
J
C
A
P
0
7
(
2
0
1
9
)
0
3
2

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Bose-Einstein condensates as
gravitational wave detectors

Matthew P.G. Robbins, Niayesh Afshordi and Robert B. Mann

Department of Physics and Astronomy, University of Waterloo,
Waterloo, ON, N2L 3G1, Canada

Perimeter Institute for Theoretical Physics,
31 Caroline Street North, Waterloo, ON, N2L 2Y5, Canada

E-mail: mrobbins@perimeterinstitute.ca, nafshordi@perimeterinstitute.ca,
rbmann@uwaterloo.ca

Received November 15, 2018
Revised June 6, 2019
Accepted July 3, 2019
Published July 19, 2019

Abstract. We investigate a Bose-Einstein condensate (BEC) as a gravitational wave detector,
and study its sensitivity by optimizing the properties of the condensate and the measure-
ment duration. We show that detecting kilohertz gravitational waves is limited by current
experimental techniques in squeezing BEC phonons. Without focussing on a specific detector
setup, our study shows that substantive future improvements in technology (e.g., increasing
the squeezing of BEC states or their physical size) will be necessary for such a detector to be
competitive in measuring gravitational waves of astrophysical and/or cosmological origin.

Keywords: gravitational wave detectors, quantum field theory on curved space, gravitational
waves / experiments

ArXiv ePrint: 1811.04468

c© 2019 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1475-7516/2019/07/032

mailto:mrobbins@perimeterinstitute.ca
mailto:nafshordi@perimeterinstitute.ca
mailto:rbmann@uwaterloo.ca
https://arxiv.org/abs/1811.04468
https://doi.org/10.1088/1475-7516/2019/07/032


J
C
A
P
0
7
(
2
0
1
9
)
0
3
2

Contents

1 Introduction 1

2 Bose-Einstein condensates in a curved background 2

3 Detection of gravitational waves via quantum metrology 5

4 Sensitivity for specific experimental parameters 8
4.1 Non-interacting modes 8
4.2 Decoherence (damping) from interacting modes 11

5 Conclusion 13

A Calculation of the BEC’s dispersion relation 14

1 Introduction

With the direct detection of gravitational waves, an entirely new avenue of studying the uni-
verse has opened. It is incumbent upon the scientific community to consider both the theo-
retical aspects of this discovery and to propose new means of detecting gravitational waves.

At the present time, gravitational wave detection is primarily done with interferometers.
A drawback is that they are sensitive to only a small range of frequencies, with LIGO being
most sensitive around 100–300 Hz, allowing it to detect stellar-mass inspiralling black holes
and neutron stars [1]. Gravitational wave detectors with sensitivities at lower frequencies have
been proposed, which will allow the large-mass black hole binary inspirals to be studied [2].
At kilohertz frequencies, the creation of magnetars [3] and signals from more neutron star
mergers [4, 5] can also be observed with improved sensitivity. Detection of kHz gravitational
waves will have wide-ranging implications in further understanding the universe, such as
constraining the equation of state of neutron stars [6].

Interferometers involving cold atoms have previously been suggested as a means to
detect kHz frequency gravitational waves [7, 8]. Recently, a novel suggestion [9] making use of
a Bose-Einstein condensate (BEC) as a gravitational wave detector has been proposed. A zero
temperature quasi (1+1)-dimensional BEC with fluctuating boundaries was considered in the
presence of a gravitational wave with plus polarization (in the BEC frame), h+ = ε sin Ωt,
where ε is the amplitude of the gravitational wave and Ω is its frequency. By calculating the
fidelity between phonon states, it was possible to determine the quantum Fisher information
Hε of the phonon state of the BEC, which characterizes the amount of information contained
in the amplitude of the gravitational wave [9, 10]:

M 〈(∆ε)2〉 ≥ 1

Hε
, (1.1)

where M is the number of independent measurements of the system and 〈(∆ε)2〉 is the mean-
square-error in the amplitude of the gravitational wave. Assuming that the phonons are in
squeezed two-mode states, it was claimed that, with a suitable number of measurements
of the fidelity between phonons interacting with a gravitational wave of amplitude ε and a
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gravitational wave of amplitude ε+dε, the strain sensitivity
√
〈∆ε2〉 was able to exceed that

of LIGO at frequencies in the kilohertz regime.

We offer here an alternate perspective by considering zero-temperature (3+1)-
dimensional BECs, where h+ = εe−t

2/τ2
sin(Ωt) is used to model the incoming gravitational

wave; the quantity τ captures the duration of a single measurement of the BEC. We treat
the phonons as being in single-mode squeezed states and examine whether current techniques
of squeezing phonons and producing BECs are sufficient in order to use the condensate as a
gravitational wave detector.

