
J
C
A
P
0
7
(
2
0
1
9
)
0
3
1

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Stochastic inflation beyond slow roll

Chris Pattison,a Vincent Vennin,b,a Hooshyar Assadullahia,c

and David Wandsa

aInstitute of Cosmology & Gravitation, University of Portsmouth,
Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX, United Kingdom
bLaboratoire Astroparticule et Cosmologie, Université Denis Diderot Paris 7,
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1 Introduction

The leading paradigm for the very early universe is that of cosmological inflation [1–6],
which describes a phase of primordial high-energy accelerated expansion. While inflation
was proposed as a solution to the classical problems of the standard hot big bang cosmology,
its most impressive achievement is that it provides the seeds for large-scale structure, through
quantum vacuum fluctuations that become amplified during inflation [7–12].

As these fluctuations are stretched to cosmological distances, they backreact on the local
background expansion rate. This quantum backreaction effect can be modelled through a
stochastic formalism known as stochastic inflation [9, 13]. This approach is usually studied in
the slow-roll regime, which is an attractor of the classical field dynamics, where the frictional
force due to the expansion balances the force coming from the potential gradient. In this
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regime, excellent agreement between stochastic inflation and usual quantum field theoretic
techniques has been found [14–23].

Recently, situations in which non-slow-roll stochastic effects are at play have been high-
lighted [24–28]. For instance, if the inflationary potential features a very flat section close to
the end of inflation, large curvature perturbations could be produced that later collapse into
primordial black holes. If such a flat portion exists, it may be associated with both large
stochastic diffusion [29] and deviations from slow-roll, e.g. along the so-called ultra-slow-roll
(or “friction dominated”) regime [30, 31], which in some cases can be stable [32]. This ex-
plains the need for implementing the stochastic inflation programme beyond slow roll, which
is the aim of the present work.

This paper is organised as follows. In section 2, we quickly review the stochastic inflation
formalism and identify the three main requirements for the validity of this approach: the
quantum-to-classical transition of super-Hubble fluctuations, the validity of the separate
universe approach, and the consistent implementation of gauge corrections. The two latter
requirements are the non-trivial ones and we examine them in sections 3 and 4 respectively.
Although recently questioned [33], we find the separate universe approach to hold beyond
slow roll, and we explain how the gauge corrections to the amplitude of the stochastic noise
(that vanish in the slow-roll regime if the number of e-folds is used as a time variable) can be
derived in general. We then apply this program to three situations of interest: slow roll in
section 5, where we recover the usual results, ultra-slow roll in section 6, and the Starobinsky
model in section 7, which interpolates between an ultra-slow-roll and a slow-roll phase. In
all cases, we find the gauge corrections to be negligible, allowing for the usual stochastic
formulation to be employed.

2 Requirements for stochastic inflation

The action describing 4-dimensional gravity in a curved space-time, with metric gµν , mini-
mally coupled to a scalar field φ, reads

S =

∫
d4x
√−g

[
M2

Pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
. (2.1)

In this work, we consider a single inflaton field φ with potential V (φ) for simplicity, but our
results can easily be extended to multiple-field setups. We also restrict our analysis to scalar
fluctuations only, and expand the metric about the flat Friedmann-Lemâıtre-Robertson-
Walker (FLRW) line element,

ds2 = −(1 + 2A)dt2 + 2a∂iBdxidt+ a2 [(1− 2ψ)δij + 2∂i∂jE] dxidxj , (2.2)

where a is the scale factor of the universe.
Away from slow roll, the homogeneous background field φ and its conjugate momentum

π are two independent dynamical variables and stochastic inflation needs to be formulated in
the full phase space (see ref. [34] for a more detailed analysis). This can be done by deriving
the Hamiltonian equations from the action (2.1),

∂φ̂

∂N
= π̂ , (2.3)

∂π̂

∂N
+ (3− ε1) π̂ +

V,φ(φ̂)

H2
= 0 , (2.4)
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where N = ln a is the number of e-folds, ε1 ≡ −Ḣ/H2 is the first slow-roll parameter,
H ≡ ȧ/a is the Hubble parameter, a dot denotes derivatives with respect to cosmic time t
and a subscript ,φ means derivative with respect to the field φ. At this stage, φ̂ and π̂ are
quantum operators, as stressed by the hats. The Hubble parameter is related to the field
phase-space variables through the Friedmann equation,

H2 =
V +

φ̇2

2
3M2

Pl

,
(2.5)

where MPl is the reduced Planck mass.

When linear fluctuations are added to the homogenous field and its conjugate momen-
tum, they can be split according to

φ̂ = ˆ̄φ+ φ̂s , (2.6)

π̂ = ˆ̄π + π̂s , (2.7)

where φ̂s and π̂s are the short-wavelength parts of the fields that can be written as

φ̂s =

∫

R3

dk

(2k)
3
2

W

(
k

σaH

)[
e−ik·xφk(N)âk + eik·xφ∗k(N)â†k

]
, (2.8)

π̂s =

∫

R3

dk

(2k)
3
2

W

(
k

σaH

)[
e−ik·xπk(N)âk + eik·xπ∗k(N)â†k

]
. (2.9)

In these expressions, â†k and âk are creation and annihilation operators, and W is a window
function that selects out modes such that k/(σaH) > 1, where σ � 1 is the coarse-graining
parameter. The coarse-grained fields φ̄ and π̄ thus contain all wavelengths that are much
larger than the Hubble radius, k < σaH. They stand for the local background values of the
fields, that are continuously perturbed by the small wavelength modes, as they emerge from
φ̂s and π̂s and cross the coarse-graining radius.

Inserting the decompositions (2.6) and (2.7) into the classical equations of motion (2.3)
and (2.4), to linear order in the short-wavelength parts of the fields, the equations for the
long-wavelength parts become

∂ ˆ̄φ

∂N
= ˆ̄π + ξ̂φ(N) , (2.10)

∂ ˆ̄π

∂N
= − (3− ε1) ˆ̄π − V,φ( ˆ̄φ)

H2
+ ξ̂π(N) , (2.11)

where the source functions ξ̂φ and ξ̂π are given by

ξ̂φ = −
∫

R3

dk

(2k)
3
2

dW

dN

(
k

σaH

)[
e−ik·xφk(N)âk + eik·xφ∗k(N)â†k

]
, (2.12)

ξ̂π = −
∫

R3

dk

(2k)
3
2

dW

dN

(
k

σaH

)[
e−ik·xπk(N)âk + eik·xπ∗k(N)â†k

]
. (2.13)
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If the window function is taken to be a Heaviside function, then the two-point correlation
functions of the sources are given by

〈0|ξ̂φ(N1)ξ̂φ(N2)|0〉 =
1

6π2
dk3σ(N)

dN

∣∣∣∣
N1

|φkσ(N1)|2 δ (N1 −N2),

〈0|ξ̂π(N1)ξ̂π(N2)|0〉 =
1

6π2
dk3σ(N)

dN

∣∣∣∣
N1

|πkσ(N1)|2 δ (N1 −N2),

〈0|ξ̂φ(N1)ξ̂π(N2)|0〉 = 〈0|ξ̂π(N1)ξ̂φ(N2)|0〉∗ =
1

6π2
dk3σ(N)

dN

∣∣∣∣
N1

φkσ(N1)π
∗
kσ

(N1)δ (N1 −N2),

(2.14)
where kσ ≡ σaH is the comoving coarse-graining scale. The idea is then to view the source
functions as random Gaussian noises rather than quantum operators, correlated according to
eqs. (2.14), and to interpret eqs. (2.10) and (2.11) as stochastic Langevin equations for the
random field variables φ̄ and π̄,

∂φ̄

∂N
= π̄ + ξφ(N) , (2.15)

∂π̄

∂N
= − (3− ε1) π̄ −

V,φ(φ̄)

H2(φ̄, π̄)
+ ξπ(N) , (2.16)

where we have removed the hats to stress that we now work with stochastic quantities rather
than quantum operators. The validity of such an approach relies on three main requirements:

• quantum-to-classical transition

The replacement of quantum operators by stochastic fields is a non-trivial procedure.
For instance, stochastic variables always commute while quantum operators do not.
From the last of eqs. (2.14), one can see that this notably implies the imaginary part
of φkπ

∗
k to be negligible compared to its real part. During inflation, cosmological

perturbations are placed in a two-mode highly squeezed state on large scales and indeed
experience such a quantum-to-classical transition [35–37]. The only requirement for
this to happen is the dominance of a growing mode over a decaying mode, which is
guaranteed as long as perturbations get amplified outside the Hubble radius. This does
not rely on slow roll and is therefore not a problem in general.

