

F =−
√
m1

√
m4µ0a(t)2 − κA(t)2

√
κ(m1 +m4)a(t)

[
dt ∧ dx+ siny dt ∧ dz

]
−A(t)cosy dy ∧ dz, (5.54)

J =−
√
m1m4ȧ(t)

√
κ(m1 +m4)

√
m4µ0a(t)2 − κA(t)2

[dx+ siny dz] . (5.55)
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w ρ(c) H2 k(eff)

0 − m4
κ(m1+m4)2a(t)2

+
ρ
(c)
0

a(t)3
κ
3

(
ρ
(d)
0 +ρ

(c)
0

a(t)3
+

ρ
(r)
0

a(t)4
+ ρ

(Λ)
0

)
− m1+2m4

4(m1+m4)2a(t)2
m1+2m4

4(m1+m4)2
> 0

1
3 − m4

2κ(m1+m4)2a(t)2
+

ρ
(c)
0

a(t)4
κ
3

(
ρ
(d)
0

a(t)3
+

ρ
(r)
0 +ρ

(c)
0

a(t)4
+ ρ

(Λ)
0

)
− 3m1+4m4

12(m1+m4)2a(t)2
3m1+4m4

12(m1+m4)2
> 0

−1 m4
2κ(m1+m4)2a(t)2

+ ρ
(c)
0

κ
3

(
ρ
(d)
0

a(t)3
+

ρ
(r)
0

a(t)4
+ ρ

(Λ)
0 + ρ

(c)
0

)
− m1

4(m1+m4)2a(t)2
m1

4(m1+m4)2
> 0

Table 6. The current density ρ(c), the square of the Hubble function H2 and the effective curvature
k(eff) are presented for three cases of equations of state for the charged fluid: non-relativistic w = 0,

relativistic w = 1
3 and dark energy w = −1.

The function A(t) has to be determined from the following equation Ȧ(t) =
√
m1

√
m4µ0a(t)2−κA(t)2√
κ(m1+m4)a(t)

. The parameter m2 was equal to m3. The same bound for the scale

factor holds as before. In the table below, the effective equations are presented.

Finally, the electromagnetic field has energy density ρ(em) = m4
2κ(m1+m4)2a(t)2

> 0. Note

also that this metric admits one more Killing field, ζ = ∂x, which implies that belongs to
the family of Locally Rotationally Symmetric (LRS) sub-class of the Type treated. The
maximum values for the first two cases read

w = 0→ a(t)2 ≤

(
κ(m1 +m4)2ρ

(c)
0

m4

)2

, w =
1

3
→ a(t)2 ≤ 2κ(m1 +m4)2ρ

(c)
0

m4
. (5.56)

6 Discussion

In the present work, we have investigated whether, under specific assumptions, dynamically
effective equations equivalent to those of ΛCDM , could result from Bianchi spacetimes. The
primary assumption is that the spatial metric is a constant matrix mµν (encompassing the
“frozen” anisotropy) multiplied by one time-dependent function a(t)2 (taking the role of the
scale factor in the FLRW models). This implies the existence of a conformal Killing vector
field which is proportional to the comoving velocity vector field. From this follows that
the spacetime is parallax free and the temperature (assuming black body spectrum) of the
comoving radiation fluid does not depend on the direction of observation [10, 11]. The next
step was to search for fields whose energy momentum tensor could be physical and capable
of “absorbing” this anisotropy; thus, effectively only one constraint and the corresponding
dynamical equation for a(t) results. We found that, in order for this to be the case, the flux
of the total matter content should be zero, while the traceless anisotropic pressure tensor
should be a function of the spatial Ricci tensor and the corresponding Ricci scalar.

An important tool in our analysis is the group of constant Automorphisms, used to
transform the matrix mµν in an irreducible form, i.e. containing only the essential constants
characterizing the space in question. We present for each Type the Automorphism matrix
Λµν and the corresponding matrix mµν : Bianchi Type I has no essential constant left, Types
II, V have one, the Types VIII, IX have three, while the rest of them (III, IV, VI(h), VII(h))
have two. The maximum number of essential constants belongs to Types VIII, IX so, in
some sense, these are the most general geometries in the set. The final form of the metric
is the simplest possible without loss of generality. We believe that this could prove to be
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helpful when the solutions are compared with observations, since the remaining constants are
essential and thus are related to quantities which are physically interesting. For instance, in
the case of Type VI(−1) the only remaining constant m2 is related to the effective curvature
keff . On the contrary, if we had not use the group of Automorphisms, there would be non-
essential constants present and would be difficult to isolate the constants with the physical
meaning.

By assuming the existence of one free scalar field we reproduce the only already known
solution. Our form of the solution has only one essential constant and we claim that this is
the most general one that can be found. This parameter appears in the effective curvature
k(eff) = − 1

2m2
and since m2 is strictly positive (in order for the spacetime metric to have

Lorentz signature) k(eff) < 0.