In section 2, we introduce BECs in a curved spacetime and derive the Euler-Lagrange
equation for the phonons being influenced by the gravitational waves. Then, in section 3,
we apply techniques in quantum metrology to estimate the sensitivity for the detection of
gravitational waves. In section 4, we consider whether or not current experimental techniques
can be used to achieve the necessary sensitivity. We show that if the phonons are restricted
to obey a linear dispersion relation, then the amount of phonon squeezing is the dominant
limiting factor. We also address the damping present in the condensate at T = 0 and comment
on how to increase the sensitivity of the condensate to gravitational waves. Section 5 presents
our conclusions.

2 Bose-Einstein condensates in a curved background

We will now derive the equation of motion for the phonons as well as its Bogoliubov coeffi-
cients. Related derivations can be found in [9, 11, 12].

The Lagrangian (~ = c = 1) for a BEC in a curved background

L = gµν∂µφ∂νφ
† −m2|φ|2 − U(|φ|2) (2.1)

where m is the mass of the atoms of the BEC, φ is the field, U(|φ|2) = λ|φ|4 > 0 describes
the interaction of the BEC.1 Let us write φ = φ̂eiχ (with real φ̂ and χ) and assume that the
BEC is homogeneous. We want to determine the φ̂ that extremizes L. Differentiating with
respect to φ̂, we find that the extremum occurs at

φ̂2 =
1

2λ

[
∂µχ∂µχ−m2

]
. (2.2)

Inserting (2.2) into (2.1) and writing χ = κt+π (where π ∈ < is the pseudo-Goldstone boson,
describing the BEC acoustic perturbations or phonons), the action becomes

S=

∫
d4x

4λ

√
−g
{

(κδν0 +∂νπ)(κδµ0 +∂µπ)gµν−m2
}2
,

=

∫
d4x

4λ

√
−g
[
κ2g00+2κπ̇g00+κ∂iπg0i+|π̇|2g00+∂iπ∂jπgij+2∂iππ̇gi0−m2

]2
.

(2.3)

We are interested in low frequencies, using an effective field theory framework for χ, where
“heavy” fields are “integrated out”. As a result, ∂µφ̂ terms are higher order and are therefore

1As this describes the generalization of a BEC in curved spacetime, we note that it will only be accurate

for na3 = (λcs)2

(4π)3c2
� 1 as this is the regime of validity for the Gross-Pitaevskii equation, where n is the number

density, a is the s-wave scattering wavelength, and cs is the speed of sound defined below in equation (2.8) [13].
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suppressed [14]. Let us work in the TT-gauge and take gµν = ηµν + hµν , where

hµν =


0 0 0 0
0 h+(t) h×(t) 0
0 h×(t) −h+(t) 0
0 0 0 0

 , (2.4)

describes a gravitational wave propagating in the z-direction and h+ and h× are the two
polarizations of the gravitational wave.2 Using

√
−g ∼ 1 + O(hµνh

µν) and a (+,−,−,−)
signature, we can expand in terms of π to find

S =

∫
d4x

4λ

[
κ2 + 2κπ̇ + |π̇|2 + ∂iπ∂jπgij −m2

]2
, (2.5)

≈
∫
d4x

4λ

[
|π̇|2(6κ2 − 2m2) + (2κ2 − 2m2)(ηij + hij)∂

iπ∂jπ
]
, (2.6)

where the first-order terms can be written as a total derivative that integrates to zero on
the boundary and we assume that the higher-order terms can be neglected. Therefore, the
Euler-Lagrange equation is

π̈ + c2
s(ηij + hij)∂

i∂jπ + c2
s(∂

jhij)∂
iπ = 0 , (2.7)

where

c2
s ≡

κ2 −m2

3κ2 −m2
. (2.8)

In appendix A, instead of making the low-energy (or adiabatic) approximation (2.2), we solve
for the full linear perturbations (for φ̂ and π). This shows that the above derivation is valid
as long as ω = csk � µ, where µ = κ−m ≈ mc2

s is the chemical potential of the BEC.