Furthermore, the importance of this first requirement should be taken with a grain
of salt. First, hermitian two-point functions involving the field and its conjugate
momentum, or any higher-order correlator involving only one phase-space variable,
can be well reproduced by a stochastic description regardless of the amount of quan-
tum squeezing [34, 38]. Second, the amount of squeezing is defined up to a choice
of phase-space canonical variables, and can be set to any arbitrary value by perform-
ing a suitable canonical transformation [34]. Moreover, the real part of φkπ

∗
k can be

set to zero after a suitable rotation in phase space, so the above classical criterion is
not invariant under canonical transformations. Third, there are a class of observables
called “improper” [39], the expectation values of which can never be reproduced by a
stochastic theory, even in the large-squeezing limit (giving rise e.g. to Bell inequality
violations [40, 41]).

The quantum-to-classical transition is therefore a delicate concept, which however does
not rely on the slow-roll approximation, hence does not hinder the use of a stochastic
formalism beyond this regime.
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• separate universe approach

Since the spatial gradients in the Langevin equations (2.15) and (2.16) are neglected,
one assumes that, on super-Hubble scales, each Hubble patch evolves forward in time
independently of the other patches, and under a locally FLRW metric. This is the so-
called separate universe picture [42–47], or quasi-isotropic [48–51] picture. The validity
of this approximation beyond slow roll has recently been questioned in ref. [33], and in
section 3, we will show why it is in fact still valid.

• use of the uniform-N gauge

In order to derive the Langevin equations (2.15) and (2.16), only the field variables have
been perturbed according to eqs. (2.6) and (2.7), and not the entries of the metric. In
particular, the lapse function, i.e. A in the notation of eq. (2.2), has been neglected.
This implies that the Langevin equations are written in a specific gauge, namely the
one where the time coordinate is fixed. Since we work with the number of e-folds as
the time variable, this corresponds to the uniform-N gauge. In eqs. (2.14), the field
perturbations φk and πk must therefore be calculated in that same gauge. However,
it is common to compute the field perturbations in the spatially-flat gauge, since in
that gauge, they are directly related to the gauge-invariant curvature perturbation,
which is quantised in the Bunch-Davies vacuum. One must therefore compute the
correction to the noise amplitude that comes from translating the field fluctuations in
the spatially-flat gauge to the uniform-N gauge, and this is what is done in detail in
section 4.

Let us note that one could work with a different time coordinate, hence in a different
gauge (for instance, working with cosmic time t would imply working in the synchronous
gauge). This is not a problem as long as one computes gauge-invariant quantities in the
end, such as the curvature perturbation ζ. However, since ζ is related to the fluctuation
in the number of e-folds in the so-called “stochastic δN formalism” [18, 52], we find
it convenient to work with the number of e-folds as a time variable. Another reason
is that, as will be shown in section 4, in the slow-roll regime, the spatially-flat gauge
coincides with the uniform-N gauge (but not, say, with the synchronous gauge), which
makes the gauge correction identically vanish, and which explains why it is usually
recommended [18] (but not compulsory) to work with N as a time variable.

3 Separate universes

The separate universe approach is valid when each causally-disconnected patch of the universe
evolves independently, obeying the same field equations locally as in a homogeneous and
isotropic (FLRW) cosmology. Combining eqs. (2.3) and (2.4), the Klein-Gordon equation for
a homogeneous field in an FLRW cosmology, φ(t), is given by

φ̈+ 3Hφ̇+ V,φ = 0 . (3.1)

In this section, we derive the equation of motion for linear fluctuations about a homo-
geneous scalar field from (i) cosmological perturbation theory, and (ii) perturbations of the
background FLRW equations of motion, i.e., the separate universe approach. We show that
the two equations of motion match at leading order in a spatial gradient expansion, with or
without slow roll.

– 5 –
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3.1 Cosmological perturbation theory

At linear order in perturbation theory, the perturbed Klein-Gordon equation in Fourier space,
with eq. (2.2), gives [53, 54]

¨δφk + 3H ˙δφk +

(
k2

a2
+ V,φφ

)
δφk = −2V,φAk + φ̇

[
Ȧk + 3ψ̇k +

k2

a2

(
a2Ėk − aBk

)]
. (3.2)

The metric perturbations that feature in the right-hand side of eq. (3.2) satisfy the
Einstein field equations, and in particular the energy and momentum constraints

3H
(
ψ̇k +HAk

)
+
k2

a2

[
ψk +H

(
a2Ėk − aBk

)]
= − 1

2M2
Pl

[
φ̇
(

˙δφk − φ̇Ak

)
+ V,φδφk

]
,

(3.3)

ψ̇k +HAk =
φ̇

2M2
Pl

δφk . (3.4)

Introducing the Sasaki-Mukhanov variable [55, 56]

Qk = δφk +
φ̇

H
ψk , (3.5)

and using eqs. (3.3) and (3.4) to eliminate the metric perturbations, eq. (3.2) can be
rewritten as

Q̈k + 3HQ̇k +

[
k2

a2
+ V,φφ −

1

a3M2
Pl

d

dt

(
a3

H
φ̇2
)]

Qk = 0 . (3.6)

We now compare this equation with the one coming from perturbing the background
equations.

3.2 Perturbed background equations

In order to easily relate the field fluctuation δφ to the Sasaki-Mukhanov variable, one usually
chooses to work in the spatially-flat gauge where ψ = 0, and hence Q = δφ according to
eq. (3.5). In this section, we will show how to perturb the background equations in that
gauge (see section 3.2.1), but also in the uniform-N gauge that is used in stochastic inflation
(see section 3.2.2).

Let us perturb the quantities appearing in eq. (3.1), according to

φ→ φ+ δφ , dt→ (1 +A)dt , (3.7)

where 1+A is the lapse function introduced in eq. (2.2). Let us stress that the lapse function
needs to be perturbed, otherwise one is implicitly working in a synchronous gauge (where
A = 0), which in general differs from the spatially-flat and uniform-N gauges, and this leads
to inconsistencies [33]. Inserting eq. (3.7) into eq. (3.1) gives rise to

δ̈φ+

(
3H +

φ̇2

2M2
PlH

)
˙δφ+

(
φ̇

2M2
PlH

V,φ + V,φφ

)
δφ

−φ̇Ȧ−
(

2φ̈+ 3Hφ̇+
φ̇3

2M2
PlH

)
A = 0 ,

(3.8)

where we have also used

δH =
V,φδφ+ φ̇ ˙δφ− φ̇2A

6M2
PlH

(3.9)

that comes from perturbing the Friedmann equation (2.5) under eq. (3.7).

– 6 –
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3.2.1 Spatially-flat gauge

In the spatially-flat gauge, the lapse function can readily be rewritten in terms of the field
perturbation by imposing the momentum constraint (3.4), which simplifies to

A =
φ̇

2M2
PlH

δφ . (3.10)

Substituting this relation into eq. (3.8) gives rise to

δ̈φ+ 3H ˙δφ+

[
V,φφ −

1

M2
Pla3

d

dt

(
a3

H
φ̇2
)]

δφ = 0 . (3.11)

Comparing eq. (3.11), obtained from the perturbed background equations, with eq. (3.6),
obtained in linear perturbation theory in the spatially-flat gauge where Q = δφ, we see that
the two are consistent in the super-Hubble limit where k � aH.

It is important to note that the local proper time in each patch is perturbed with respect
to the cosmic time, t, in the background in the presence of a non-zero lapse perturbation, A.
As can be seen from eq. (3.10) the perturbation A vanishes in the spatially-flat gauge in the
slow-roll limit, φ̇→ 0, and the local proper time in this limit coincides with the background
cosmic time. Beyond slow roll one must consistently account for local variations in the proper
time interval in different patches if one wants to relate the separate universe equations to the
perturbation equations written in terms of a global (background) cosmic time. This will be
the aim of section 4.

3.2.2 Uniform-N gauge

Let us introduce the expansion rate of t =constant hypersurfaces

θ = nµ;µ , (3.12)

where nµ is the unit time-like vector, orthogonal to the constant-time hypersurfaces. It is
related to the metric perturbations in eq. (2.2) according to [54]

θ =
3

a

(
H−HA− ψ′ + 1

3
∇2σ

)
, (3.13)

where H = a′/a is the conformal Hubble parameter, a prime is a derivative with respect to
conformal time η defined through dt = adη, and σ = E′ − B is the shear potential. From
the perturbed expansion rate θ, one can define a perturbed integrated expansion up to first
order in the metric perturbations

Ñ =
1

3

∫
θ(1 +A)dt = N − ψ +

1

3
∇2

∫
σdη . (3.14)

The last term in the right-hand side can be re-written in terms of EB ≡
∫
σdη, which

corresponds to E in the hypersurface-orthogonal threading where B = 0. From now on, we
work in such a spatial threading. This gives rise to

δN = −ψ +
1

3
∇2EB , (3.15)

– 7 –
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i.e., the perturbation of the trace of the spatial metric on constant-time hypersurfaces.
Note, in particular, that in the spatially-flat gauge where ψ = B = 0, we have
δN |ψ=0 = 1

3∇2EB|ψ=0.
The uniform-N gauge used in the Langevin equations (2.15) and (2.16) is defined by

keeping the integrated expansion unperturbed across all patches of the universe, i.e. δN = 0.
From eq. (3.15), this imposes a direct relationship between ψ and E, namely ψ = 1

3∇2EB.
In the uniform-N gauge, we note that the perturbation equation (3.2) can be written as

¨δφk + 3H ˙δφk +

(
k2

a2
+ V,φφ

)
δφk = φ̇Ȧk − 2V,φAk

= φ̇Ȧk +
(

2φ̈+ 6Hφ̇
)
Ak .