We next try to “absorb” the anisotropy via an electromagnetic field. This can be seen
not to work for a free electromagnetic field; thus we also assume the existence of a charged
fluid interacting with it. A secondary assumption is that the charged fluid has the form
of a perfect fluid with equation of state P (c) = wρ(c). Hence, the total flux and traceless
anisotropic pressure tensor has to be equated with those of the electromagnetic field. Three
cases are investigated, non-relativistic (w = 0), relativistic (w = 1

3) and dark energy-like
(w = −1) fluid. The only solutions found belong to the Types VI(−1), VIII, IX.

In relation to the case of Type VI(−1): from the two original geometric parameters only
one is left. In order for the solution to be valid, the scale factor a(t)2 should be bounded from
below. This bound depends on the remaining geometric parameter, the constant magnetic
field of the solution and the two constants of nature involved. This indicates a universe
with no initial singularity (big bang). The effective curvature is zero when w = 0; it is
thus dynamically equivalent to a flat FLRW. The other two cases are equivalent to an open
one, k(eff) < 0. In both cases the effective curvature contains the geometric parameter.

Furthermore, in the cases w = 0, w = 1
3 , in order for the energy density of the charge fluid

to be positive, there has to be an upper bound for the scale factor, different in each case.
This bound depends on the κ and some constant related to the energy density of the charged
fluid. The solution admits only the three Killing fields related to the slice’s homogeneity.

For the Type VIII, two cases came up: from the three original parameters only two
are left in each case. A first order differential equation for some function A(t) is left to be
solved in order for the explicit form of the Faraday tensor and the four current to be given.
This however does not affect the whole analysis neither the “absorption” of the anisotropy.
This function is linked to the magnetic field. There is again a lower bound which depends on
the two geometric parameters, the function A(t) and the two constants κ, µ0. Once more,
for w = 0 an equivalent flat FLRW came up, while the other two cases correspond to open
FLRW. In the effective curvature of the open spaces, only the difference of the two geometric
parameters appears. An upper boundary for the scale factor exists as well, when w = 0 and
w = 1

3 (again for the weak energy condition to be satisfied). The Killing fields of the resulting
metric are the three of the Bianchi Type.

Finally, in Type IX there are three cases: in each case two geometric parameters are
left. As in Type VIII, there is a function to be determined. There is a lower bound as in
the two previous Types. For each case and type of fluid, the effective curvature is positive,
thus corresponds to closed FLRW. In accordance with the previous results there are upper
bounds for the scale factor when we consider non-relativistic and relativistic charged fluid.
In the third case, an additional Killing field exists with the resulting metric belonging to the
Locally Rotationally Symmetric (LRS) sub-class of the treated model.
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We have found all the classes of (effective) FLRW spacetimes, closed, open and flat.
However, this came at a cost, namely the existence of upper bounds for the scale factor.
Should the corresponding solutions be considered as non physical? If the charge energy
density was strictly negative, then the answer would certainly be yes. In the cases at hand
the dependence of the ρ(c) on the scale factor is such that, although initially positive, when
a(t) crosses the given bounds the energy density becomes negative. The explanation for this
occurrence can be linked to the balance between the matter character of the fluid which scales
as 1

a(t)3
or 1

a(t)4
(depending on whether we consider non-relativistic or relativistic charged

fluid), and the charge character which scales as − 1
a(t)2

and is related to the term
∫
EiJi dt.

The problem of negative energy density is localized in the combination of the negative sign
and the power of the scaling of the term

∫
EiJi dt. The minus sign can be understood as

energy losses due to the interaction with the electromagnetic field. To make this clear, let us
consider the case of w = 0 for Type VI(−1) and at the same time assume that the scale factor
lies within the acceptable bounds for a specific value of time a(t) = a(t0): for the uncharged
fluid the energy density would be

ρ(d) =
ρ0

a(t0)3
, (6.1)

while for the charged fluid with the same equation of state would be

ρ(c) =
ρ0

a(t0)3
− 2

κm2a(t0)2
, (6.2)

where we have considered the case in which the two fluids have equal original energy densities
ρ0. It is rather obvious that ρ(c) < ρ(d) thus some portion of energy has been spend on the
interaction. The power of the scaling for the term

∫
EiJi dt is related to the “absorption”

of the anisotropy and that is why is the same in all the types of equation of state. To
conclude this paragraph, for the weak energy condition to be fulfilled, these solutions should
be considered physical only for specific time (and thus scale factor) interval.

A charged fluid which shares the same equation of state with a dark energy fluid has
been considered as well. In contrast to the previous cases, there is no negative energy density
problem, and that is due to the positive sign of the term 1

a(t)2
. Thus, the charged fluid with

this equation of state seems to gain energy from the interaction with the electromagnetic field.
The shortcoming of this case is that there is no solution with exactly zero effective curvature,
although there are parameters left which may be fine tuned in order for the effective curvature
to be considered as almost zero.

