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clear indicators of exotic wormhole geometries.
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1 Introduction

Gravitational lensing is known to be one of the most important tools to test the predictions of
general relativity (GR). Weak lensing from celestial objects has been extensively studied over
the last century, while lensing in the strong gravity limit is a relatively recent area of research
that has received much attention of late [1–8]. In the light of the first results coming from
the Event Horizon Telescope [9–11], it is of great interest to further these lines of research.

Important in this context are horizonless structures, which are fast gaining popularity as
potentially important objects to distinguish from the ubiquitous black hole backgrounds [12–
18]. One of the prime reasons for this is that these can mimic black hole lensing effects [13, 17].
One important class of horizonless objects are wormhole backgrounds,1 where two distinct
universes or two distant regions of the same universe are connected by a throat region [19, 20].
Such geometries were introduced following Einstein and Rosen’s proposal of the Einstein-
Rosen bridge [21]. Later, the term wormhole was first introduced by Misner and Wheeler [22].
Although wormhole models in GR require the presence of exotic matter, it is now known that,
in modified gravity theories, these can exist with normal matter as well [23–52].

Various aspects of gravitational lensing by wormholes in both the weak and the strong
deflection limit have been studied in the literature and have been compared to that by black

1We consider only symmetric wormholes in this paper.
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holes [53–80]. Important in the context of strong lensing are photon and antiphoton spheres,
which are characterized by radii at which photons can have unstable and stable circular
orbits, respectively. Strong lensing traditionally refers to photons that are trapped at an
unstable photon surface and undergo multiple rotations until a small perturbation can make
them escape to infinity. Antiphoton spheres also play a crucial role when they exist, as has
been recently shown in [18]. Strong field lensing in a general spherically symmetric and static
spacetime was first studied analytically by Bozza in [3] and later by Tsukamoto in [5]. Besides
being used to study strong lensing by black holes, the analytic methods developed in [3, 5]
have also been used in most of the studies on strong gravitational lensing by wormholes
available in the literature.

The broad purpose of this paper is two-fold. First, we point out that the formulas
obtained in [3, 5] to study strong lensing by wormholes may fail in some cases when the
wormhole throat acts as an effective photon sphere, and we develop alternate analytic for-
mulas to address strong lensing in such cases. Moreover, almost all the earlier studies on the
strong gravitational lensing by wormholes have been in the scenario where the light source
and the observer are on the same side of the wormhole throat. Since the throat of a worm-
hole connects two distant asymptotic regions, there can be another lensing scenario where the
light source and the observer are on the opposite sides. Gravitational lensing in a particular
example, namely the Ellis-Bronnikov wormhole in this latter scenario has been addressed
in [81, 82]. In this paper, we develop the analytic formalism for strong gravitational lensing
by a general spherically symmetric and static wormhole geometry with the source and the
observer on opposite sides of the throat.

The broad outcome of this paper is that the presence of multiple photon and antiphoton
spheres results in a rich and novel structure of relativistic images formed due to the strong
gravitational lensing by wormholes than the ones that have been reported previously in the
literature. In particular, as discussed above, the following two distinct scenarios might arise
in the physics of lensing from generic static, spherically symmetric wormholes:

• a. The observer and the source are on the same side of the wormhole throat. Three
sub-cases might arise here:
a1. Strong lensing occurs due to the presence of a photon sphere outside the throat.
a2. The throat itself acts as a photon sphere in strong lensing.
a3. Strong lensing occurs due to both a photon sphere and an antiphoton sphere.

• b. The observer and the source are on opposite sides of the throat, i.e, the observer
sees light coming from another universe. Two distinct cases can occur here, which are
formally similar to the cases a1 and a2, i.e,
b1. A photon sphere outside the throat is involved in strong lensing.
b2. The throat itself acts as a photon sphere in strong lensing.

These are studied analytically in this paper, for generic wormhole geometries.

Indeed, the discussion above opens up a variety of new possibilities in strong lensing by
wormholes. In the next section, we recapitulate the essential features of symmetric wormhole
geometries, and elaborate on the strong lensing possibilities discussed above. In section 3,
we study strong lensing of light in case a, i.e, when the observer and the source are on the
same side of the throat. Then, in section 4, we consider situation b, when the observer and
the source are on opposite sides of the wormhole throat. Section 5 contains three specific
examples that exemplify the computation of the previous sections. In section 6, we list the
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phenomenological observables in gravitational lensing and provide numerical results. Finally,
we conclude this paper in section 7 with some discussions on our results. Appendix A contains
the details of the case b2 which is not included in the main text, for ease of reading.

2 Wormholes and the deflection angle of light

We consider a general spherically symmetric, static wormhole of the Morris-Thorne class,
whose spacetime metric can be written in spherical polar coordinates as [19]

ds2 = −e2Φ(r)dt2 +
dr2

1− B(r)
r

+ r2(dθ2 + sin2 θdφ2) . (2.1)

Here Φ(r) and B(r) are called the redshift function and the wormhole shape function, re-
spectively. The wormhole throat specifies the connection between two different regions, and

is given by
(

1− B(r)
r

) ∣∣∣
rth

= 0, i.e., by B(rth) = rth, with rth being the radius of the throat.

B(r) satisfies the flare-out condition B′(rth) < 1 also [19]. Note that Φ(r) must be finite
everywhere (from the throat to spatial infinity).

If we define a proper radial coordinate l(r) as

l(r) = ±
∫ r

rth

dr√
1− Br

, (2.2)

in terms of which the throat is at l(rth) = 0, and the two signs (plus and minus) correspond
to the two different regions connected through the throat, then we can write the line element
of eq. (2.1) as

ds2 = −e2Φ(l)dt2 + dl2 + r2(l)(dθ2 + sin2 θdφ2). (2.3)

In general, however, it might be difficult to invert the relation in eq. (2.2) to obtain r(l) in
which case it will not be possible to write the wormhole metric explicitly in terms of the
proper radial coordinate l.2

For convenience and ease of notation, we work with the generic static metric given by

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdφ2) , (2.4)

and specific wormhole examples will be worked out later. Also, we assume that the wormhole
is symmetric with respect to its throat and is asymptotically flat. Therefore, the metric
functions satisfy the asymptotically flat conditions

lim
r→∞

A(r) = 1 , lim
r→∞

B(r) = 1 , lim
r→∞

C(r) = r2. (2.5)

Because of the spherical symmetry, we can choose θ = π/2. With this choice, the Lagrangian
corresponding to the motion of photons in the background geometry of the wormhole repre-
sented by eq. (2.4) is

2L = −A(r)ṫ2 +B(r)ṙ2 + C(r)φ̇2, (2.6)

2Note that, in the proper radial coordinates, the wormhole throat is now given by (using eq. (2.2))

r′(l)
∣∣∣
l=0

=
(

1 − B(r)
r

) ∣∣∣
r=rth

= 0, where the prime denotes a differentiation with respect to its argument.
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where an overdot represents a derivative with respect to the affine parameter. Since there
are two Killing vectors ∂t and ∂φ, there are two constants of motion, namely

pt =
∂L
∂ṫ

= −A(r)ṫ = −E , pφ =
∂L
∂φ̇

= C(r)φ̇ = L, (2.7)

where E and L are, respectively, the energy and angular momentum of the photon. From
the normalization condition gµνu