(3.16)

This can be recast in a form similar to the perturbed background equation (3.8), namely

¨δφk +

(
3H +

φ̇2

2M2
PlH

)
˙δφk +

(
φ̇

2M2
PlH

V,φ + V,φφ

)
δφk

− φ̇Ȧk −
(

2φ̈+ 3Hφ̇+
φ̇3

2M2
PlH

)
Ak = ∆k

(3.17)

where the difference between eqs. (3.8) and (3.16) is quantified as

∆k =
φ̇

H

{
1

2M2
Pl

[
φ̇
(

˙δφk − φ̇Ȧk

)
+ V,φδφk

]
+ 3H2Ak

}
− k2

a2
δφk . (3.18)

If we now impose the energy constraint (3.3) in the uniform-N gauge, and recalling that since
we choose B = 0, ψ = 1

3∇2E, one can show that

∆k = −k
2

a2

(
δφk +

φ̇

H
ψk

)
= −k

2

a2
Qk , (3.19)

see eq. (3.5). Hence, since we neglect k2/a2 terms in the large-scale limit, the perturbation
equations and the perturbed background equations become identical on large scales. We
conclude that the separate universe approach, describing the evolution of long-wavelength
perturbations about an FLRW background in terms of locally FLRW patches, is valid in
both the spatially-flat and uniform-N gauges. This result does not rely on slow roll; we only
require that we can neglect gradient terms on super-Hubble scales.

3.3 Arbitrary gauge

Let us finally see how the above arguments can be formulated without fixing a gauge. It is
instructive to collect together metric perturbation terms in the Klein-Gordon equation from
the full linear perturbation theory, eq. (3.2), which describe the perturbation of the local
expansion rate (3.13)

δθk = −3ψ̇k −
k2

a2

(
a2Ėk − aBk

)
− 3HAk . (3.20)

Re-writing the perturbed Klein-Gordon equation (3.2) in terms of δθk we obtain

¨δφk + 3H ˙δφk +

(
k2

a2
+ V,φφ

)
δφk =

(
2φ̈+ 3Hφ̇

)
Ak + φ̇Ȧk − φ̇δθk . (3.21)

– 8 –
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Finally, combining eq. (3.21) with the background equation (3.1) and rewriting the time
derivatives in terms of the local proper time rather than the coordinate time, ∂/∂τ ≡ (1 −
A)∂/∂t, one obtains

∂2

∂τ2
(φ+ δφ) + θ

∂

∂τ
(φ+ δφ) + V,φ(φ+ δφ) =

∇2

a2
(δφ) . (3.22)

Thus we see that the perturbed Klein-Gordon equation (3.2) from cosmological perturbation
theory in an arbitrary gauge has exactly the same form, up to first order in the inhomogeneous
field and metric perturbations and up to spatial gradient terms of order ∇2δφ, as the Klein-
Gordon equation for a homogeneous scalar field in an FLRW cosmology, eq. (3.1), where we
identify the local proper time, τ , with the coordinate time, t, in an FLRW cosmology and the
local expansion rate, θ/3, with the Hubble rate, H, in an FLRW cosmology. However to relate
these local quantities to a global background coordinate system we need to fix a gauge. This
cannot be determined by the local FLRW equations but requires to use additional constraint
equations from the cosmological perturbation theory, as demonstrated in the preceding sub-
sections for the spatially-flat and uniform-N gauges.

4 Gauge corrections to the noise

In the previous section, it was explained that the field fluctuations, which determine the noise
correlators through eq. (2.14), are usually calculated in the spatially-flat gauge, where the
field perturbations coincide with the Sasaki-Mukhanov variable. However, we have seen that
the local time in the spatially-flat gauge is in general perturbed with respect to the global
time. As stressed in section 2, the Langevin equations (2.15) and (2.16) are written in terms
of the number of e-folds, i.e., the integrated expansion, N , is used as a time variable. If we
are to use the number of e-folds as a local time coordinate and also as a global coordinate,
relating the stochastic distribution of field values in many different patches at a given time,
then we need to work in the uniform-N gauge. Thus one needs to gauge transform the field
fluctuations calculated in the spatially-flat gauge to the uniform-N gauge before evaluating
eq. (2.14), and in this section, we explain how this can be done.

4.1 Gauge transformations

Let us denote quantities in the uniform-N gauge with a tilde, i.e. δ̃N = 0. The transfor-
mations from the spatially-flat to the uniform-N gauge can be written by means of a gauge
transformation parameter α (that will be determined below), according to [54]

δφ→ δ̃φ = δφ+ φ′α , (4.1)

ψ → ψ̃ = ψ −Hα , (4.2)

EB → ẼB = EB +

∫
αdη . (4.3)

Combining these transformation rules with eq. (3.15), the perturbed integrated expansion
transforms as

δN → δ̃N = δN +Hα+
1

3
∇2

∫
αdη . (4.4)

By definition, δ̃N = 0, so one is lead to

δN
∣∣∣
ψ=0

+Hα+
1

3
∇2

∫
αdη = 0 . (4.5)
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Taking the derivative of this expression with respect to conformal time, one obtains a differ-
ential equation for the gauge transformation parameter α, namely

3Hα′ +
(
3H′ +∇2

)
α = S , (4.6)

where the source term reads

S = −3δN ′
∣∣∣
ψ=0

= −∇2σ
∣∣∣
ψ=0

. (4.7)

Two remarks are then in order. First, the source standing on the right-hand side of
eq. (4.6) remains to be calculated. In section 4.2, we will show that for a scalar field it
is related to the non-adiabatic pressure perturbation, and we will explain how it can be
calculated. In section 4.3, we will provide the general solution to eq. (4.6). Second, once α is
determined, the field fluctuations in the uniform-N gauge can be obtained from those in the
spatially-flat gauge via eq. (4.1). The noise correlators (2.14) also involve the fluctuation in
the conjugate momentum, so this needs to be transformed into the uniform-N gauge as well.
However, precisely since N is unperturbed in the uniform-N gauge, one simply has

δ̃π =
dδ̃φ

dN
, (4.8)

and δ̃π can be inferred from δ̃φ by a straightforward time derivative.

4.2 Non-adiabatic pressure perturbation

Let us now show that the source function, S(η) of eq. (4.6), coincides with the non-adiabatic
pressure perturbation for a scalar field. This will prove that if inflation proceeds along a
phase-space attractor (such as slow roll), where non-adiabatic pressure perturbations vanish,
the source function vanishes as well; in this case eq. (4.6) is solved by α = 0, and there are
no gauge corrections.

Let us start by recalling the expressions for the energy constraint in an arbitrary
gauge [54]

3H
(
ψ′ +HA

)
−∇2 (ψ +Hσ) = − a2

2M2
Pl

δρ . (4.9)

Combining this with the momentum constraint (3.4) gives

∇2(ψ +Hσ) =
a2

2M2
Pl

δρcom , (4.10)

where the comoving density perturbation for a scalar field is given by

δρcom = δρ− ρ′

φ′
δφ . (4.11)

This in turn can be related to the non-adiabatic pressure perturbation [54]

δPnad = − 2a2

3Hφ′V,φδρcom . (4.12)
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In particular, in the spatially-flat gauge where ψ = 0, eq. (4.10) becomes

H∇2σ|ψ=0 = − 3Hφ′
4M2

PlV,φ
δPnad . (4.13)

Thus the source term S on the right-hand side of eq. (4.6) reads

S =
3φ′

4M2
PlV,φ

δPnad , (4.14)

and it vanishes if the non-adiabatic pressure perturbation is zero, which is the case whenever
inflation proceeds along a phase-space attractor, φ′ = φ′(φ), such as during slow roll.