Let us also point out another fact: the Type VI(−1) is considered, where the first
Friedmann equation and the charged energy density for the case of dark energy-like fluid reads

H2 =
κ

3

(
ρ

(d)
0

a(t)3
+

ρ
(r)
0

a(t)4
+ ρ

(Λ)
0 + ρ

(c)
0

)
+

1

m2a(t)2
, (6.3)

ρ(c) =
1

κm2a(t)2
+ ρ

(c)
0 . (6.4)

The ability exists to ignore the uncharged cosmological constant fluid and identify as ρ
(Λ)
0

the ρ
(c)
0 ; the equations would be once more dynamically equivalent to those of ΛCDM with
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open FRLW underlying geometry.

H2 =
κ

3

(
ρ

(d)
0

a(t)3
+

ρ
(r)
0

a(t)4
+ ρ

(Λ)
0

)
+

1

m2a(t)2
, (6.5)

ρ(c) =
1

κm2a(t)2
+ ρ

(Λ)
0 . (6.6)

Thus, for a(t) → 0 the charged energy density scales as 1
κm2a(t)2

, in other words like the

effective curvature, while for a(t) → ∞ behaves like the energy density of the cosmological
constant fluid. Therefore, the possibility for the observed dark energy fluid to be charged
should be considered.

Let us now look at the form of the norm of charged current density J i, in the case of
Type VI(−1) where the explicit form is given.

|J | =

√
4

κm2 (−κm2β2 + 2µ0a(t)2)
H(t). (6.7)

Away from the lower bound

|J | ∼ 1

a(t)
H(t). (6.8)

If for instance, we study the radiation dominated era, H2 ∼ 1
a(t)4

⇒ |J | ∼ 1
a(t)3

thus it scales

like non-relativistic matter fluid. Hence, imprints of this current density may be found in the
CMB, but we need to be more thorough-full with this thought in some future work.

At the mathematical level we consider that this paper points to a negative answer to
the question raised in the introduction “Does the observational data of the CMB uniquely
fix the spacetime metric?”, with every restriction that we discussed above.

Finally, let us point out some further ideas for future work.

1. We can search for coordinate transformations that will transform the metrics into a
more convenient form in order to estimate all the parameters of the models found. The
next step would be to compare the results with the well known ΛCDM where the
underlying geometry is the flat FLRW and find out what is the level of agreement, if
any, with the observational data.

2. Perturbations upon the solutions found would also be of interest.

3. It would be interesting to search for other spacetimes where this process of positive to
negative energy densities takes place.

A Automorphisms

A.1 Time dependent automorphisms

In [49, 50] a group of coordinate transformations was derived that preserves the line ele-
ment’s manifest homogeneity and, as a side effect, generate symmetries of the corresponding
Einstein’s field equations. We briefly recall the idea:

Let us start with the most general form of a line element which admits a three di-
mensional isometry group G acting simply transitively on the hypersurfaces t = constant;
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the corresponding Killing fields to be applied on the metric are the trivial prolongations
ξµ = 0∂t + ξiµ∂i. As we have argued in section (2.1), there exist and invariant basis of
one-forms σα, such that (in a 3+1 decomposition) the metric assumes the form

ds2
(4) =

[
−N(t)2 +Nµ(t)Nµ(t)

]
dt2 + 2Nµ(t)σµi (x)dt dxi + γµν(t)σµi (x)σνj (x)dxi dxj , (A.1)

where (µ, ν, ..) are triad indices while (i, j, . . .) coordinate basis indices. All of them run from
1 to 3. One can still search for Gaussian normal coordinates, the existence of which was used
in section 2.1, in order to arrive at (2.3); then the question would arise as to whether the
transformation needed would preserve the manifest spatial homogeneity of (A.1) or not. As
we shall see, the answer is positive.

Now, let us perform the following coordinate transformations

t 7→ t̃ = t, (A.2)

xi 7→ x̃i = hi(t, xl), xi = f i(t̃, x̃l), (A.3)

which, after some mathematical manipulations, results in the new form of the initial line
element

ds2
(4) =

{[
−N(t̃)2 +Nµ(t̃)Nµ(t̃)

]
+ 2Nµ(t̃)σµi (f)

∂f i

∂t̃
+ γµν(t̃)σµi (f)

∂f i

∂t̃
σνj (f)

∂f j

∂t̃

}
dt̃2

+ 2

[
Nµ(t̃)σµi (f)

∂f i

∂x̃m
+ γµν(t̃)σµi (f)

∂f i

∂t̃
σνj (f)

∂f j

∂x̃m

]
dt̃dx̃m

+ γµν(t̃)σµi (f)
∂f i

∂x̃m
σνj (f)