For simplicity, we will assume that h× = 0. We model the plus polarization as h+ =
εe−t

2/τ2
sin Ωt (ignoring its spatial dependence),3 where ε is the amplitude of the gravitational

wave, τ captures the duration of a single measurement of the gravitational wave, and Ω is
the frequency of the wave. Noting that (∂ih

ij) = 0 in the TT gauge and using the ansatz
π ∝ eik·xψ(t), we find

(3κ2 −m2)ψ̈ + (κ2 −m2)(ηij + hij)k
ikjψ = 0 (2.9)

up to a normalization of ψ. Thus, with k1 = kx, k2 = ky, and k3 = kz,

(3κ2 −m2)ψ̈ + (κ2 −m2)|k|2
[
1 + ε̃e−t

2/τ2
sin(Ωt)

]
ψ = 0 , (2.10)

where ε̃ =
(k2
x−k2

y)

|k|2 ε. We can then rewrite equation (2.10) as

ψ̈ + [1 + ε̃e−t
2/τ2

sin(Ωt)]c2
sk

2ψ = 0 . (2.11)

2We assume that the trapped particles, representing the boundary of the BEC box, move on geodesics.
Therefore, starting at rest, they will not see the gravitational waves to linear order.

3This is justified when the speed of sound is much smaller than that of gravitational waves, cs � 1.
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Let us now look at the validity of equation (2.11), which was determined by neglecting
higher-order terms in equation (2.5). The third-order terms in the Lagrangian are

L3 =
κ

λ

[
|π̇|3 + π̇gij∂

iπ∂jπ
]
. (2.12)

For κ ≈ m, we have c2
s ≈ κ2−m2

2m2 � 1, so 4m2|π̇|2 ≈ 2m2c2
s|∇π|2 on average. Now, comparing

equations (2.6) and (2.12), we see that the linear theory is only valid when

c−1
s |π̇| ∼ |∇π| � mcs . (2.13)

Solving (2.11) perturbatively by writing ψ = ψ(0) + ε̃ψ(1) yields

ψ̈(0) + ω2ψ(0) = 0 , (2.14)

ψ̈(1) + ω2ψ(1) = −ω2e−t
2/τ2

sin(Ωt)ψ(0) , (2.15)

which has the solutions

ψ(0)(t) = C
(0)
1 eiωt + C

(0)
2 e−iωt , (2.16)

ψ(1)(t) = C
(1)
1 eiωt + C

(1)
2 e−iωt −

∫ ∞
−∞

dt1ω
2e−t

2
1/τ

2
sin(Ωt1)G(t, t1)ψ(0)(t1) , (2.17)

where

G(t, t1) =
sin[ω(t− t1)]

ω
Θ(t− t1) , (2.18)

is the Green’s function of a harmonic oscillator, while Θ represents the Heaviside function.
Combining our ansatz of π ∝ eik·xψ(t) with equations (2.16) and (2.17), we find

π(x, t) ∝ eikx
[
e−iωt +

√
πε̃ωτ

4
e−

1
4

(Ω+2ω)2τ2
(
e2ωΩτ2 − 1

)
eiωt
]
. (2.19)

As we are working in curved spacetime with a single mode, we can write π(x, t) ∝ eikx[
αe−iωt + βeiωt

]
, where α and β are Bogoliubov coefficients. This immediately yields

α = 1 , (2.20)

β =
ε̃
√
πω

4
τe−(Ω+2ω)2τ2/4

(
e2ωΩτ2 − 1

)
, (2.21)

from equation (2.19).
Let us briefly comment on the large and small τ limits. We note that β → 0 as

τ → 0. Intuitively, this makes sense because a vanishing measurement duration implies
that no information about the gravitational wave would be obtained. We further discuss
the information that can be acquired in section 3. For τ → ∞ we recover (as expected [9])
β → 0. We note that for non-geodesic boundaries [9], non-zero Bogoliubov coefficients αnm
and βnm result for modes n 6= m. However in our case coefficients with n 6= m are zero since
we assume non-interacting modes.

As we are considering an odd function for the gravitational waveform, we find α = 1.
If, for example, we had instead considered an even function h+ = εe−t

2/τ2
cos(Ωt), then α

would include a non-zero imaginary O(ε) term. Such effects are necessary to consider if a
BEC gravitational wave detector were constructed; we shall neglect this additional effect
henceforth in order to keep the discussion as simple as possible.
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3 Detection of gravitational waves via quantum metrology

Quantum metrology is the study of making precision measurements by exploiting quantum
mechanical properties, rather than solely relying on classical measurements of a system. This
can be used, for example, to overcome shot noise in a detector [15–17]. Another advantage
is that quantum metrology can be used to estimate a parameter θ that is not an operator
observable of a system. This is done by determining how an infinitesimal change of the
parameter affects the statistical distance between two quantum states, thereby defining their
distinguishability (fidelity) and quantum Fisher information.