In order to find a general expression for S(η), one can use the (arbitrary gauge) expres-
sion for δρ for a scalar field [54],

δρ =
φ′δφ′ − φ′2A

a2
+ V,φδφ , (4.15)

and combine it with eq. (4.10) to obtain

∇2(ψ +Hσ) =
a2

2M2
Pl

[(
3Hφ̇+ V,φ

)
δφ+ φ̇δφ̇− φ̇2A

]
. (4.16)

Hence, in terms of the field fluctuations in the spatially-flat gauge and using eq. (3.10) for
the perturbed lapse function, one finds

S = − 1

2M2
PlH

[(
3Hφ′ + a2V,φ −

φ′3

2M2
PlH

)
Q+ φ′Q′

]
. (4.17)

Introducing the second slow-roll parameter ε2 ≡ d ln ε1/dN , the source function can be
rewritten in the simpler form

S =
Q
√

2ε1
2MPl

sign(φ̇)

(
Hε2

2
− Q′

Q

)
. (4.18)

4.3 General solution

When written in Fourier space, the differential equation (4.6) for αk has the general solution

αk =
1

3H

∫ η

η0

Sk(η
′) exp

[
k2

3

∫ η

η′

dη′′

H(η′′)

]
dη′ . (4.19)

In this expression, η0 is an integration constant that defines the slicing relative to which the
expansion is measured. In what follows, we will consider situations in which an attractor
is reached at late times. Since, in such a regime, the gauge correction vanishes (given that
the non-adiabatic pressure perturbation does), we will take η0 in the asymptotic future,
i.e. η0 = 0−.

Finally, in eq. (4.18) the Sasaki-Mukhanov variable, Q, needs to be determined, which
can be done by solving the Sasaki-Mukhanov equation

v′′k +

(
k2 − z′′

z

)
vk = 0 , (4.20)
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where vk = aQk and z ≡ a
√

2ε1MPl. One can show that, in full generality z′′/z = H2(2 −
ε1 + 3ε2/2− ε1ε2/2 + ε22/4 + ε2ε3/2), where we have introduced the third slow-roll parameter
ε3 ≡ d ln ε2/d lnN . For future use however, instead of working with the second and third
slow-roll parameters, it will be more convenient to work with the field acceleration parameter

f = − φ̈

3Hφ̇
= 1 +

1

3Hφ̇
V,φ (4.21)

and the dimensionless mass parameter

µ =
V,φφ
3H2

, (4.22)

in terms of which
z′′

z
= H2

(
2 + 5ε1 − 3µ− 12fε1 + 2ε21

)
, (4.23)

see appendix A.

The following three sections will be devoted to three case studies, for which eq. (4.20)
will be solved and eq. (4.19) will be evaluated in order to derive the gauge corrections to the
stochastic noise correlators in the uniform-N gauge with respect to those in the spatially-flat
gauge. In all cases, we will find that at the order of the coarse-graining parameter at which
the stochastic formalism is derived, these gauge corrections can be neglected.

5 Case study 1: slow roll

Let us first apply the programme sketched above to the case of slow-roll inflation. As argued
before, the presence of a dynamical attractor in that case makes the non-adiabatic pressure
perturbation vanish, hence we should not find any gauge correction to the field fluctuations in
the uniform-N gauge and thus to the correlators for the noise. This is therefore a consistency
check of our formalism.

At leading order in slow roll, the slow-roll parameters can simply be evaluated at the
Hubble-crossing time η∗ ' −1/k, since their time dependence is slow-roll suppressed, i.e.
ε1 = ε1∗ +O(ε2), etc. At that order, eq. (4.20) is solved according to

vk =

√−πη
2

H(2)
ν (−kη) = aQk , (5.1)

where H
(2)
ν is the Hankel function of the second kind and ν ≡ 3/2 + ε1∗ + ε2∗/2, see ap-

pendix A.4. Since the coarse-graining parameter is such that σ � 1, the mode functions in
eq. (2.14) need to be evaluated in the super-Hubble regime, i.e. when −kη � 1. One can
therefore make use of the asymptotic behaviour

H(2)
ν (−kη) ' iΓ(ν)

π

(
2

−kη

)ν [
1 +

1

4(ν − 1)
(−kη)2 +O

(
k4η4

)]
. (5.2)

On the other hand, at first order in slow roll, the scale factor can also be expanded, and
one finds

a = − 1

H∗η

[
1 + ε1∗ − ε1∗ ln

(
η

η∗

)
+O(ε2)

]
, (5.3)
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where we have used the expression H ' − 1
η (1 + ε1∗) derived in appendix A.2. Combining

the two previous equations then leads to

Q′k
Qk
'

3
2 + ε1∗ − ν

η
+

7
2 − ν

4(ν − 1)
k2η , (5.4)

which is valid at next-to-leading order both in the slow-roll parameters and in kη. With the
expression given above for ν, one can see that Q′k/Qk ' −ε2/(2η) at leading order in kη.
Since, at leading order, H ' −1/η, the two terms in the right-hand side of eq. (4.18) exactly
cancel, and the source function Sk vanishes. This confirms that the gauge corrections are
indeed suppressed in that case.

In fact, the first contribution to the gauge correction comes from the decaying mode, and
for completeness we now derive its value. Plugging the previous expressions into eq. (4.18)
leads to

Sk =
i

2

H∗
MPl

√
kε1∗ η (−kη)−ε1∗−

ε2∗
2 sign

(
φ̇
)
. (5.5)

One can then insert eq. (5.5), along with H = −(1 + ε1∗)/η, into eq. (4.19), and derive the
gauge transformation parameter from the spatially-flat gauge to the uniform-N gauge in the
large-scale and slow-roll limit,

αk =
iH∗
√
ε1∗

12MPl

k−
5
2 (−kη)3−ε1∗−

ε2∗
2 sign

(
φ̇
)
. (5.6)

In the uniform-N gauge, according to eq. (4.1), the field fluctuation thus reads

δ̃φk = Qk

[
1− ε1∗

6
(−kη)2

]
, (5.7)

and its deviation from Q is therefore both slow-roll suppressed and controlled by the am-
plitude of the decaying mode. Since it needs to be evaluated at the coarse-graining scale
kσ = σaH in eq. (2.14), the relative gauge correction to the correlations of the noises scales
as ε1σ

2, which can be neglected since the stochastic formalism assumes σ → 0.

6 Case study 2: ultra-slow roll

Let us now consider the case of ultra-slow-roll (USR) inflation [30–32], where the dynamics of
φ is friction dominated and the gradient of the potential can be neglected in the Klein-Gordon
equation (3.1), which becomes

φ̈+ 3Hφ̇ ' 0 . (6.1)

This gives rise to φ̇USR ∝ e−3N , hence φ̇ = φ̇in + 3H(φin − φ). The phase-space trajectory
thus carries a dependence on initial conditions that is not present in slow roll, which explains
why ultra-slow roll is not a dynamical attractor while slow roll is. We therefore expect the
non-adiabatic pressure perturbation not to vanish in ultra-slow roll, which may lead to some
non-trivial gauge corrections. In ultra-slow roll, the field acceleration parameter f introduced
in eq. (4.21) is close to one (while it is close to zero in slow roll), so δ ≡ 1− f quantifies how
deep in the ultra-slow-roll regime one is. In the limit where δ = 0, φ̇USR ∝ e−3N gives rise to
εUSR
1 ∝ e−6N/H2, hence

εUSR
n =

{
−6 + 2ε1 if n is even

2ε1 if n > 1 is odd .
(6.2)
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The even slow-roll parameters are therefore large in ultra-slow roll. When δ does not strictly
vanish, these expressions can be corrected, and for the second and the third slow-roll param-
eters, one finds

ε2 = −6 + 2ε1 + 6δ , (6.3)

ε3 = 2ε1 −
dδ

dN

6

6− 2ε1 − 6δ
, (6.4)

which are exact formulas. One can then calculate

dδ

dN
= −µ+ 3δ − 3δ2 + δε1 , (6.5)

where µ is the dimensionless mass parameter defined in eq. (4.22). For small δ and ε1, one
then has

εUSR
3 ' 2ε1 + µ− 3δ + µ

(
2ε1 + 6δ

6

)
. (6.6)

There is no reason, a priori, that µ needs to be small, and hence these corrections can be
large for models with V,φφ 6= 0. Note also that eq. (6.5) provides a criterion for the stability
of ultra-slow roll, which is stable when the right-hand side of this equation is negative, in
agreement with the results of ref. [32].

Let us now derive the gauge corrections in ultra-slow roll. We perform a calculation at
leading order in ε1, δ and µ, but in appendix B the calculation is extended to next-to-leading
order in ε1, and it is shown that the result derived below is indeed valid. At leading order,
one simply has z′′/z ' 2H2, hence eq. (4.20) is solved according to

vk =
1√
2k

e−ikη
(

1− i

kη

)
. (6.7)

Since a = −1/(H∗η) at leading order, this gives rise to

Q′k
Qk

=
−ik2η
kη − i , (6.8)

and the source function (4.18) reads

Sk =
H∗

2MPl

√
ε1
k
e−ikη

(
3− 3i

kη
+ ikη

)
sign

(
φ̇
)
. (6.9)

Since ε1 ' ε1∗(a/a∗)−6, the gauge transformation parameter α can be obtained from eq. (4.19)
and is given by

αk =
iH∗
√
ε1∗

6MPl

k−
5
2 (kη)4sign

(
φ̇
) [

1 +O(kη)2
]
. (6.10)

Comparing this expression with eq. (5.6), one can see that the gauge correction decays even
faster than in the slow-roll regime, hence is even more suppressed. This is because, although
slow roll is a dynamical attractor while ultra-slow roll is not, the field velocity (hence the
conjugate momentum) decays very quickly in ultra-slow roll, and this also damps away one
of the two dynamical degrees of freedom. Finally, the gauge transformation (4.1) gives rise to

δ̃φk = Qk

[
1 +

ε1∗
3

(−kη)6
]
. (6.11)

The relative corrections to the noises correlators scale as ε1∗σ
6 and can therefore be neglected,

even more accurately than in slow roll.
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7 Case study 3: Starobinsky model

In the two previous sections, we have shown that the gauge corrections to the noise correlators
are negligible both in slow-roll and in ultra-slow-roll inflation. In this section, we consider a
model that interpolates between these two limits, namely the Starobinsky model [57]. This
allows us to study a regime that is neither slow roll nor ultra-slow roll, but for which the
early-time (ultra-slow roll) and the late-time (slow roll) limits are under control.