∂f i

∂x̃n
dx̃mdx̃n, (A.4)

which by introducing the abbreviations

σµi (f)
∂f i

∂t̃
= Pµ(t̃, x̃), (A.5)

σµi (f)
∂f i

∂x̃m
= Λµm(t̃, x̃), (A.6)

becomes

ds2
(4) =

{ [
−N(t̃)2 +Nµ(t̃)Nµ(t̃)

]
+ 2Nµ(t̃)Pµ(t̃, x̃) + γµν(t̃)Pµ(t̃, x̃)P ν(t̃, x̃)

}
dt̃2

+ 2
[
Nµ(t̃)Λµm(t̃, x̃) + γµν(t̃)Pµ(t̃, x̃)Λνm(t̃, x̃)

]
dt̃dx̃m

+ γµν(t̃)Λµm(t̃, x̃)Λνn(t̃, x̃)dx̃mdx̃n. (A.7)

Of course, (A.7) admits the same symmetry group as (A.1). At this point, we introduce the
main requirement that we seek transformations which preserve the manifest spatial homo-
geneity. This means that the matrix Λµν and the triplet Pµ should satisfy the equations

Λµm(t̃, x̃) = Λµν(t̃)σνm(x̃), (A.8)

Pµ(t̃, x̃) = Pµ(t̃). (A.9)

The restriction (A.8) simply states that we introduce the old basis of one-forms evaluated in
the new coordinate system. The equations (A.5), (A.6) become

σµi (f)
∂f i

∂t̃
= Pµ(t̃), (A.10)

σµi (f)
∂f i

∂x̃m
= Λµν(t̃)σνm(x̃), (A.11)
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while the line element (A.7) after some mathematical manipulations acquires the form,

ds2
(4) =

[
−Ñ(t̃) + Ñµ(t̃)Ñµ(t̃)

]
dt̃2 + 2Ñµ(t̃)σµm(x̃)dt̃dx̃m + γ̃µν(t̃)σµm(x̃)σνn(x̃)dx̃mdx̃n

(A.12)

The following abbreviations were used

γ̃αβ(t̃) = γµν(t̃)Λµα(t̃)Λνβ(t̃), (A.13)

Ñα(t̃) =
(
Nµ(t̃) + γµν(t̃)P ν(t̃)

)
Λµα(t̃), (A.14)

Ñ
(
t̃
)

=N
(
t̃
)
. (A.15)

Since the system of (A.10), (A.11) comprises twelve, first order, highly non-linear partial
differential equations in terms of f i, it is not at all clear whether solutions will exist or
not for some Λµα(t̃), P ν(t̃). Let us rewrite (A.10), (A.11), multiplying by σiµ(f)(the inverse
of σµi (f))

∂f i

∂t̃
= σiµ(f)Pµ(t̃), (A.16)

∂f i

∂x̃m
= σiµ(f)Λµν(t̃)σνm(x̃). (A.17)

The existence of local solutions to the equations (A.16), (A.17) is guaranteed by the Frobe-
nious theorem if the following necessary and sufficient conditions hold:

∂2f i

∂x̃m∂t̃
− ∂2f i

∂t̃∂x̃m
= 0, (A.18)

∂2f i

∂x̃m∂x̃n
− ∂2f i

∂x̃n∂x̃m
= 0, (A.19)

which after manipulations and use of previous relations result in the following restrictions on
Λµν , Pµ

Λαµ
(
t̃
)
Cµβν = CαµσΛµβ

(
t̃
)

Λσν
(
t̃
)
, (A.20)

Λ̇αβ
(
t̃
)

= Λµβ
(
t̃
)
CαµνP

ν
(
t̃
)
, (A.21)

where Cµνσ the structure constants of the isometry group. The solutions to the above inte-
grability conditions form the group of time dependent Automporphisms. In every Bianchi
Type, they contain three arbitrary functions of time and some constants of the “rigid” Auto-
morphisms group(remaining gauge symmetry). This can be seen by noting that P ν(t̃) = 0,
Λαβ(t̃) = Λαβ always consist a solution. The three arbitrary functions are distributed both in
P ν(t̃) and Λαβ(t̃), thus one can always use them to arrive at a zero shift Ñµ(t̃) through (A.14).
Therefore, we manage to find Gaussian normal coordinates and at the same time maintain
the manifest spatial homogeneity.