µuν = 0, one obtains

ABṙ2 + Veff = E2, Veff = L2A(r)

C(r)
, (2.8)

where Veff is the effective potential. The impact parameter of a light ray (which remains
constant throughout the trajectory of a photon) is defined as b = L/E. Depending on the
effective potential, a photon coming from a source at infinity may turn at some radius r0

and then escapes to a faraway observer. Such a turning point is indicated by ṙ = 0, i.e., by
Veff(r0) = E2. This implies that

b2 =
C(r0)

A(r0)
. (2.9)

For a photon which comes from a distant source, takes a turn at r0 and escapes to a faraway
observer, the deflection angle α(r0) is given by the well known formula

α(r0) = I(r0)− π, (2.10)

where we have defined

I(r0) = 2

∫ ∞
r0

dr√
R(r)C(r)
B(r)

, R(r) =

(
A0C

AC0
− 1

)
. (2.11)

Strong gravitational lensing occurs when r0 is close to the location of the photon sphere, i.e.,
a radius at which light can bend in angles excess of 2π. The photon sphere comprises unstable
photon orbits. In general, there might be stable photon orbits as well, which constitute an
antiphoton sphere. Circular photon orbits satisfy Veff = E2 and dVeff/dr = 0, resulting in
eq. (2.9) and

C ′(r)

C(r)
− A′(r)

A(r)
= 0 , (2.12)

respectively. In addition, at the location of a photon and an antiphoton sphere, we must
have, respectively, d2Veff/dr

2 < 0 (maximum of the potential) and d2Veff/dr
2 > 0 (minimum

of the potential). In this paper, the position of the photon sphere is denoted by r = rm, and
the corresponding critical impact parameter as b = bm =

√
C(rm)/A(rm). Equation (2.12)

is satisfied at r = rm.
As we have shown in [83], in addition to the above-mentioned photon and antiphoton

spheres located outside the throat, for a wormhole which is symmetric with respect to its
throat, the throat itself can act as a position of either a maximum (effective photon sphere)
or a minimum (effective antiphoton sphere) of the effective potential. However, this may
not be true for an asymmetric wormhole [84] in general. In the following, when the throat
acts as an effective photon sphere, we denote the corresponding critical impact parameter by
bth =

√
C(rth)/A(rth).

We now systematically address below all the different cases of strong lensing mentioned
in the Introduction.
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Figure 1. Case a1: schematic diagrams showing strong lensing of light due to a photon sphere
outside the throat in a wormhole spacetime. The maxima of the effective potential (in units of
angular momentum squared) outside the throat represent the positions of photon spheres.

3 Strong lensing of light when the observer and the source are on the same
side of the throat

We begin by considering the situations where the observer and the source are on the same
side of the throat. As mentioned in the Introduction, there are three distinct subcases here.

3.1 Case a1: strong bending of light due to a photon sphere outside the throat

Let us now consider strong lensing of light due to a photon sphere located outside the throat,
in the scenario when the observer and the light source are on the same side of the throat.
This is case a1 illustrated in figure 1. A light ray with an impact parameter b greater than
the critical value bm always takes a turn outside the photon sphere and escapes to the faraway
observer. The strong deflection in this case occurs in the limit r0 → rm or b→ bm (b ≥ bm).
This strong deflection of light due to the photon sphere located outside the wormhole throat
is similar to the one for a black hole studied in detail in [3, 5]. In this case, the deflection
angle in the strong deflection limit comes out to be [5]

α(b) = −ā log

(
b

bm
− 1

)
+ b̄+O [(b− bm) log (b− bm)] , (3.1)

where ā and b̄ are given by

ā =

√
2BmAm

C ′′mAm − CmA
′′
m

, b̄ = ā log

[
r2
m

(
C
′′
m

Cm
− A

′′
m

Am

)]
+ IR(rm)− π, (3.2)

respectively, with the subscript ‘m’ implying the corresponding quantities evaluated at r =
rm. Note that, since the strong lensing in this case occurs when the impact parameter
b approaches the critical value bm from b > bm side, the resulting relativistic images are
formed at impact parameters greater than the critical value bm, i.e., they are formed just
outside the photon sphere.

3.2 Case a2: strong bending of light due to a wormhole throat

We now come to situation a2, where the wormhole throat itself acts as an effective photon
sphere, i.e., as a position of the maximum of the effective potential for photons. As a result,
light can experience strong lensing due to the throat. To realize such strong lensing due to
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Figure 2. Case a2: schematic diagrams showing strong lensing of light due to a wormhole throat
which acts as the maximum of the effective potential (in units of angular momentum squared).

the throat, it is not necessary to have another maximum of the potential outside the throat
to mark the position of a photon sphere. If there is one outside the throat, then the height of
the maximum at the throat must be greater than that at the outer photon sphere to realize
the strong lensing due to the throat. Figure 2 schematically illustrates this situation.

In this case, a photon with impact parameter b > bth always has a turning point outside
the throat, and the strong deflection limit occurs when the turning point approaches the
throat, i.e., r0 → rth or the impact parameter approaches the critical value bth, i.e., b→ bth
from b > bth side. Photons with impact parameters b < bth get captured by the throat and
escape to the other side. Here we would like to mention that, to obtain the strong deflection
angle in this case, we can still use eqs. (3.1)–(3.2) with rm = rth and bm = bth only when the
wormhole spacetime can be written in the proper radial coordinates so that Bm = B(rm) =
B(rth) does not diverge. See section III(C) of [5] for such an example. However, in many
cases, it is difficult to express the wormhole metric explicitly in the proper radial coordinates,
and we have to deal with the one expressed in spherical polar coordinates given in (2.1). If
this is the case, then we cannot use eqs. (3.1)–(3.2) to obtain the strong deflection angle due
to the throat as the metric function B(r) = 1/ (1− B(r)/r) diverges at the throat. Therefore,
in this case, we need to develop a formula of light bending in the strong deflection limit.

To this end, we introduce a variable z defined as

z = 1− r0

r
. (3.3)

Putting this in I(r0) in eq. (2.11), we obtain

I(r0) =

∫ 1

0
f(z, r0)dz, (3.4)

where

f(z, r0) =
2r0√
G(z, r0)

, G(z, r0) = R
C

B
(1− z)4. (3.5)

Since B(r0) → ∞ in the strong deflection limit r0 → rth, we define a new variable as
B̄(r) = 1/B(r) = (1− B(r)/r) so that B̄(rth) = 0. Therefore, we have

G(z, r0) = RCB̄(1− z)4. (3.6)

– 6 –
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Now, we need to expand G(z, r0) near r = r0 or z = 0 to extract its divergent part. Here, it
should be noted that the expansion of a function F (r) in powers of z around z = 0 can be
written as

F = F0 + F
′
0r0z +

(
1

2
F
′′
0 r

2
0 + F

′
0r0

)
z2 +O(z3).