The Starobinsky model is based on a potential made up of two linear parts with different
gradients defined by the dimensionless parameters a+ � a− > 0:

V (φ) =




V0

(
1 + a+

φ
MPl

)
forφ > 0

V0

(
1 + a−

φ
MPl

)
forφ < 0

. (7.1)

In order to ensure both parts of the potential are able to support slow-roll inflation, we
require a± � 1.

The dynamics of the inflaton, as it evolves across the discontinuity in the potential
gradient at φ = 0, can be split into three phases. The first phase, which we label SR+, is
a slow-roll phase for φ > 0 and φ̇ < 0. When the inflaton crosses φ = 0, it then starts
down the φ < 0 part of the potential with an initial velocity inherited from the first slow-roll
phase SR+ that is much larger than the slow-roll velocity for φ < 0. The second phase thus
starts in an ultra-slow-roll regime and is denoted USR. It corresponds to the field range
φUSR→SR < φ < 0. Finally, the inflaton relaxes back to slow roll for φ < φUSR→SR, and we
call this third phase SR−.

During the USR phase the Hubble parameter can be taken as approximately constant,
H ' H0 =

√
V0/(3M2

Pl) ; the consistency of that assumption will be checked below. The
Klein-Gordon equation (3.1) then becomes φ̈+3H0φ̇+V0a−/MPl = 0, and can be solved to give

φ(t)

MPl

=
a+ − a−

3

(
e−3H0t − 1

)
− a−H0t , (7.2)

where we choose t = 0 to denote the time when φ = 0, and the initial velocity is set such
that its value at the transition point is given by its slow-roll counterpart in the φ > 0 branch
of the potential, i.e. φ̇(φ = 0−) = φ̇(φ = 0+) = −H0a+. The acceleration parameter defined
in eq. (4.21) is then given by

f(t) = 1− a−
a− + (a+ − a−)e−3H0t

. (7.3)

At the transition time, it reads f(t = 0) = 1− a−
a+

, so if a−/a+ � 1, f ' 1 and ultra-slow roll
takes place. At late time, however, f is damped so that the system relaxes back to a phase
of slow-roll inflation. Note that the solution (7.2) can be inverted,

H0t(φ) =
1

3

(
1− a+

a−

)
− φ

MPla−
+

1

3
W0

[
a+ − a−
a−

exp

(
a+
a−
− 1 + 3

φ

MPla−

)]
, (7.4)

where W0(x) is the 0-branch of the Lambert function, which leads to the phase-space
trajectory

φ̇(φ) = −MPl

H
H2

0a−

{
1 +W0

[
a+ − a−
a−

exp

(
a+
a−
− 1 + 3

φ

MPla−

)]}
. (7.5)
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ultra− slow roll

Figure 1. Left panel: field acceleration parameter, f defined in (4.21), in the Starobinsky model.
The red curve corresponds to a numerical integration of the Klein-Gordon equation (3.1), the dashed
black curve corresponds to the analytical solution (7.6), while the dotted green line stands for the
approximation (7.7). Right panel: fractional gauge correction to the field perturbation in the uniform-
N gauge in the Starobinsky model, for a mode such that k/aH = 10−2 at the transition time t = 0.
The black line corresponds to the full result (7.15), the blue line stands for the slow-roll result (5.7),

and the green line is the ultra-slow-roll result (6.11). Solid lines are such that 1 − δ̃φk/Qk > 0 and

dashed lines are such that 1− δ̃φk/Qk < 0.

In the denominator of the first term in the right-hand side, H is left to vary [58], in such a way
that at late time, i.e. when φ goes to −∞, one recovers the slow-roll result φ̇ = −MPlH

2
0a−/H.

Plugging eq. (7.4) into eq. (7.3) also leads to

f(φ) = 1− 1

1 +W0

[
a+−a−
a−

exp
(
a+
a−
− 1 + 3 φ

MPla−

)] , (7.6)

which is shown in figure 1 with the dashed black line and compared to a numerical solution
of the Klein-Gordon equation displayed with the solid red line. One can check that f starts
from a value close to one at early time and approaches zero at late time. If one expands
eq. (7.6) around φ = 0, one obtains

f ' 1− a−

a+ + 3 φ
MPl

, (7.7)

which matches eq. (4.3) of ref. [32]. This approximation is also shown in figure 1, with the
dotted green line.

From eq. (7.6), the transition time between USR and SR−, defined as the time when
f = 1/2, is found to be

tUSR→SR =
1

3H0
ln

(
a+ − a−
a−

)
, (7.8)

which is consistent with eq. (4.5) of ref. [32]. Making use of eq. (7.2), the field value at which
this happens is given by

φUSR→SR = −MPl

3

[
a+ − 2a− + a− ln

(
a+ − a−
a−

)]
' −a+

3
MPl , (7.9)
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where the last expression is derived in the limit a−/a+ � 1 and agrees with eq. (4.4) of
ref. [32]. This allows us to test the assumption made above that the potential, hence the
Hubble parameter, does not vary much during the USR phase. The relative shift in the
potential value between φ = 0 and φUSR→SR is indeed given by

∆V

V
=
a−(a+ − a−)

3
� 1 , (7.10)

which justifies the above assumption.

Let us now calculate the gauge transformation from the spatially-flat to uniform-N
gauge in this model. As explained above, combining eq. (7.5) and (7.2) leads to

φ̇(t) =
H2

0MPl

H

[
(a− − a+)e−3H0t − a−

]
, (7.11)

that allows us to both describe the USR and the SR− phases, as well as the transition between
the two. Making use of the relation ε1 = φ̇2/(2M2

PlH
2), one obtains

ε1(t) =
1

2

(
H0

H

)4 [
a− − (a− − a+)e−3H0t

]2

ε2(t) = − 6(a− − a+)e−3H0t

(a− − a+)e−3H0t − a−
+ 4ε1(t) .

(7.12)

One can check that, at late times, one recovers ε2 = 4ε1, which is indeed satisfied in slow roll
for linear potentials, see eqs. (A.14) and (A.15).

Since µ = 0 in this model, the fact that ε1 remains small implies that eq. (4.23) is close to
its de-Sitter limit. Moreover, one can check that, at early times, the term Q′k/Qk in eq. (4.18)
provides a subdominant contribution, hence it is sufficient to evaluate Q′k/Qk at late time
and use the result of eq. (5.4), Q′k/Qk ' −ε2∗/(2η) + k2η = a2−/η + k2η. One then obtains

S =
iH0

MPl

sign
(
φ̇
)

(2k)
3
2 η

{
3(a− − a+)e−3H0t

(
1 +

a2−
3

)
− a3−

+
[
a− + (a+ − a−)e−3H0t

]3 − k2η2
[
(a− − a+) e−3H0t − a−

]
}
.

(7.13)

From eq. (4.19), we then find the gauge transformation parameter to be

α ' −iηH0

3(2k)
3
2MPl

sign
(
φ̇
)[(kη)2

2
a− + (a− − a+) e−3H0t

(
1 +

a3−
2

)

+ a2− (a+ − a−) e−3H0t +
a− (a+ − a−)2

2
e−6H0t +

(a+ − a−)3

9
e−9H0t

]
,

(7.14)

where only the (kη)2-suppressed term that becomes dominant at late times has been kept,
i.e. there are other (kη)2 terms that have been dropped for consistency since they always
provide sub-dominant contributions. One can check that at early time, i.e. when t → 0,
the ultra-slow-roll expression (6.10) is recovered if a−/a+ � 1, while at late time, i.e. when
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t→∞, the slow-roll expression (5.6) is recovered. This gives rise to the gauge correction

δ̃φk/Qk = 1+
1

6

(
H0

H

)3 [
(a−−a+)e−3H0t−a−

]
[

(kη)2

2
a−+(a−−a+)e−3H0t

(
1+

a2−
3

)

+a2− (a+−a−)e−3H0t+
a− (a+−a−)2

2
e−6H0t+

(a+−a−)3

9
e−9H0t

]
, (7.15)

which is displayed in the right panel of figure 1 for a mode such that k/aH = 10−2 at the
transition time t = 0. Right after the transition point, one can check that the ultra-slow-roll
result (6.11) is recovered (the slight discrepancy is due to the finite value of a−/a+, i.e. the
finite initial value of δ, we work with in figure 1), and at late time, the slow-roll result (5.7)
is obtained. In between, the gauge correction to the noise correlators remains tiny and can
therefore be safely neglected.