A.2 Λµν for Bianchi Type III

Let us start with some general constant matrix Λµν

Λµν =

a1 a2 a3

a4 a5 a6

a7 a8 a9

 . (A.22)
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By use of the structure constants for the Bianchi Type III, C1
13 = −C1

31 = −1, the set of
independent equations (2.13) becomes

a4 = 0, (A.23)

a7 = 0, (A.24)

a2a7 − a1a8 = 0, (A.25)

a1 + a3a7 − a1a9 = 0, (A.26)

a3a8 − a2a9 = 0. (A.27)

By using (A.23), (A.24) in the rest of the equations we acquire

a1a8 = 0, (A.28)

a1 − a1a9 = 0, (A.29)

a3a8 − a2a9 = 0. (A.30)

There are four sets of possible solutions to the equations (A.28), (A.29), (A.30):

s1 =

{
a1 = 0, a3 =

a2a9

a8

}
, (A.31)

s2 = {a1 = 0, a8 = 0, a2 = 0} , (A.32)

s3 = {a1 = 0, a8 = 0, a9 = 0} , (A.33)

s4 = {a8 = 0, a9 = 1, a2 = 0} . (A.34)

From those sets, only the last set, (A.34), gives rise to a matrix Λαβ with non-zero determinant

Λαβ =

a1 0 a3

0 a5 a6

0 0 1

 . (A.35)

Finally, we may use parameters bi, (i = 1, 2, 3, 4) with a1 = eb1 , a3 = b2, a5 = eb3 , a6 = b4
such that

Λαβ =

eb1 0 b2
0 eb3 b4
0 0 1

 , (A.36)

(which is exactly the form presented in table 1), and for bi = 0, (i = 1, 2, 3, 4) becomes the
identity matrix.

B Einstein’s equations under the assumption γµν = a(t)2mµν

Let us first start with the expressions of the Ricci tensor and the Ricci scalar. Note, that
µ, ν,.. are triad indices, taking values from 1 to 3. The Ricci tensor depends on the structure
constants of the algebra, the spatial metric and it’s inverse as we can see from (2.31). The
dependence of the metric and it’s inverse comes always in pairs meaning γµνγσλ, which
implies that the scale factor a(t)2 will cancel out resulting Rµν(t) = R̃µν . Thus, for the
Ricci scalar the following can be deduced R(t) = γµν(t)Rµν(t) = 1

a(t)2
mµνR̃µν ⇒ R(t) =
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1
a(t)2

R̃. Let us proceed with the extrinsic curvature tensor which can be calculated to be

Kµν(t) = −a(t)ȧ(t)mµν , while the corresponding scalar K(t) = −3 ȧ(t)
a(t) = −3H. By use of

these expressions in the equations (2.27), (2.28), (2.29) and the choices Nµ = 0, N = 1 the
result is

(2.27)→ H2 = κ
ρ(tot)

3
− R̃

6

1

a2
, (B.1)

(2.28)→ q(tot)
µ = 0, (B.2)

(2.29)→ ä

a
mµν = −2H2mµν +

κ

2

(
ρ(tot) − P (tot)

)
mµν +

κ

a2
π(tot)
µν − 1

a2
R̃µν . (B.3)

Replacing H2 in (B.3) from (B.1) results

ä

a
mµν = −κ

6

(
ρ(tot) + 3P (tot)

)
mµν +

κ

a2
π(tot)
µν − 1

a2

(
R̃µν −

1

3
R̃mµν

)
. (B.4)

The trace of (B.4) provide us with the only dynamical equation

ä

a
= −κ

6

(
ρ(tot) + 3P (tot)

)
or Ḣ +H2 = −κ

6

(
ρ(tot) + 3P (tot)

)
, (B.5)

which when is used back in (B.4) constraints the traceless anisotropic pressure tensor to be

π(tot)
µν =

1

κ

(
R̃µν −

1

3
R̃mµν

)
. (B.6)

C Proof of the statement that ∂iφ(t, x) = φασ
a
i (x), φαC

α
βλ = 0

For this section, the Greek coordinate-basis indices µ, ν,.. run from 0 to 3, the capital Latin
triad indices I, J,.. run from 1 to 3 and finally the Latin coordinate-basis indices i, j,.. from

1 to 3. The energy momentum tensor T
(φ)
µν and it’s trace T (φ) for a free scalar field are

T (φ)
µν = M

(
∂µφ∂νφ−

1

2
gµν∂σφ∂

σφ

)
, T (φ) = −Md− 1

2
∂σφ∂

σφ, (C.1)

where d the dimension of the hypersurfaces.
If the spacetime admits a Killing field, then the following relations hold

Lξgµν = 0⇒ LξGµν = 0⇒ LξT (tot)
µν = 0, (C.2)

where the Einstein’s equations were used from the second to the third step and T
(tot)
µν the total

energy momentum tensor. In the case that we study in section 4, the T
(tot)
µν was decomposed

into the energy momentum tensor of a sum of perfect fluids T
(pf)
µν and T

(φ)
µν . The equation

LξT
(pf)
µν = 0 is identically satisfied for the symmetry group of Bianchi Types, thus we are

left with

LξT (φ)
µν = 0⇒ Lξ (∂µφ) ∂νφ+ ∂µφLξ (∂νφ)− gµν∂σφLξ (∂σφ) = 0. (C.3)

We take the trace of (C.3) and for d 6= 1 we find

∂σφLξ (∂σφ) = 0, (C.4)
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while using it back in (C.3) results