In the above expression as well as in the rest of this discussion, the subscript ‘0’ indicates
that the quantities are evaluated at r = r0 or z = 0. Therefore, the expansion of R(r) in the
powers of z can be written as

R(r) = r0

(
C
′
0

C0
− A

′
0

A0

)
z +

[
r2

0

2

(
C
′′
0

C0
− A

′′
0

A0

)
+ r0

(
1− A

′
0r0

A0

)(
C
′
0

C0
− A

′
0

A0

)]
z2 +O(z3)

(3.7)
Similarly, expanding the functions B̄ and C in powers of z in eq. (3.6), we get the full
expansion of G(z, r0) as

G(z, r0) = δz + ηz2 +O(z3), (3.8)

where we have defined

δ = r0C0B̄0

(
C
′
0

C0
−A

′
0

A0

)
(3.9)

η = r0

(
C
′
0

C0
−A

′
0

A0

)[
r0

(
C0B̄

′
0 +C

′
0B̄0

)
−C0B̄0

(
3+

A
′
0r0

A0

)]
+
r2

0

2
C0B̄0

(
C
′′
0

C0
−A

′′
0

A0

)
.(3.10)

Once again, note that the function B̄(r) vanishes at r = rth, i.e., B̄(rth) = 0. Therefore,
in the limit r0 → rth, we obtain

δth = δ|r0=rth = 0, ηth = η|r0=rth = r2
thCthB̄

′
th

(
C
′
th

Cth
−
A
′
th

Ath

)
, (3.11)

where the subscript ‘th’ indicates that the quantities are evaluated at r = rth. Hence, we get

Gth(z) = ηthz
2 +O(z3). (3.12)

This shows that the leading order of the divergence of f(z, r0) is z−1 and that the integral
I(r0) diverges logarithmically in the strong deflection limit r0 → rth, as was the case for
black holes in [3, 5].

To extract out the logarithmic divergence part, the integral I(r0) is split into two parts
— a divergent part ID(r0) and a regular part IR(r0), such that I(r0) = ID(r0) + IR(r0). The
divergent part ID(r0) is defined as

ID(r0) =

∫ 1

0
fD(z, r0)dz , fD(z, r0) =

2r0√
δz + ηz2

. (3.13)

The regular part IR(r0), on the other hand, is defined as

IR(r0) =

∫ 1

0
fR(z, r0)dz , fR(z, r0) = f(z, r0)− fD(z, r0). (3.14)

– 7 –
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Integrating ID(r0), we get

ID(r0) =
4r0√
η

log

√
η +
√
δ + η

√
δ

. (3.15)

After doing some algebra, we obtain in the limit r0 → rth,

ID(r0) = − 2rth√
ηth

log(r0 − rth) +
2rth√
ηth

log(4rth) +O [(r0 − rth) log(r0 − rth)] , (3.16)

where the following expansion has been used:

B̄0 = B̄
′
th(r0 − rth) +O(r0 − rth)2. (3.17)

Moreover, we can also write

b2 =
C0

A0
=

[
Cth + C

′
th(r0 − rth) +O(r0 − rth)2

Ath +A
′
th(r0 − rth) +O(r0 − rth)2

]

= b2th

[
1 +

(
C
′
th

Cth
−
A
′
th

Ath

)
(r0 − rth)

]
+O(r0 − rth)2 (3.18)

Note that b → bth when r0 → rth. Therefore, using the last expression, the divergent part
ID(b) in terms of the impact parameter b in the strong deflection limit b→ bth takes the form

ID(b) = − 2rth√
ηth

log

(
b2

b2th
− 1

)
+

2rth√
ηth

log

[
4rth

(
C
′
th

Cth
−
A
′
th

Ath

)]
+O[(b2 − b2th) log(b2 − b2th)].

(3.19)
Similarly, if we expand the regular part IR(r0) too in powers of (r0 − rth) in the strong

deflection limit, keeping the leading order term only, we obtain

IR(r0) =

∫ 1

0
fR(z, rth)dz +O((r0 − rth) log(r0 − rth)) (3.20)

which can be expressed in terms of the impact parameter as

IR(b) =

∫ 1

0
fR(z, bth)dz +O((b2 − b2th) log(b2 − b2th)). (3.21)

Therefore, we finally obtain the bending angle of light in the strong deflection limit r0 → rth

or b→ bth due to the wormhole throat as

α(b) = −ā log

(
b2

b2th
− 1

)
+ b̄+O((b2 − b2th) log(b2 − b2th)), (3.22)

where

ā = 2

√
Ath

B̄
′
th(C

′
thAth − CthA

′
th)
, b̄ = ā log

[
4rth

(
C
′
th

Cth
−
A
′
th

Ath

)]
+ IR(rth)− π. (3.23)

The expressions in eqs. (3.22)–(3.23) are quite different from the corresponding expressions
in the previous case due to a photon sphere located outside the throat. Note that the above

– 8 –
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Figure 3. Case a3: schematic diagram showing strong lensing of light due to an antiphoton sphere
in a wormhole spacetime. The throat acts as a maximum of the effective potential (in units of angular
momentum squared) in addition to another maximum (photon sphere) outside of it. The minimum of
the effective potential in between this two maxima represents the position of the antiphoton sphere.

formula is valid when the wormhole metric is written in spherical polar coordinate so that
B̄(r) = 1/B(r) = (1− B(r)/r) vanishes at the throat. In order that the dependence of the
above analytic formula on b looks similar to the ones due to a photon sphere outside the

throat (eqs. (3.1)–(3.2)), we use the approximation
(
b2

b2th
− 1
)
' 2

(
b
bth
− 1
)

in the strong

deflection limit b→ bth and obtain

α(b) = −ā log

(
b

bth
− 1

)
+ b̄+O((b− bth) log(b− bth)), (3.24)

where

ā = 2

√
Ath

B̄
′
th(C

′
thAth − CthA

′
th)
, b̄ = ā log

[
2rth

(
C
′
th

Cth
−
A
′
th

Ath

)]
+ IR(rth)− π. (3.25)

Note the change in b̄ compared to the one in eq. (3.23). Note also that, since the strong
lensing in this case occurs when the impact parameter b approaches the critical value bth
from b > bth side, the resulting relativistic images are formed at impact parameters greater
than the critical value bth, i.e., they are formed just outside the throat.

3.3 Case a3: strong bending of light experiencing an antiphoton sphere

We now consider the case when the light ray encounters an antiphoton sphere. If the effective
potential exhibits a maximum at the throat r = rth (effective photon sphere) as well as at
r = rm (photon sphere) with rm > rth, then there will be a minimum (antiphoton sphere)
at r = raps (say) in between the two maxima. This minimum of the effective potential acts
as the location of stable circular orbits of photons. If the height of the maximum of the
effective potential at the throat is greater than that at the outer photon sphere, a photon
having an impact parameter greater than bth but less than bm enters both the photon and
the antiphoton spheres, takes a turn at a radius inside the antiphoton sphere, and comes out
of the photon sphere and escapes to a faraway observer. See figure 3 for illustration. In this
case, the strong deflection occurs when the impact parameter approaches the critical value
bm from b < bm side. This case is similar to the strong lensing due to the presence of an
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antiphoton sphere around an ultracompact object discussed in [18]. The strong deflection
angle of light in the limit b→ bm (b ≤ bm) in this case is given by [18]

α(b) = −ā log

(
b2m
b2
− 1

)
+ b̄+O

[(
b2m − b2

)
log
(
b2m − b2

)]
, (3.26)

where

ā = 2

√
2BmAm

C ′′mAm − CmA
′′
m

, b̄ = ā log

[
2r2
m

(
C
′′
m

Cm
− A

′′
m

Am

)(
rm
rc
− 1

)]
+ IR(rc)− π, (3.27)

and rc is the radius at which the effective potential has the same height as that at the photon
sphere r = rm. See [18] for more details. Note that, since the strong lensing in this case
occurs when the impact parameter b approaches the critical value bm from b < bm side, the
resulting relativistic images are formed at impact parameters less than the critical value bm,
i.e., they are formed just inside the photon sphere.