8 Conclusions

In this paper we have discussed the challenges associated with using the stochastic formalism
for inflation beyond the usual slow-roll approximation. One of the main pillars that stochastic
inflation rests on is the separate universe approach, which pictures the universe on super-
Hubble scales as causally disconnected regions that evolve under local FLRW dynamics. By
showing that the dynamics of super-Hubble fluctuations can be recovered by perturbing the
background FLRW equations of motion, we have demonstrated that this approach is valid
and does not require slow roll.

Subtleties however arise regarding the gauge in which the stochastic equations are writ-
ten. The time variable we use in the Langevin equation is the logarithmic expansion, i.e. the
number of e-folds N , and this variable is left unperturbed, which means we are implicitly
working in a gauge in which the expansion is uniform. However, the field fluctuations, which
determine the correlations of the noises, are usually quantised in the spatially-flat gauge,
where they coincide with the gauge-invariant Sasaki-Mukhanov scalar field perturbations, Q.
One therefore has to perform a gauge transformation from the spatially-flat to the uniform-N
gauge before evaluating the stochastic noise due to quantum field fluctuations. We have cal-
culated this transformation and shown that it is proportional to the non-adiabatic pressure
perturbation. Since this vanishes on large scales in the presence of a dynamical attractor,
such as in slow roll, the gauge transformation becomes trivial in that case (i.e. the two gauges
coincide on super-Hubble scales). We have also examined the case of ultra-slow roll, where
we have found that the gauge transformation is also trivial, although ultra-slow roll is not
a dynamical attractor in field space. Finally, we have studied the Starobinsky model, where
the dynamics interpolates between a phase of ultra-slow-roll and slow-roll inflation, and have
found that the same conclusions apply.

We conclude that in all three cases, the gauge transformation that is required prior
to evaluating the noise correlators in stochastic inflation, turns out to be trivial on super-
Hubble scales, and stochastic inflation as usually formulated can be applied without further
refinements. This does not preclude the existence of situations where these gauge effects
might be significant, but in such cases, eqs. (4.1), (4.8), (4.18) and (4.19) provide the key
formulas to compute them. This result has important consequences for the production of
primordial black holes, whose formation is likely to require regimes of inflation that both
violate slow roll and undergo large stochastic diffusion.
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A Sasaki-Mukhanov equation

In this appendix, we derive the general expression (4.23) for z′′/z in the Sasaki-Mukhanov
equation and discuss both the slow-roll and the ultra-slow-roll limits.

A.1 Deriving the general expression

We start with the Sasaki-Mukhanov variable

vk = zζk , (A.1)

where

z = a
√

2ε1MPl , (A.2)

and vk obeys the Sasaki-Mukhanov equation

v′′k +

(
k2 − z′′

z

)
vk = 0 . (A.3)

Note that in the spatially flat gauge, we have vk = aδφk = aQk. Let us also reiterate the
notation we use: ˙ = d

dt (t is proper time) and ′ = d
dη (η is conformal time), so d

dη = a d
dt .

Combining

ε1 = − Ḣ

H2
= 1− H

′

H2
(A.4)

with the Friedmann equation (2.5), one obtains ε1 = φ̇2/(2M2
PlH

2), and z can be rewritten as

z =
aφ̇

H
. (A.5)

This allows us to calculate

z′

z
=
a

z
ż = a

(
ȧ

a
+
φ̈

φ̇
− Ḣ

H

)
. (A.6)

In terms of the slow-roll parameter ε1 and the relative acceleration parameter f defined in
eq. (4.21), this reads

z′

z
= aH (1− 3f + ε1) . (A.7)

In order to calculate z′′/z, notice that

(
z′

z

)′
=
z′′

z
− z′2

z2
, (A.8)
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where the left-hand side can be derived from eq. (A.7),

(
z′

z

)′
= a

d

dt

(
z′

z

)
= a2H (1− 3f + ε1)

(
ȧ

a
+
Ḣ

H
+

ε̇1 − 3ḟ

1− 3f + ε1

)
. (A.9)

Derivating ε1 = φ̇2/(2M2
PlH

2) with respect to time, and making use of the Klein-Gordon
equation (3.1), we have

ε̇1 = 2Hε1 (ε1 − 3f) , (A.10)

and from eq. (4.21) we can calculate

ḟ

H
= µ+ (f − 1) (ε1 + 3f) . (A.11)

where the dimensionless mass parameter µ is defined in eq. (4.22). Thus we can evaluate
eq. (A.9) as (

z′

z

)′
= a2H2

(
1 + 6f + 3ε1 − 3µ+ ε21 − 9f2 − 6fε1

)
. (A.12)

Combining this with eqs. (A.7) and (A.8), we find

z′′

z
= a2H2

(
2 + 5ε1 − 3µ− 12fε1 + 2ε21

)
, (A.13)

which is an exact expression that makes no approximations.

A.2 Slow-roll limit

In the slow-roll regime,

ε1 ' εV1 ≡
M2

Pl

2

(
V,φ
V

)2

, (A.14)

ε2 ' εV2 ≡ 2M2
Pl

[(
V,φ
V

)2

− V,φφ
V

]
, (A.15)

H2 ' V

3M2
Pl

, (A.16)

and hence

µ 'M2
Pl

V,φφ
V

(A.17)

ε2 ' 4ε1 − 2µ . (A.18)

At leading order in the slow-roll parameters, we therefore see that (A.13) reduces to

z′′

z
' a2H2

[
2− ε1 +

3

2
ε2 +O

(
ε2
)]

, (A.19)

where we note that, since f = 2ε1−ε2
6 [32], terms of order O(fε1) are neglected at first order.

In order to write (A.13) as an explicit function of conformal time, note that

η =

∫
dt

a
=

∫
da

a2H(a)
= − 1

aH
+

∫
ε1da

a2H
, (A.20)
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where we have integrated by parts to get the last equality. From eq. (A.10), we have

ε̇1
ε1

= 2H (ε1 − 3f) , (A.21)

and thus we can again integrate by parts to find

∫
ε1da

a2H
= − ε1

aH
+

∫
da

a2H

ε̇1
ε1

ε1
H

+O
(
ε21
)

= − ε1
aH

+O
(
ε21, fε1

)
. (A.22)

Therefore, from eq. (A.20),

η ' − 1

aH
(1 + ε1) (A.23)

at first order in slow roll, and eq. (A.13) becomes

z′′

z
' 2

η2

(
1 +

3

2
ε1 +

3

4
ε2

)
, (A.24)

in agreement with the well-known, leading-order slow-roll result.

A.3 Near ultra-slow-roll limit

In the ultra-slow-roll regime, the field acceleration parameter is close to one and it is conve-
nient to parameterise

f = 1− δ , (A.25)

where |δ| � 1. In terms of δ, eq. (A.13) becomes

z′′

z
= a2H2

(
2− 7ε1 + 2ε21 + 12δε1 − 3µ

)
. (A.26)

In order to derive an explicit expression in terms of the conformal η using eq. (A.20), we note
from eq. (A.10) that we have

ε̇1
ε1

= 2H (ε1 − 3f) = −6H
(

1− δ − ε1
3

)
. (A.27)

This allows us to again integrate by parts in eq. (A.20) and find

∫
ε1da

a2H
= −1

7

ε1
aH

+O
(
ε1δ, ε

2
1

)
, (A.28)

and hence

η = − 1

aH

(
1 +

1

7
ε1

)
+O

(
ε1δ, ε

2
1

)
. (A.29)

Thus, in ultra-slow roll, eq. (A.13) becomes

z′′

z
=

1

η2

[
2− 3µ− 3

7
ε1 (15 + 2µ)

]
+O

(
ε1δ, ε

2
1

)
. (A.30)

If the effective mass parameter µ is small, the leading-order behaviour is the same as in
conventional slow roll, but it differs if µ is of order one or larger.
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A.4 Solution in the slow-roll limit

Let us start with eq. (A.24), and rewrite this as

z′′

z
≡ ν2 − 1

4

η2
, (A.31)

where ν2 = 9/4 + 3ε1∗ + 3ε2∗/2 can be taken as constant at leading order in slow roll. At
that order, the Sasaki-Mukhanov equation has the generic solution

vk (η) =
√−η [AJν (−kη) +BYν (−kη)]

=
√−η

[
αH(1)

ν (−kη) + βH(2)
ν (−kη)

]
,

(A.32)

where conformal time η runs from −∞ to 0 during inflation. In eq. (A.32), Jν is the Bessel
function of the first kind, Yν is the Bessel function of the second kind, A, B, α and β are
constants, and the second line follows from

H(1)
ν = Jν + iYν , (A.33)

H(2)
ν = Jν − iYν , (A.34)

where H
(1)
ν is the Hankel function of the first kind, and H

(2)
ν is the Hankel function of the

second kind.