Lξ (∂µφ) ∂νφ+ ∂µφLξ (∂νφ) = 0. (C.5)

The next step is to contract (C.5) with ∂σφ

∂µφLξ (∂µφ) ∂νφ+ ∂µφ∂µφLξ (∂νφ) = 0
(C.4)
===⇒ ∂µφ∂µφLξ (∂νφ) = 0

⇒ ∂µφ∂µφ = 0 or Lξ (∂νφ) = 0. (C.6)

There are two possibilities as we can see. In our case, ∂tφ = 0 thus ∂µφ∂µφ = ∂iφ∂iφ, while
the requirement of the spatial metric to be definite positive leads to ∂iφ∂iφ 6= 0. Hence, we
are lead to the conclusion that

Lξ (∂νφ) = 0. (C.7)

This equation splits into temporal and spatial components. Considering also the set of Killing
fields of the Bianchi Types we get

ν = t, LξI (∂tφ) = 0⇒ ξiI∂i (∂tφ) = 0⇒ ∂t (∂iφ) = 0, (C.8)

ν = j, LξI (∂jφ) = 0⇒ ∂jφ(t, x) = φJ(t)σJj (x), (C.9)

where the existence of the inverse of ξiI was used and the well behavior of φ, ∂i∂tφ = ∂t∂iφ.
By use of (C.9) in (C.8) the result is φJ(t) = φJ since the inverse of σJj exists.

The final step is to take the spatial derivative of (C.9)

∂l∂jφ = φJ∂lσ
J
j (C.10)

interchange the indices l, j and subtract while using the equation ∂l∂jφ = ∂j∂lφ

φJ
(
∂lσ

J
j − ∂jσJl

)
= 0

(2.4)
==⇒ −φJCJILσIl σLj = 0, (C.11)

to find

φJC
J
IL = 0, (C.12)

which completes the proof.

D The assumptions about Ei(t, x), Bij(t, x), Ji(t, x).

For this section, the convention for the indices are the same as in the previous one. As we have
pointed out in appendix C, when a metric admits a Killing field, the following relation holds

Lξgµν = 0⇒ LξGµν = 0⇒ LξT (tot)
µν = 0, (D.1)

where T
(tot)
µν the total energy momentum tensor. For our purposes, the total energy mo-

mentum tensor consists of a set of perfect fluids and electromagnetic field. In the specific
case, which is also the case studied in this work, the perfect fluids satisfy identically the

condition LξT
(fluids)
µν = 0, then the only condition to be satisfied is LξT

(other)
µν = 0, where

– 30 –



J
C
A
P
0
7
(
2
0
1
9
)
0
2
9

T
(em)
µν = 1

µ0

(
FµσFν

σ − 1
4gµνF

)
and F = FσρF

σρ. Note that in general, the symmetry is not
“inherited” to the Faraday tensor:

LξT (em)
µν = 0 ; LξFµν = 0, (D.2)

while the inverse is always true (given that the Lie derivative operator obeys the Leibnitz rule)

LξFµν = 0⇒ LξT (em)
µν = 0. (D.3)

Further information about that can be found in the chapter 11 of Part II of the book [51].
Let us express the Faraday tensor in the coordinate basis

F = Fµνdx
µ ⊗ dxν = F0idt⊗ dxi + Fi0dx

i ⊗ dt+ Fijdx
i ⊗ dxj ⇒

F = F0idt ∧ dxi + Fijdx
i ∧ dxj . (D.4)

We introduce the electric and magnetic field as

F = −Ei(t, x)dt ∧ dxi +Bij(t, x)dxi ∧ dxj . (D.5)

where Bij(t, x) = −Bji(t, x). Let us perform a basis transformation, dxi = σiα(x)σσ where
σα the one-form basis of Bianchi Types. The (D.5) is now written as follows:

F = −Ei(t, x)σiα(x)dt ∧ σα +Bij(t, x)σiα(x)σjβ(x)σα ∧ σb. (D.6)

All the symmetries of the spacetime (e.g. the Bianchi Types) will be inherited to the Faraday
tensor, if and only if

Ei(t, x)σiα(x) = Eα(t)⇒
Ei(t, x) = Eα(t)σαi (x), (D.7)

Bij(t, x)σiα(x)σjβ(x) = Bαβ(t)⇒

Bij(t, x) = Bαβ(t)σαi (x)σβj (x), (D.8)

where σαi (x) the inverse of σiα. Therefore, the previous equations are mere assumptions, since
we might as well had

Ei(t, x)σiα(x) = Eα(t, x), (D.9)

Bij(t, x)σiα(x)σjβ(x) = Bαβ(t, x), (D.10)

in which case, some of the symmetries would have been inherited due to the relation

LξT
(em)
µν = 0, but not all of them. The same line of thought holds for the components

of the current density Jι(t, x). Finally, note that if (D.7), (D.8), did not hold, then the
equations (CMFE), (MFE), (CCFE) of the sub-section 2.4 could not be written in the form
they are.
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[22] A.E. Gümrükçüo, C.R. Contaldi and M. Peloso, Inflationary perturbations in anisotropic
backgrounds and their imprint on the cosmic microwave background, JCAP 11 (2007) 005.