4 Strong lensing of light coming from the other side of a wormhole throat

We now study the scenario when the light source and the observer are located on the opposite
sides of the wormhole throat. So, the light rays have to cross the throat as well as the photon
and anti-photon spheres located in between to reach the faraway observer. Therefore, in this
scenario, we must always have Veff(r) < E2 along the photon geodesics, and hence, there is no
turning point r0. The requirement Veff(r) < E2 can be achieved by suitable choices of E and L
or, equivalently, by a suitable choice of the impact parameter b (= L/E). Note that, since the
photon directly passes through the throat without having any turning point, unlike in the sce-
nario discussed in the previous section, here the impact parameter of light cannot be expressed
as a function of the turning point. As a result, the bending angle of light (α) can also not be
expressed in terms of r0. Instead, all the quantities are expressed in terms of the impact pa-
rameter b. Therefore, the fact that there is no turning point is going to be crucial while study-
ing gravitational lensing. The deflection angle α(b) of the light in this case can be written as

α(b) = I(b)− π, (4.1)

where

I(b) = 2

∫ ∞
rth

dr√
R(r)C(r)
B(r)

, R(r) =

(
C

b2A
− 1

)
. (4.2)

Like the scenario discussed in the previous section, here also we assume that both the ob-
server and the source are far away from the throat. We also assume that the observer is at
φ = 0 on one side of the throat, and the source is at around φ = π on the other side. Below,
we discuss two different cases separately that can arise here.

4.1 Case b1: strong bending of light due to a photon sphere outside the throat

Here, we shall discuss strong bending of light due to the presence of a photon sphere outside
the wormhole throat, when the light from the source located on the other side crosses the
throat and reaches the observer (see figure 4). Note that there may be multiple photon spheres
on the two sides of the throat. Let the photon sphere corresponding to the highest maximum
of the effective potential be located at r = rm and have the critical impact parameter bm.
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Figure 4. Case b1: schematic diagrams showing strong lensing of light due to a photon sphere
outside the throat in a wormhole spacetime. The maxima of the effective potential (in units of
angular momentum squared) outside the throat represent the positions of photon spheres. In this
case, light comes from the other side, passes through the throat and then reaches to the observer.

Photons from the light source located on the other side and with impact parameter b > bm
always get turned away to the same side and do not reach the observer. On the other hand,
photons with impact parameter b < bm cross the photon sphere as well as the throat and
reach the faraway observer. The strong deflection limit in this case occurs when the impact
parameter b approaches the critical value bm, i.e., b→ bm from b < bm side.

To obtain the strong deflection angle in this case, we define

z = 1− rm
r
. (4.3)

Using this in (4.2), we obtain

I(b) =

∫ 1

1− rm
rth

f(z, b, rm)dz, (4.4)

where

f(z, b, rm) =
2rm√

G(z, b, rm)
, G(z, b, rm) = R

C

B
(1− z)4. (4.5)

Following the steps discussed in the previous section, R(r) in this case can be expanded in
powers of z as

R(r) =

(
Cm
Amb2

− 1

)
+
r2
m

2

Cm
b2Am

(
C
′′
m

Cm
− A

′′
m

Am

)
z2 +O(z3). (4.6)

Using similar expansions of C and B, we obtain the expansion of G(z, b, rm) in powers of z
as

G(z, b, rm) = γ + δz + ηz2 +O(z3), (4.7)
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where

γ =
Cm
Bm

(
Cm
Amb2

− 1

)
, (4.8)

δ =
Cm
Bm

(
Cm
Amb2

− 1

)[
−4 + rm

(
C
′
m

Cm
− B

′
m

Bm

)]
, (4.9)

η =
Cm
Bm

(
Cm
Amb2

− 1

)[
6− rm

(
3 +

B
′
mrm
Bm

)(
C
′
m

Cm
− B

′
m

Bm

)

+
r2
m

2

(
C
′′
m

Cm
− B

′′
m

Bm

)]
+
r2
m

2

Cm
Bm

Cm
Amb2

(
C
′′
m

Cm
− A

′′
m

Am

)
. (4.10)

Note that, since C(rm)
A(rm) = b2m, we have

(
Cm
Amb2

− 1
)
→ 0 in the limit b → bm. Therefore, in

this limit, we get

γm = γ|b=bm = 0 = δm = δ|b=bm , ηm = η|b=bm =
r2
m

2

Cm
Bm

(
C
′′
m

Cm
− A

′′
m

Am

)
. (4.11)

Hence, we obtain

Gm(z) = ηmz
2 +O(z3). (4.12)

Just like the cases discussed before, the leading order of the divergence of f(z, b, rm) in this
case too goes as z−1 and so the integral I(b) diverges logarithmically in the strong deflection
limit b→ bm.

To extract out this divergent part in the strong deflection limit, we need to split up the
integral I(b) into a divergent part ID(b) and a regular part IR(b), i.e., I(b) = ID(b) + IR(b).
Now, the divergent part ID(b) is defined as

ID(b) =

∫ 1

1− rm
rth

fD(z, b, rm)dz, fD(z, b, rm) =
2rm√

γ + δz + ηz2
. (4.13)

Whereas, the regular part IR(b) is defined as

IR(b) =

∫ 1

1− rm
rth

fR(z, b, rm)dz, fR(z, b, rm) = f(z, b, rm)− fD(z, b, rm). (4.14)

Performing the integration in eq. (4.13), we obtain

ID(b) =
2rm√
η

log
δ + 2η + 2

√
η
√
γ + δ + η

δ + 2η
(

1− rm
rth

)
+ 2
√
η

√
γ + δ

(
1− rm

rth

)
+ η

(
1− rm

rth

)2
. (4.15)

In the limit b→ bm, we get

ID(b) =
2rm√
ηm

log

4ηm

(
rm
rth
− 1
)

Cm
Bm

(
b2m
b2
− 1
)
+O

[(
b2m
b2
− 1

)
log

(
b2m
b2
− 1

)]
. (4.16)
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Figure 5. Case b2: schematic diagrams showing strong lensing of light due to a wormhole throat
which acts as the maximum of the effective potential (in units of angular momentum squared). In this
case also, light comes from the other side, passes through the throat and then reaches to the observe.