In order to fix the constants A and B, or α and β, we set our initial conditions in the
Bunch-Davies vacuum

lim
η→−∞

vk(η) =
e−ikη√

2k
. (A.35)

We implement this initial condition by making use of the following asymptotic behaviour for
the Hankel functions

lim
kη→−∞

H(1)
ν (−kη) =

√
2

π

1√−kη e
ikηei

π
2 (ν+ 1

2)

lim
kη→−∞

H(2)
ν (−kη) =

√
2

π

1√−kη e
−ikηe−i

π
2 (ν+ 1

2) .

(A.36)

Thus

lim
kη→−∞

vk (η) =

√
2

πk

[
αei

π
2 (ν+ 1

2)eikη + βe−i
π
2 (ν+ 1

2)e−ikη
]

=
e−ikη√

2k
. (A.37)

By comparing these two expressions, we conclude that α = 0 and β =
√
π
2 (where the

irrelevant phase factor e−i
π
2 (ν+ 1

2) is dropped). Thus the Bunch-Davies modes at first order
in slow roll are

vk (η) =

√−πη
2

H(2)
ν (−kη) . (A.38)
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B First slow-roll correction in ultra-slow roll

In this section, we solve eq. (4.20) perturbatively in ε1∗, in order to check that the leading-
order solutions given in section 6 are indeed consistent. We still consider the case of an
exactly flat potential, so that δ = µ = 0, and eq. (A.30) reads

z′′

z
=

1

η2

(
2− 45

7
ε1

)
=

1

η2

[
2− 45

7
ε1∗

(
η

η∗

)6
]
. (B.1)

At first order in ε1∗, the comoving Hubble parameter is given by eq. (A.29), namely

H = −1

η

[
1 +

1

7
ε1 +O(ε21)

]
. (B.2)

Unlike the slow-roll case, this cannot be integrated to find a(η), but we can instead perform
an expansion in powers of ε1∗ to find

a(η) = − 1

H∗η

[
1− 1

42
(ε1 − ε1∗) +O(ε21)

]
. (B.3)

In order to solve eq. (4.20) perturbatively, we first note that the leading order solution
is simply the ν = 3

2 solution already given in eq. (6.7). To find the first correction to this,
we introduce

vk =
e−ikη√

2k

(
1− i

kη

)
[1 + ε1∗fk(η)] . (B.4)

If we substitute eq. (B.4) back into eq. (4.20) and solve the resultant differential equation for
f(η), we find that

f ′k(η) = −45

28

1

k3
η2

η6∗

e2ikη

(kη − i)2
[
e−2ikη

(
7i− 14kη − 14ik2η2 + 8k3η3 + 2ik4η4

)

−e−2ikηstart
(
7i− 14kηstart − 14ik2η2start + 8k3η3start + 2ik4η4start

)]
,

(B.5)

where the integration constant ηstart must be chosen such that

ε1start = ε1∗

(
ηstart
η∗

)6

< 1 . (B.6)

Combining eqs. (B.3) and (B.4) at leading order in ε1∗, recalling that vk = aQk, we can then
calculate

Q′k
Qk

= − ikη

η − i
k

+ ε1∗

[
1

7η

(
η

η∗

)6

− f ′k

]
, (B.7)

where f ′ is given by eq. (B.5). Note that at leading order in ε1∗, this reduces to eq. (6.8), as
expected. We also see that the source function (4.18) becomes

Sk = −
√
ε1
2

Qk
MPl

{
3

η
− ikη

η − i
k

− ε1∗
[

3

7η

(
η

η∗

)6

− f ′k

]
+O(ε21∗)

}
. (B.8)
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This implies that

Qk = − H∗√
2k

e−ikη
[
η − i

k
+O(ε1∗)

]

Sk = −
√
ε1∗
2

Q

MPl

(
η

η∗

)3
[

3

η
− ikη

η − i
k

+O(ε1∗)

]
.

(B.9)

Making use of eq. (4.19), we thus find

αk ' −
iH∗
√
ε1∗

6MPl

k−
5
2 (kη)4 [1 +O(ε1∗)] , (B.10)

of which eq. (6.10) indeed captures the leading order. The situation is therefore different than
in slow roll where the leading order result vanishes and the dominant contribution comes from
the decaying mode. This is because, as stressed above, the presence of a dynamical attractor
in slow roll makes the non-adiabatic pressure perturbation vanish, which is not the case in
ultra-slow roll.
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[28] J.M. Ezquiaga and J. Garćıa-Bellido, Quantum diffusion beyond slow-roll: implications for
primordial black-hole production, JCAP 08 (2018) 018 [arXiv:1805.06731] [INSPIRE].

[29] C. Pattison, V. Vennin, H. Assadullahi and D. Wands, Quantum diffusion during inflation and
primordial black holes, JCAP 10 (2017) 046 [arXiv:1707.00537] [INSPIRE].

[30] S. Inoue and J. Yokoyama, Curvature perturbation at the local extremum of the inflaton’s
potential, Phys. Lett. B 524 (2002) 15 [hep-ph/0104083] [INSPIRE].

[31] W.H. Kinney, Horizon crossing and inflation with large eta, Phys. Rev. D 72 (2005) 023515
[gr-qc/0503017] [INSPIRE].

[32] C. Pattison, V. Vennin, H. Assadullahi and D. Wands, The attractive behaviour of
ultra-slow-roll inflation, JCAP 08 (2018) 048 [arXiv:1806.09553] [INSPIRE].

[33] D. Cruces, C. Germani and T. Prokopec, Failure of the stochastic approach to inflation beyond
slow-roll, JCAP 03 (2019) 048 [arXiv:1807.09057] [INSPIRE].

– 25 –

https://doi.org/10.1103/PhysRevD.50.6357
https://arxiv.org/abs/astro-ph/9407016
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9407016
https://doi.org/10.1016/j.nuclphysb.2005.06.031
https://doi.org/10.1016/j.nuclphysb.2005.06.031
https://arxiv.org/abs/gr-qc/0505115
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0505115
https://doi.org/10.1103/PhysRevD.79.044007
https://doi.org/10.1103/PhysRevD.79.044007
https://arxiv.org/abs/0808.1786
https://inspirehep.net/search?p=find+EPRINT+arXiv:0808.1786
https://doi.org/10.1103/PhysRevD.89.063506
https://arxiv.org/abs/1310.0367
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.0367
https://doi.org/10.1140/epjc/s10052-015-3643-y
https://doi.org/10.1140/epjc/s10052-015-3643-y
https://arxiv.org/abs/1506.04732
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.04732
https://doi.org/10.1103/PhysRevD.91.103537
https://arxiv.org/abs/1501.05852
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.05852
https://doi.org/10.1007/JHEP01(2016)153
https://arxiv.org/abs/1512.00169
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.00169
https://doi.org/10.1103/PhysRevLett.118.031301
https://arxiv.org/abs/1604.06017
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.06017
https://doi.org/10.1088/1475-7516/2017/10/018
https://arxiv.org/abs/1701.06473
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.06473
https://doi.org/10.1088/1475-7516/2018/02/014
https://arxiv.org/abs/1708.01734
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.01734
https://doi.org/10.1016/j.dark.2017.09.007
https://arxiv.org/abs/1702.03901
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.03901
https://doi.org/10.1016/j.dark.2017.09.001
https://doi.org/10.1016/j.dark.2017.09.001
https://arxiv.org/abs/1706.04226
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.04226
https://doi.org/10.1088/1475-7516/2019/01/040
https://doi.org/10.1088/1475-7516/2019/01/040
https://arxiv.org/abs/1811.02175
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.02175
https://doi.org/10.1088/1475-7516/2018/07/032
https://arxiv.org/abs/1804.07124
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.07124
https://doi.org/10.1088/1475-7516/2018/08/018
https://arxiv.org/abs/1805.06731
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.06731
https://doi.org/10.1088/1475-7516/2017/10/046
https://arxiv.org/abs/1707.00537
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.00537
https://doi.org/10.1016/S0370-2693(01)01369-7
https://arxiv.org/abs/hep-ph/0104083
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0104083
https://doi.org/10.1103/PhysRevD.72.023515
https://arxiv.org/abs/gr-qc/0503017
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0503017
https://doi.org/10.1088/1475-7516/2018/08/048
https://arxiv.org/abs/1806.09553
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.09553
https://doi.org/10.1088/1475-7516/2019/03/048
https://arxiv.org/abs/1807.09057
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.09057


J
C
A
P
0
7
(
2
0
1
9
)
0
3
1

[34] J. Grain and V. Vennin, Stochastic inflation in phase space: Is slow roll a stochastic attractor?,
JCAP 05 (2017) 045 [arXiv:1703.00447] [INSPIRE].