[23] L. Kofman, J.-P. Uzan and C. Pitrou, Perturbations of generic Kasner spacetimes and their
stability, JCAP 05 (2011) 011 [arXiv:1102.3071] [INSPIRE].

[24] F.O. Franco and T.S. Pereira, Tensor perturbations in anisotropically curved cosmologies,
JCAP 11 (2017) 022 [arXiv:1709.00007].

[25] L.P. Hughston and K.C. Jacobs, Homogeneous electromagnetic and massive-vector fields in
Bianchi cosmologies, Astrophys. J. 160 (1970) 147

[26] A. Sagnotti and B. Zwiebach, Electromagnetic Waves in a Bianchi Type I universe, Phys. Rev.
D 24 (1981) 305 [INSPIRE].

[27] M.S. Madsen, Symmetry breaking in dynamical space-times, Gen. Rel. Grav. 26 (1994) 681
[INSPIRE].

[28] M. Wollensak, Maxwell fields in anisotropic space-times, Int. J. Mod. Phys. D 7 (1998) 749
[INSPIRE].

[29] A. Banerjee and T. Ghosh, Dilaton electromagnetic fields in Bianchi models, Class. Quant.
Grav. 16 (1999) 3981 [INSPIRE].

[30] R. Garcia-Salcedo and N. Breton, Singularity-free Bianchi spaces with nonlinear
electrodynamics, Class. Quant. Grav. 22 (2005) 4783 [gr-qc/0410142] [INSPIRE].

[31] K. Yamamoto, Bianchi class B spacetimes with electromagnetic fields, Phys. Rev. D 85 (2012)
043510 [arXiv:1108.5983] [INSPIRE].

[32] A. Karagiorgos et al., Quantum cosmology of a Bianchi III LRS geometry coupled to a source
free electromagnetic field, JCAP 03 (2018) 030 [arXiv:1710.02032] [INSPIRE].

[33] T. Pailas et al., Classical and quantum analysis of 3D electromagnetic pp-wave spacetime,
Class. Quantum Grav. 36 (2019) 135010 [arXiv:1901.08243].

[34] E. Gourgoulhon, 3 + 1 formalism and bases of numerical relativity, gr-qc/0703035 [INSPIRE].

[35] M.P. Ryan and L.C. Shepley, Homogeneous relativistic cosmologies, Princeton University Press,
Princeton U.S.A. (1975).

[36] M. Nakahara, Geometry, topology and physics, CRC Press, U.S.A. (2003).

[37] P.A. Terzis, Faithful representations of Lie algebras and Homogeneous Spaces,
arXiv:1304.7894 [INSPIRE].

[38] O. Coussaert and M. Henneaux, Bianchi cosmological models and gauge symmetries, Class.
Quant. Grav. 10 (1993) 1607 [gr-qc/9301001] [INSPIRE].

[39] H. Stephani, Differential equations: their solution using symmetries, Cambridge University
Press, Cambridge U.K. (1990).

[40] P.J. Olver, Equivalence, invariants and symmetry, Cambridge University Press, Cambridge
U.K. (1995).

[41] T. Christodoulakis and P.A. Terzis, Automorphism inducing diffeomorphisms and the general
solution of Bianchi type-III vacuum cosmology, J. Math. Phys. 47 (2006) 102502
[gr-qc/0410123] [INSPIRE].

[42] T. Christodoulakis and P.A. Terzis, The general solution of Bianchi type-III vacuum cosmology,
Class. Quant. Grav. 24 (2007) 875 [gr-qc/0607063] [INSPIRE].

[43] P.A. Terzis and T. Christodoulakis, The general solution of Bianchi Type VII(h) vacuum
cosmology, Gen. Rel. Grav. 41 (2009) 469 [arXiv:0803.3710] [INSPIRE].