Again, the regular part IR(b), after expanding in powers of b2m − b2 and keeping the leading
order term, can be written in integral form as,

IR(b) =

∫ 1

1− rm
rth

fR(z, bm, rm)dz +O((b2m − b2) log(b2m − b2)) (4.17)

Finally, the bending angle of light in the strong deflection limit b → bm (b ≤ bm) can be
written as

α(b) = −ā log

(
b2m
b2
− 1

)
+ b̄+O((b2m − b2) log(b2m − b2)), (4.18)

where

ā = 2

√
2BmAm

C ′′mAm − CmA
′′
m

, b̄ = ā log

[
2r2
m

(
C
′′
m

Cm
− A

′′
m

Am

)(
rm
rth
− 1

)]
+ IR(bm)− π. (4.19)

Note that the above expressions are similar with those in eqs. (3.26)–(3.27), except that rc
is now replaced by rth. Note also that, since the strong lensing in this case occurs when
the impact parameter b approaches the critical value bm from b < bm side, the resulting
relativistic images are formed at impact parameters less than the critical value bm, i.e., they
are formed just inside the photon sphere.

4.2 Case b2: strong bending of light due to a wormhole throat

We now discuss strong lensing of light when the wormhole throat acts as an effective photon
sphere (see figure 5). In this case, photons which are from the source on the other side and
have impact parameter b > bth always have turning point outside the throat on the same side.
These photons do not reach the observer and have marginal turning point rth when b = bth.
Photons with b < bth do not have any turning point, cross the throat and reach the observer.
The strong deflection limit in this case occurs in the limit b → bth from b < bth side. For
the same reason (same as the one discussed in subsection 3.2) that Bm = B(rm) = B(rth)
diverges at the throat, we cannot use eqs. (4.18)–(4.19) to obtain the strong deflection angle
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in this case when the spacetime metric is written in spherical polar coordinate. Therefore,
we need to rederive the expression for the strong deflection angle in this case.

The methodology is similar to the previous cases, and for ease of reading, the details of
the calculation in this case are relegated to appendix A. We only quote the final result given
in eq. (A.16) for the deflection angle in the strong deflection limit b→ bth (b ≤ bth) as

α(b) = −ā log

(
b2th
b2
− 1

)
+ b̄+O

[(
b2th − b2

)
log
(
b2th − b2

)]
, (4.20)

where

ā = 2

√
Ath

B̄
′
th

(
C
′
thAth −A

′
thCth

) , b̄ = ā log

[
4rth

(
C
′
th

Cth
−
A
′
th

Ath

)]
+ IR(bth)− π. (4.21)

Note that, since the strong lensing in this case occurs when the impact parameter b approaches
the critical value bth from b < bth side, the resulting relativistic images are formed at impact
parameters less than the critical value bth, i.e., they are formed just inside the throat. It
is also interesting to note that the expressions in eqs. (4.20)–(4.21) exactly match with the
corresponding expressions in eqs. (3.22)–(3.23), except that the dependence of the logarithmic
term on b and bth is somewhat different in the two cases. Both of these expressions correspond
to gravitational lensing in the strong deflection limit due to the wormhole throat when the
throat acts as the maximum of the effective potential.

As a result of this, as we shall see in section 6, the relativistic images which are formed
just outside the throat (b > bth) and those formed just inside the throat (b < bth) will almost
be symmetric with respect to it. On the other hand, as shown in [18] and as can also be
seen by comparing eqs. (3.1)–(3.2) with eqs. (3.26)–(3.27), the relativistic images that form
due a photon sphere from b > bth side and b < bth side are not symmetric with respect to
it. We shall see in section 6 that in case of the images formed due to the photon sphere
located outside the throat, the images formed inside the photon sphere (b < bm) will have
much larger angular separation and magnification than those formed outside it (b > bm).

5 Examples

5.1 Strong lensing by Ellis-Bronnikov wormhole

The line element of the Ellis-Bronnikov wormhole [85, 86], in Schwarzschild radial coordinate,
is given by

ds2 = −dt2 +
dr2

1− r2
th
r2

+ r2dΩ2, (5.1)

or, can be written in the proper radial coordinate as

ds2 = −dt2 + dl2 +
(
l2 + r2

th

)
dΩ2. (5.2)

Comparing eqs. (5.1) and (2.4), we find

A(r) = 1, B(r) =
1

1− r2
th
r2

, C(r) = r2. (5.3)

The wormhole throat in this case acts as an effective photon sphere, as can been seen from
the effective potential Veff = L2/(l2 +r2

th) in the proper radial coordinate. The corresponding
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critical impact parameter is bth =
√

C(rth)
A(rth) = rth. The bending angle of light in the strong

deflection limit in the background of this wormhole spacetime is analyzed below.

• Approaching strong deflection limit from the b > bth side:
In this case, the observer and the light source are on the same side of the throat,
and there will be a turning point (r0) of light outside the throat (rth). Therefore, the
bending angle of light takes the following form:

α(r0) = 2

∫ ∞
r0

b(r0) dr

r2

√
1− r2

th
r2

√
1− b2

r2

− π, (5.4)

where the impact parameter of light b, in terms of the turning point r0, is given as

b(r0) =
√

C(r0)
A(r0) = r0. Hence, the above integration becomes

α(r0) = 2r0

∫ ∞
r0

dr

r2

√
1− r2

th
r2

√
1− r2

0
r2

− π. (5.5)

This integration can be performed exactly. Putting r0
r = sin y, we get

α(r0) = 2

∫ π/2

0

dy√
1− r2

th

r2
0

sin2 y

− π = 2K(m)− π, (5.6)

where K(m) is the complete elliptic integral of the first kind and 0 < m < 1, with
m = rth

r0
. The expansion of K(m) in the limit m→ 1 is given by (see eq. (10) of section

13.8 in [87])

lim
m→1

K(m) = −1

2
log
(
1−m2

)
+ 2 log 2 +O

[(
1−m2

)
log
(
1−m2

)]
. (5.7)

Therefore, in the strong deflection limit, r0 → rth or b → bth (b ≥ bth), the bending
angle can be written as

α(b) = − log

(
b2

b2th
− 1

)
+ 4 log 2− π +O

[(
b2 − b2th

)
log
(
b2 − b2th

)]
. (5.8)

Let us find out the same bending angle in the strong deflection limit by the line element
in eq. (5.1), using the expressions we derived in eqs. (3.22)–(3.23) directly. Recall once

again that, in this case, A(r) = 1, B(r) = 1/(1 − r2
th
r2 ), or, B̄(r) = B(r)−1 = 1 − r2

th
r2 ,

and C(r) = r2. Therefore, Ath = 1, A′th = 0, B̄th = 0, B̄′th = 2
rth

, Cth = r2
th, and

C ′th = 2rth. Using these, after some simplifications, the regular part IR(rth) becomes
(see section 3.2 for the regular part)

IR(rth) =

∫ 1

0

dz

2− z
= log 2. (5.9)

Therefore, the expressions of ā, b̄, and the corresponding deflection angle α(b) become

ā = 1, b̄ = 4 log 2− π, (5.10)

α(b) = − log

(
b2

b2th
− 1

)
+ 4 log 2− π +O

[(
b2 − b2th

)
log
(
b2 − b2th

)]
(5.11)
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As expected, eqs. (5.8) and (5.11) exactly match with each other. Moreover, the above
expression of α(b) can be further approximated in the limit b→ bth as

α(b) ' − log

[(
b

bth
− 1

)(
b

bth
+ 1

)]
+4 log 2−π ' − log

(
b

bth
− 1

)
+3 log 2−π (5.12)

The above expression for the bending angle is obtained when the wormhole metric
is written in spherical polar coordinate system. However, the same expression can
be obtained when the metric is written in the proper radial coordinate as well. This
has been done in section III(C) of [5]. Therefore, we can arrive at the bending angle
formula in the strong deflection limit when the metric is expressed either in spherical
polar coordinate (r) or in the proper radial coordinate (l).