[35] D. Polarski and A.A. Starobinsky, Semiclassicality and decoherence of cosmological
perturbations, Class. Quant. Grav. 13 (1996) 377 [gr-qc/9504030] [INSPIRE].

[36] J. Lesgourgues, D. Polarski and A.A. Starobinsky, Quantum to classical transition of
cosmological perturbations for nonvacuum initial states, Nucl. Phys. B 497 (1997) 479
[gr-qc/9611019] [INSPIRE].

[37] C. Kiefer and D. Polarski, Why do cosmological perturbations look classical to us?, Adv. Sci.
Lett. 2 (2009) 164 [arXiv:0810.0087] [INSPIRE].

[38] J. Martin and V. Vennin, Quantum Discord of Cosmic Inflation: Can we Show that CMB
Anisotropies are of Quantum-Mechanical Origin?, Phys. Rev. D 93 (2016) 023505
[arXiv:1510.04038] [INSPIRE].

[39] M. Revzen, P.A. Mello, A. Mann and L.M. Johansen, Bell’s inequality violation with
non-negative Wigner functions, Phys. Rev. A 71 (2005) 022103 [quant-ph/0405100].

[40] J. Martin and V. Vennin, Bell inequalities for continuous-variable systems in generic squeezed
states, Phys. Rev. A 93 (2016) 062117 [arXiv:1605.02944] [INSPIRE].

[41] J. Martin and V. Vennin, Obstructions to Bell CMB Experiments, Phys. Rev. D 96 (2017)
063501 [arXiv:1706.05001] [INSPIRE].

[42] D.S. Salopek and J.R. Bond, Nonlinear evolution of long wavelength metric fluctuations in
inflationary models, Phys. Rev. D 42 (1990) 3936 [INSPIRE].

[43] M. Sasaki and E.D. Stewart, A General analytic formula for the spectral index of the density
perturbations produced during inflation, Prog. Theor. Phys. 95 (1996) 71 [astro-ph/9507001]
[INSPIRE].

[44] D. Wands, K.A. Malik, D.H. Lyth and A.R. Liddle, A New approach to the evolution of
cosmological perturbations on large scales, Phys. Rev. D 62 (2000) 043527 [astro-ph/0003278]
[INSPIRE].

[45] D.H. Lyth and D. Wands, Conserved cosmological perturbations, Phys. Rev. D 68 (2003)
103515 [astro-ph/0306498] [INSPIRE].

[46] G.I. Rigopoulos and E.P.S. Shellard, The separate universe approach and the evolution of
nonlinear superhorizon cosmological perturbations, Phys. Rev. D 68 (2003) 123518
[astro-ph/0306620] [INSPIRE].

[47] D.H. Lyth and Y. Rodriguez, The Inflationary prediction for primordial non-Gaussianity,
Phys. Rev. Lett. 95 (2005) 121302 [astro-ph/0504045] [INSPIRE].

[48] E.M. Lifshitz and I.M. Khalatnikov, On the singularities of cosmological solutions of the
gravitational equations. I, ZhETF 39 (1960) 149.

[49] A.A. Starobinsky, Isotropization of arbitrary cosmological expansion given an effective
cosmological constant, JETP Lett. 37 (1983) 66 [INSPIRE].

[50] G.L. Comer, N. Deruelle, D. Langlois and J. Parry, Growth or decay of cosmological
inhomogeneities as a function of their equation of state, Phys. Rev. D 49 (1994) 2759
[INSPIRE].

[51] I.M. Khalatnikov and A.Y. Kamenshchik, Comment about quasiisotropic solution of Einstein
equations near cosmological singularity, Class. Quant. Grav. 19 (2002) 3845 [gr-qc/0204045]
[INSPIRE].

[52] T. Fujita, M. Kawasaki, Y. Tada and T. Takesako, A new algorithm for calculating the
curvature perturbations in stochastic inflation, JCAP 12 (2013) 036 [arXiv:1308.4754]
[INSPIRE].

– 26 –

https://doi.org/10.1088/1475-7516/2017/05/045
https://arxiv.org/abs/1703.00447
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.00447
https://doi.org/10.1088/0264-9381/13/3/006
https://arxiv.org/abs/gr-qc/9504030
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9504030
https://doi.org/10.1016/S0550-3213(97)00224-1
https://arxiv.org/abs/gr-qc/9611019
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9611019
https://doi.org/10.1166/asl.2009.1023
https://doi.org/10.1166/asl.2009.1023
https://arxiv.org/abs/0810.0087
https://inspirehep.net/search?p=find+J+%22Adv.Sci.Lett.,2,164%22
https://doi.org/10.1103/PhysRevD.93.023505
https://arxiv.org/abs/1510.04038
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.04038
https://doi.org/10.1103/PhysRevA.71.022103
https://arxiv.org/abs/quant-ph/0405100
https://doi.org/10.1103/PhysRevA.93.062117
https://arxiv.org/abs/1605.02944
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.02944
https://doi.org/10.1103/PhysRevD.96.063501
https://doi.org/10.1103/PhysRevD.96.063501
https://arxiv.org/abs/1706.05001
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.05001
https://doi.org/10.1103/PhysRevD.42.3936
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D42,3936%22
https://doi.org/10.1143/PTP.95.71
https://arxiv.org/abs/astro-ph/9507001
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9507001
https://doi.org/10.1103/PhysRevD.62.043527
https://arxiv.org/abs/astro-ph/0003278
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0003278
https://doi.org/10.1103/PhysRevD.68.103515
https://doi.org/10.1103/PhysRevD.68.103515
https://arxiv.org/abs/astro-ph/0306498
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0306498
https://doi.org/10.1103/PhysRevD.68.123518
https://arxiv.org/abs/astro-ph/0306620
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0306620
https://doi.org/10.1103/PhysRevLett.95.121302
https://arxiv.org/abs/astro-ph/0504045
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0504045
https://inspirehep.net/search?p=find+J+%22JETPLett.,37,66%22
https://doi.org/10.1103/PhysRevD.49.2759
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D49,2759%22
https://doi.org/10.1088/0264-9381/19/14/322
https://arxiv.org/abs/gr-qc/0204045
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0204045
https://doi.org/10.1088/1475-7516/2013/12/036
https://arxiv.org/abs/1308.4754
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4754


J
C
A
P
0
7
(
2
0
1
9
)
0
3
1

[53] C. Gordon, D. Wands, B.A. Bassett and R. Maartens, Adiabatic and entropy perturbations
from inflation, Phys. Rev. D 63 (2001) 023506 [astro-ph/0009131] [INSPIRE].

[54] K.A. Malik and D. Wands, Cosmological perturbations, Phys. Rept. 475 (2009) 1
[arXiv:0809.4944] [INSPIRE].

[55] M. Sasaki, Large Scale Quantum Fluctuations in the Inflationary Universe, Prog. Theor. Phys.
76 (1986) 1036 [INSPIRE].

[56] V.F. Mukhanov, Quantum Theory of Gauge Invariant Cosmological Perturbations, Sov. Phys.
JETP 67 (1988) 1297 [INSPIRE].

[57] A.A. Starobinsky, Spectrum of adiabatic perturbations in the universe when there are
singularities in the inflation potential, JETP Lett. 55 (1992) 489 [INSPIRE].

[58] J. Martin and L. Sriramkumar, The scalar bi-spectrum in the Starobinsky model: The
equilateral case, JCAP 01 (2012) 008 [arXiv:1109.5838] [INSPIRE].

– 27 –

https://doi.org/10.1103/PhysRevD.63.023506
https://arxiv.org/abs/astro-ph/0009131
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0009131
https://doi.org/10.1016/j.physrep.2009.03.001
https://arxiv.org/abs/0809.4944
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.4944
https://doi.org/10.1143/PTP.76.1036
https://doi.org/10.1143/PTP.76.1036
https://inspirehep.net/search?p=find+J+%22Prog.Theor.Phys.,76,1036%22
https://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,67,1297%22
https://inspirehep.net/search?p=find+J+%22JETPLett.,55,489%22
https://doi.org/10.1088/1475-7516/2012/01/008
https://arxiv.org/abs/1109.5838
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.5838

	Introduction
	Requirements for stochastic inflation
	Separate universes
	Cosmological perturbation theory
	Perturbed background equations
	Spatially-flat gauge
	Uniform-N gauge

	Arbitrary gauge

	Gauge corrections to the noise
	Gauge transformations
	Non-adiabatic pressure perturbation
	General solution

	Case study 1: slow roll
	Case study 2: ultra-slow roll
	Case study 3: Starobinsky model
	Conclusions
	Sasaki-Mukhanov equation
	Deriving the general expression
	Slow-roll limit
	Near ultra-slow-roll limit
	Solution in the slow-roll limit

	First slow-roll correction in ultra-slow roll