– 33 –

https://doi.org/10.1088/1475-7516/2007/11/005
https://doi.org/10.1088/1475-7516/2011/05/011
https://arxiv.org/abs/1102.3071
https://inspirehep.net/search?p=find+J+%22JCAP,1105,011%22
https://doi.org/10.1088/1475-7516/2017/11/022
https://arxiv.org/abs/1709.00007
https://doi.org/10.1103/PhysRevD.24.305
https://doi.org/10.1103/PhysRevD.24.305
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D24,305%22
https://doi.org/10.1007/BF02116957
https://inspirehep.net/search?p=find+J+%22Gen.Rel.Grav.,26,681%22
https://doi.org/10.1142/S0218271898000504
https://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.,D7,749%22
https://doi.org/10.1088/0264-9381/16/12/315
https://doi.org/10.1088/0264-9381/16/12/315
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,16,3981%22
https://doi.org/10.1088/0264-9381/22/22/009
https://arxiv.org/abs/gr-qc/0410142
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,22,4783%22
https://doi.org/10.1103/PhysRevD.85.043510
https://doi.org/10.1103/PhysRevD.85.043510
https://arxiv.org/abs/1108.5983
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D85,043510%22
https://doi.org/10.1088/1475-7516/2018/03/030
https://arxiv.org/abs/1710.02032
https://inspirehep.net/search?p=find+J+%22JCAP,1803,030%22
https://doi.org/10.1088/1361-6382/ab2561
https://arxiv.org/abs/1901.08243
https://arxiv.org/abs/gr-qc/0703035
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0703035
https://arxiv.org/abs/1304.7894
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7894
https://doi.org/10.1088/0264-9381/10/8/018
https://doi.org/10.1088/0264-9381/10/8/018
https://arxiv.org/abs/gr-qc/9301001
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,10,1607%22
https://doi.org/10.1063/1.2359141
https://arxiv.org/abs/gr-qc/0410123
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,47,102502%22
https://doi.org/10.1088/0264-9381/24/4/008
https://arxiv.org/abs/gr-qc/0607063
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,24,875%22
https://doi.org/10.1007/s10714-008-0678-5
https://arxiv.org/abs/0803.3710
https://inspirehep.net/search?p=find+J+%22Gen.Rel.Grav.,41,469%22


J
C
A
P
0
7
(
2
0
1
9
)
0
2
9

[44] J. Patera and P. Winternitz, Subalgebras of real three-dimensional and four-dimensional Lie
algebras, J. Math. Phys. 18 (1977) 1449 [INSPIRE].

[45] Ø. Grøn and S. Hervik, Einstein’s genral theory of relativity: with modern applications in
cosmology, Springer, Germany (2007).

[46] A. Pontzen and A. Challinor, Linearization of homogeneous, nearly-isotropic cosmological
models, Class. Quant. Grav. 28 (2011) 185007 [arXiv:1009.3935] [INSPIRE].

[47] D.H. King, Gravity wave insights to Bianchi type IX universes, Phys. Rev. D 44 (1991) 2356
[INSPIRE].

[48] S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge
Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2011).

[49] T. Christodoulakis, E. Korfiatis and G.O. Papadopoulos, Automorphism inducing
diffeomorphisms, invariant characterization of homogeneous 3-spaces and Hamiltonian
dynamics of Bianchi cosmologies, Commun. Math. Phys. 226 (2002) 377.

[50] T. Christodoulakis et al., Time dependent automorphism inducing diffeomorphisms and the
complete closed form solutions of Bianchi types II and V vacuum cosmologies, J. Math. Phys.
42 (2001) 3580 [gr-qc/0008050] [INSPIRE].

[51] H. Stephani et al., Exact solutions of Einstein’s field equations, 2nd edition, Cambridge
Monographs on Mathematical Physics. Cambridge University Press, Cambridge U.K. (2003).

– 34 –

https://doi.org/10.1063/1.523441
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,18,1449%22
https://doi.org/10.1088/0264-9381/28/18/185007
https://arxiv.org/abs/1009.3935
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,28,185007%22
https://doi.org/10.1103/PhysRevD.44.2356
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D44,2356%22
https://doi.org/10.1063/1.1386637
https://doi.org/10.1063/1.1386637
https://arxiv.org/abs/gr-qc/0008050
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,42,3580%22

	Introduction
	Mathematical preliminaries
	Bianchi types
	Group of constant automorphisms
	System of equations
	The system of equations for Bianchi Types

	Primary assumption and use of automorphisms
	``Absorption'' via free scalar field
	``Absorption'' via electromagnetic field
	Type VI(-1) or A(3,4) or E(1,1)
	Type VIII or A(3,8) or SU(1,1)
	Case 1, m(2)>m(1)
	Case 2, m(3)>m(1)

	Type IX or A(3,9) or SU(2)
	Case 1, m(2)>m(3), m(3)=m(2)-m(4), m(4)>0 
	Case 2, m(3)>m(2), m(2)=m(3)-m(4), m(4)>0
	Case 3, m(3)>m(1), m(3)=m(1)+m(4), m(4)>0 


	Discussion
	Automorphisms
	Time dependent automorphisms
	Lambda(nu)**mu for Bianchi Type III

	Einstein's equations under the assumption gamma(mu nu) = a(t)**2 m(mu nu)
	Proof of the statement that del(i) phi(t,x) = phi(s) sigma(i)**a(x), phi(a)C(beta lambda)**alpha = 0
	The assumptions about E(i)(t,x),,B(ij)(t,x),,J(i)(t,x).