The advantage of our bending angle formula obtained in section 3.2 is that it does not
require any coordinate transformation to write the metric in the proper radial coor-
dinate. Therefore, if the metric of a certain wormhole spacetime cannot be expressed
explicitly in the proper radial coordinate, then we cannot apply the method described
in section III(C) of [5]. Instead, the methodology described in this paper can be directly
used to obtain the required bending angle.

• Approaching strong deflection limit from b < bth side:
In this case, the observer and the light source are on opposite sides of the throat, and
there exists no turning point. This is the case discussed in section 4.2. The formula for
bending angle of light is written as,

α(b) = 2

∫ ∞
rth

b dr

r2

√
1− b2th

r2

√
1− b2

r2

− π, (5.13)

where we have replaced rth = bth. Similar to the previous case, assuming bth
r = sin y,

we obtain

α(b) =
2b

bth

∫ π/2

0

dr√
1− b2

b2th
sin2 y

− π =
2b

bth
K(n)− π, (5.14)

where, n = b
bth

and 0 < n < 1. Therefore, using the expansion (5.7), the bending angle
α(b) in the strong deflection limit b→ bth (b ≤ bth) can be written as

α(b) = − log

(
b2th
b2
− 1

)
+ 4 log 2− π +O

[(
b2th − b2

)
log
(
b2th − b2

)]
. (5.15)

We now obtain the strong bending formula using our analytic formula (4.20)–(4.21)
and the metric (5.1). To this end, we first note that the regular part IR(bth) is given
by

IR(bth) =

∫ 1

0

dz

2− z
= log 2. (5.16)

Therefore, we obtain ā = 1, b̄ = 4 log 2− π and

α(b) = − log

(
b2th
b2
− 1

)
+ 4 log 2− π +O

[(
b2th − b2

)
log
(
b2th − b2

)]
. (5.17)

Note that, similar to the previous case, in this case also, the strong bending angle (5.17)
matches with that in eq. (5.15).
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Figure 6. Plots showing (a) the effective potential plotted in proper radial coordinate, (b)
numerically integrated (blue curves) and analytic (red curves) deflection angle of light coming from
the other side (dashed curves) as well as of that coming from a source located on the observer’s side
(solid curves) of the throat and (c) % error (α−αexact

αexact
× 100) in bending angle as a function of αexact

in the strong deflection limit (α ≥ 2π) for light coming from the other side (dashed curve) as well as
of that coming from a source located on the observer’s side (solid curve) of the throat. Here, αexact

is the numerically integrated bending angle and α is the analytic bending angle which we obtained.
Here, we have taken M = 1.

5.2 Strong lensing by a wormhole with exponential redshift function

We now consider the following wormhole with a exponential redshift function:

ds2 = −e−
rth
r dt2 +

dr2

1− rth
r

+ r2
(
dθ2 + sin2 θdφ2

)
. (5.18)

This type of metric has been frequently used in the literature [76–78, 88]. We can define
rth = 2M , where M is the mass of the wormhole. It can be noted that, unlike the Ellis-
Bronnikov wormhole, the above wormhole spacetime can not be explicitly written in the
proper radial coordinate, even though the integration in (2.2) in this case can be performed
analytically. Figure 6 shows the plots for the effective potential plotted in the proper radial
coordinate, the deflection angle and the percentage error in the analytic deflection angle. Note
that the throat acts as an effective photon sphere in this case. The corresponding critical
impact parameter is bth = rth

√
e. For the analytic deflection angle in this case, we have used

eqs. (3.24)–(3.25) when the light source is on the observer’s side and eqs. (4.20)–(4.21) when
the light source is on the other side of the throat.

5.3 Strong lensing by a wormhole with vanishing curvature

Next, we consider strong lensing by the wormhole [89, 90]

ds2 = −

(
κ+ λ

√
1− 2M

r

)2

dt2 +
dr2

1− 2M
r

+ r2
(
dθ2 + sin2 θdφ2

)
(5.19)

which has vanishing Ricci scalar. Here, we choose the parameter κ and λ to be positive
in such a way that (κ + λ) = 1. This is to ensure that the metric function |gtt| → 1 as
r → ∞. When κ = 0, we obtain the Schwarzschild black hole with mass M . The throat is
at r = rth = 2M . The above wormhole has a photon sphere at r = rm on each side of the
throat, where

rm =
2M

1−
(√

κ2+3λ2−κ
3λ

)2 ≥ rth. (5.20)
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Figure 7. Plots showing (a) the effective potential plotted in proper radial coordinate, (b)
numerically integrated (blue curves) and analytic (red curves) deflection angle of light coming from
the other side (dashed curves) as well as of that coming from a source located on the observer’s side
(solid curves) of the throat and (c) % error (α−αexact

αexact
× 100) in bending angle as a function of αexact

in the strong deflection limit (α ≥ 2π) for light coming from the other side (dashed curve) as well as
of that coming from a source located on the observer’s side (solid curve) of the throat. Here, αexact

is the numerically integrated bending angle and α is the analytic bending angle which we obtained.
Here, we have taken M = 1.

Note that, when κ = 0, we recover the photon sphere radius rm = 3M of the Schwarzschild
black hole. Figure 7 shows the plots for the effective potential plotted in the proper radial
coordinate, the deflection angle and the percentage error in the analytic deflection angle. For
the analytic deflection angle in this case, we have used eqs. (3.1)–(3.2) when the light source
is on the observer’s side and eqs. (4.18)–(4.19) when the light source is on the other side of
the throat.

6 Observables in gravitational lensing

We now discuss various observables of the relativistic images formed due to the strong grav-
itational lensing. We assume that the observer and the light source are faraway from the
wormhole throat. It is to be noted that, when the observer and the light source are on the
same side of the throat, the relativistic images due to strong lensing by a photon sphere
discussed in section 3.1 and that by a throat discussed in section 3.2 are formed at impact
parameters greater than the corresponding critical value, i.e., they are formed outside the
photon sphere and the throat respectively. The dependence of the strong deflection angle
on b and bm or bth in these two cases are similar to each other [see eqs. (3.1)–(3.2) and
eqs. (3.24)–(3.25)], except that the expressions for ā and b̄ are different in the two cases.

Also note that, as we discussed in 3.1, the expression for the strong bending angle due
to the photon sphere of a wormhole is the same as that due to the photon sphere of a black
hole. Therefore, the expressions for the angular position and magnification of the relativistic
images formed in these two wormhole cases will be the same as those due to a black hole and
for the nth relativistic image, are, respectively, given by [3]

θn =
bm,th
DOL

(1 + en) = θ∞(1 + en), en = e
b̄−2nπ
ā , (6.1)

µn =
b2m,thDOSen(1 + en)

āβD2
OLDLS

, (6.2)
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where bm,th means either bm or bth, and θ∞ = bm,th/DOL is the angular position of the
relativistic image formed either at the photon sphere or at the throat. Depending on the
cases, we use the corresponding expressions for ā and b̄ in the above equations. Here, DLS is
the distance between the lens and the source, DOS is the distance between the observer and
the source, DOS = DOL +DLS , DOL is the distance between the observer and the lens, β is
the angular separation between the source and the lens. Note that the angular position of
the images decreases with n, implying that, in the images formed outside the photon sphere
or the throat, the first relativistic image is the outermost one and the image with the angular
position θ∞ is the innermost one. Moreover, we can define another observable, namely the
angular separation sn between the nth and (n+ 1)th images as

sn = θn − θn+1. (6.3)

However, when the observer and the light source are on the same side of the throat
and the strong lensing takes place due to the presence of an antiphoton sphere as discussed
in section 3.3, the images are formed at impact parameter less than the critical value bm,
i.e., they are formed inside the photon sphere. Note that, as discussed in section 3.3, the
analytic strong deflection formula in this case is the same as that due to the presence of an
antiphoton sphere around an ultracompact object [18]. Therefore, the expressions for the
angular position and magnification of the nth relativistic image in this case are given by [18]

θ−n =
bm
DOL

1√
1 + e−n

=
θ−∞√

1 + e−n
, e−n = e

b̄−2nπ
ā , (6.4)

µ−n = − b2mDOS

2āβD2
OLDLS

e−n
(1 + e−n)2

, (6.5)

where θ−∞ = bm/DOL is the angular position of the relativistic image formed at the photon
sphere. Here, the minus sign before n implies that the images are formed inside the photon
sphere. Note that, in contrast to that for the images formed outside the photon sphere or
the throat (previous two cases), the angular position of the images formed inside the photon
sphere increases with n, implying that, in the these inner images, the first relativistic image
is the innermost one and the image with the angular position θ−∞ is the outermost one.

In the scenario discussed in section 4, i.e., when the observer and the light source are
on the opposite sides of the throat, the images are formed at the impact parameters smaller
than the critical value, i.e., they are formed either inside the photon sphere (section 4.1) or
inside the throat (section 4.2). Note that the dependence of the strong bending angle on b
and bm or bth in these cases [see eqs. (4.18)–(4.19) and eqs. (4.20)–(4.21)] is similar to the one
obtained in the strong lensing due to the antiphoton sphere [see eqs. (3.26)–(3.27)], except
that the expression for ā and b̄ are different. Therefore, when the observer and the light
source are on the opposite sides of the throat also, the angular positions and magnifications
of the relativistic images are given by eqs. (6.4) and (6.5) with bm replaced by bm,th and ā
and b̄ given by the corresponding expressions. Note that θ∞ = θ−∞. Beside the angular
positions and magnifications of the relativistic images formed in these cases, we define one
more observable, namely the angular separation s−n between the nth and (n+1)th images as

s−n = |θ−n − θ−(n+1)|. (6.6)

The angular positions, angular separations and the magnifications of the relativistic
images of the examples discussed in the previous section along with the Schwarzschild black
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Schwarzschild Ellis- Wormhole Wormhole

black hole Bronnikov in in eq. (5.19)

wormhole eq. (5.18) κ = 0.1, λ = 0.9

θ1 28.2802 10.9476 18.4010 26.2277

θ2 28.2449 10.8723 17.9446 26.1884

θ∞ 28.2449 10.8715 17.9240 26.1883

θ−2 — 10.8706 17.9034 26.1363

θ−1 — 10.7961 17.4652 25.1555

µ1 × 1022 5.3850 3.1750 23.6420 5.3934

µ2 × 1022 0.0100 0.0371 0.9963 0.0122

µ−2 × 1022 — −0.0371 −0.9906 −3.5407

µ−1 × 1022 — −3.0664 −20.7603 −63.8772

s1 0.0353 0.0752 0.4564 0.0393

s2 0.0001 0.0009 0.0197 0.0381

s−2 — 0.0009 0.0197 0.4208

s−1 — 0.0745 0.4382 0.9807

Table 1. The angles are in microarc sec. Here, we have taken M = 4.31× 106M�, DOL = 7.86 Kpc,
which are the parameters for the supermassive black hole Sgr A∗ at center of our Galaxy, DLS = DOL

and β = 5◦. For the Ellis-Bronnikov wormhole, the throat size rth is taken to be equal to 2M .

hole are presented in table 1. Here we have restored G and c by replacing M by (GM)/c2.
Here, the parameter M and the distance DOL are, respectively, taken to be equal to the mass
and distance of the supermassive black hole Sgr A∗ at center of our Galaxy. Although the
Ellis-Bronnikov wormhole is massless, we have taken its throat size rth to be equal to 2M for
simplicity.

Note that the angular separations and magnifications of the relativistic images formed
due to the strong lensing by the throat are almost symmetric with respect to the throat (see
third and fourth columns of table 1). The reason for this has been discussed already at the
end of section 4.2. On the other hand, when the images are formed due to the strong lensing
by a photon sphere located outside the throat, their angular separations and magnifications
are asymmetric with respect to the photon sphere. The images formed inside the photon
sphere have much larger angular separations and magnification than those formed outside it
(see fifth column of table 1). Therefore, although both the throat and the photon sphere act
as the maxima of the effective potential for image formation, the unique characteristic feature
of symmetry of images in case of a wormhole throat distinguishes it from usual photon sphere.
This property is very interesting and may serve as a significant tool in futuristic experiments
regarding wormholes.

We recall that, for black holes, relativistic images are always formed outside the photon
spheres. Whereas, for wormholes, when the strong lensing takes place due to the presence of
an antiphoton sphere (case a3), the images are formed both inside and outside the photon
sphere simultaneously, even if the observer and the source are on the same side of the throat.
Except this case, in all other cases, the images are formed both inside and outside a photon
sphere or a throat simultaneously only when there are light sources present on both sides, i.e.,
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on the observer’s side as well as on the opposite side of the throat. If a light source is present
only on one side, then, except in the case a3, the images are formed either the inside or the
outside of the throat or the photon sphere, depending on which side the source is present.

Therefore, when the observer and the source are on opposite sides of the throat, the
relativistic images are formed only inside the photon sphere (case b1) or the throat (case
b2). Note that the angular separation and magnification of these images formed only inside
the photon sphere or the throat decrease as we move from the innermost (first) image to
the outermost one (see table 1). Whereas, for black holes, it’s the opposite. The images for
black holes are always formed outside the photon sphere and their angular separation and
magnification decrease as we move from the outermost (first) image to the innermost one.
Therefore, this unique lensing feature of the images formed only inside the photon sphere or
the throat due to the strong lensing of light coming from the other side of the throat (cases
b1 and b2) can help us detecting wormholes in futuristic experiments.

7 Summary and conclusions

In this paper, we have carried out an exhaustive analysis of gravitational lensing in the strong
field limit from wormholes. We have classified and studied five different possibilities that can
arise, and exemplified our computations (carried out for generic static spherically symmetric
wormhole spacetimes) with three distinct examples. We have pointed out several distinctive
features of strong lensing from wormholes as compared to those from black holes. For black
holes, relativistic images are always formed outside the photon spheres, and their angular
separation and magnification decrease as we move from the outermost (first) image to the
innermost one formed at the photon sphere.

In contrast, for wormholes, images can be formed both inside and outside the photon
spheres or the throat, and the angular separation and magnification of the former (i.e. images
formed inside the photon sphere or the throat) are opposite in nature as compared to the
latter (i.e. images formed outside the photon sphere or the throat) or as compared to those by
black holes, i.e., they decrease as we move from the innermost (first) image to the outermost
one formed at the photon sphere. Depending on the situations, the relativistic images formed
due to strong lensing by wormholes can have the following patterns:

• The images are formed only outside the photon sphere (case a1) or the throat (case a2)
when the light source is present only on the observer’s side of the throat. Qualitatively,
this is very similar to that by a black hole. However, the strong bending formula which
we obtained in case a2 is different from that in case of a black hole.

• The images are formed both outside and inside the photon sphere when the light source
is present only on the observer’s side of the throat and the strong lensing takes place
in the presence of an antiphoton sphere (case a3). Qualitatively, this is very similar to
that by other horizonless ultracompact objects discussed in [18].

• The images are formed both outside and inside the photon sphere (a combination of the
cases a1 and b1) or the throat (a combination of the cases a2 and b2) when there are
light sources present on both sides of the throat. As we have discussed in the previous
section, the images formed due to a photon sphere in this case are asymmetric with
respect to it, whereas those formed due to a throat are almost symmetric with respect
to it.
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• The images are formed only inside the photon sphere (case b1) or the throat (case b2)
when the observer and the light source are on opposite sides of the throat. This case
is qualitatively very different from that by a black hole.

Note once again that as we have discussed above, the angular separation and magnifi-
cation of the images formed inside the photon sphere or the throat in different strong lensing
cases by the wormhole are opposite in nature as compared to the ones by the black holes.
This fact together with the above patterns of the images formed provides several distinctive
features of strong lensing from wormholes as compared to those from black holes. These
distinctive features may be useful to detect wormholes in futuristic experiments.

An immediate interesting extension of the analysis presented here would be to compute
strong lensing from rotating wormholes. We leave this for a future publication.

A Details of the calculation for case b2

To obtain the strong deflection angle in this case, we define

z = 1− rth

r
, (A.1)

Putting this in eq. (4.2), we obtain

I(b) =

∫ 1

0
f(z, b, rth)dz, (A.2)

where

f(z, b, rth) =
2rth√

G(z, b, rth)
, G(z, b, rth) = R

C

B
(1− z)4 (A.3)

Therefore, R(r) can be expanded in the power of z as

R(r) =

(
Cth

b2Ath
− 1

)
+

Cth

b2Ath

[
rth

(
C
′
th

Cth
−
A
′
th

Ath

)
z

+

{
r2

th

2

(
C
′′
th

Cth
−
A
′′
th

Ath

)
+ rth

(
1−

A
′
thrth

Ath

)(
C
′
th

Cth
−
A
′
th

Ath

)}
z2

]
+O(z3). (A.4)

Once again, we define B̄(r) = B(r)−1 so that, by definition of the throat, B̄(rth) = B̄th = 0.
Therefore, the expansion of B̄(r) in powers of z will take the form,

B̄(r) = B̄
′
thrthz +

(
1

2
B̄
′′
thr

2
th + B̄

′
thrth

)
z2 +O(z3) (A.5)

Using similar expansion of C in addition to B̄ and R, we obtain the expansion of G(z, b, rth)
in powers of z as

G(z, b, rth) = δz + ηz2 +O(z3), (A.6)

where

δ = CthB̄
′
thrth

(
Cth

b2Ath
−1

)
, (A.7)

η = rth

(
Cth

b2Ath
−1

)(
1

2
CthB̄

′′
thrth−3CthB̄

′
th +C

′
thB̄

′
thrth

)
+r2

th

C2
thB̄

′
th

b2Ath

(
C
′
th

Cth
−
A
′
th

Ath

)
(A.8)
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Note that C(rth)
A(rth) = b2th. Therefore, in the limit b→ bth,

(
Cth
b2Ath

− 1
)
→ 0. As a result, in this

limit, we obtain

δth = δ|b=bth = 0, ηth = η|b=bth = r2
thCthB̄

′
th

(
C
′
th

Cth
−
A
′
th

Ath

)
. (A.9)

Hence, we obtain

Gth(z) = ηthz
2 +O(z3). (A.10)

This again shows that the leading order of the divergence of f(z, b, rth) is z−1 and that the
integral I(b) diverges logarithmically in the strong deflection limit b→ bth.

As usual, we again split up the integral I(b) into a divergent part ID(b) and a regular
part IR(b) giving, I(b) = ID(b) + IR(b). The divergent part ID(b) is given by

ID(b) =

∫ 1

0
fD(z, b, rth)dz , fD(z, b, rth) =

2rth√
δz + ηz2

(A.11)

And the regular part IR(b) is defined as

IR(b) =

∫ 1

0
fR(z, b, rth)dz , fR(z, b, rth) = f(z, b, rth)− fD(z, b, rth) (A.12)

After performing the integration, the divergent part ID(b) becomes

ID(b) =
4rth√
η

log

√
η +
√
δ + η

√
δ

(A.13)

Therefore, in the limit b→ bth, we get

ID(b) = − 2rth√
ηth

log

(
b2th
b2
− 1

)
+

2rth√
ηth

log

[
4rth

(
C
′
th

Cth
−
A
′
th

Ath

)]
+O

[(
b2th − b2

)
log
(
b2th − b2

)]
(A.14)

The corresponding expansion of the regular part IR(b) in powers of (b2th − b2) in the strong
deflection limit b→ bth takes the form,

IR(b) =

∫ 1

0
fR(z, bth, rth)dz +O

[(
b2th − b2

)
log
(
b2th − b2

)]
(A.15)

Finally, we obtain the expression of deflection angle in the strong deflection limit b → bth
(b < bth) as

α(b) = −ā log

(
b2th
b2
− 1

)
+ b̄+O

[(
b2th − b2

)
log
(
b2th − b2

)]
, (A.16)

where

ā = 2

√
Ath

B̄
′
th

(
C
′
thAth −A

′
thCth

) , b̄ = ā log

[
4rth

(
C
′
th

Cth
−
A
′
th

Ath

)]
+ IR(bth)− π. (A.17)
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[14] R.A. Konoplya, Z. Stuchĺık and A. Zhidenko, Echoes of compact objects: new physics near the
surface and matter at a distance, Phys. Rev. D 99 (2019) 024007 [arXiv:1810.01295]
[INSPIRE].
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