An estimate in the error in the measurement of θ is obtained from the quantum Fisher
information [10],

H(θ) =

8

(
1−

√
F (ρθ, ρθ+dθ)

)
dθ2

, (3.1)

where F (ρθ, ρθ+dθ) is the fidelity between the states ρθ and ρθ+dθ. The fidelity between two
states ρ′, ρ′′ is defined as [18, 19]

F (ρ′, ρ′′) =

[
Tr

√
ρ′
√
ρ′′ρ′

]2

, (3.2)

which describes the overlap between ρ′ and ρ′′. When both ρ′ and ρ′′ correspond to Gaussian
states, it is often easier to use covariance matrices. In this case, the covariance matrix for
a Gaussian state is σmn = 1

2 〈XmXn +XnXm〉 − 〈Xm〉 〈Xn〉, where X2n−1 = 1√
2
(an + a†n),

X2n = 1√
2i

(an − a†n), and an, a
†
n are the creation and annihilation operators. Note that

this normalization convention is different from what was used in [9, 20]. Suppose that M
independent measurements are done to determine θ. Then,

〈(∆θ)2〉 ≥ 1

MH(θ)
(3.3)

is the minimum error in measuring θ [9, 10].
We will now use the quantum Fisher information to estimate the minimum error in the

amplitude of the gravitational wave. We will restrict ourselves to the case in which 〈Xi〉 = 0.
First, consider two Gaussian states described by the covariance matrices σA, σB. Let us
define [21]

∆ = det[σA + σB] , (3.4a)

Λ = 22n det

[
σA +

i

2
J

]
det

[
σB +

i

2
J

]
, (3.4b)

J =

n⊕
k=1

(
0 1
−1 0

)
, (3.4c)

where n is the number of modes. Now, the fidelity between the two covariance matrices of
two single-mode states is given by [21]

F (σA, σB) =
1

√
∆ + Λ−

√
Λ
. (3.5)
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Consider preparing the phonons in the BEC in a squeezed Gaussian single-mode state,
described by an initial covariance matrix σ(0) (at zero-temperature) [22]:

σ(0) =
1

2

(
cosh(2r) + cos(φ) sinh(2r) − sin(φ) sinh(2r)

− sin(φ) sinh(2r) cosh(2r)− cos(φ) sinh(2r)

)
, (3.6)

where r is the squeezing parameter and φ is the squeezing angle. When a gravitational wave
passes by the BEC, it affects the phonons by transforming its covariance matrix to σ`(ε̃)
where [20]

σ`(ε̃) =M``(ε̃)σ(0)M``(ε̃) +
∑
j 6=`
M`j(ε̃)MT

`j(ε̃) , (3.7)

with ` the mode number of the phonon and

Mmn(ε̃) =

(
<[αmn − βmn] =[αmn + βmn]
−=[αmn − βmn] <[αmn + βmn]

)
. (3.8)

Our Bogloliubov coefficients in equations (2.20) and (2.21) do not couple different modes, so
we note that αmn = αδmn and βmn = βδmn.

As shown in [20], equation (3.1) can be written as

H(ε) = 2
(
σ

(0)
11 σ

(2)
22 + σ

(2)
11 σ

(0)
22 − 2σ

(0)
12 σ

(2)
12

)
+

1

2

(
σ

(1)
11 σ

(1)
22 − 2σ

(1)
12 σ

(1)
12

)
. (3.9)

where σ
(n)
ij is the ij matrix element in an expansion of the covariance matrix,

σij(ε) = σ
(0)
ij + σ

(1)
ij ε+ σ

(2)
ij ε

2 +O(ε3) (3.10)

in powers of ε, and we have assumed that the amount of displacement of the squeezed state
is zero. Using equations (2.20), (2.21), and (3.6)–(3.9), we calculate

H(ε) =
1

64
πτ2ω2e−

1
2
τ2(2ω+Ω)2

(
e2τ2ωΩ − 1

)2
R (3.11)

where

R ≡ sinh2(2r)(6 sin2 φ− 2) + cosh(4r) + 1 . (3.12)

Therefore, we find

1

M 〈(∆ε̃)2〉
≤ πω2τ2

64
R

(
e−

(Ω−2ω)2τ2

4 − e−
(Ω+2ω)2τ2

4

)2

. (3.13)

Equation (3.13) describes a BEC possessing a single mode, but we can further exploit

all modes of the BEC to improve the sensitivity. From ε̃ =
k2
x−k2

y

k2 ε, we have 〈(∆ε̃~k)
2〉 =(

k2
x−k2

y

k2

)2

〈(∆ε~k)
2〉, where 〈(∆ε~k)

2〉 is the error in ε for mode ~k. Averaging over the solid

angle, 1
4π

∫
dθdϕ 〈(∆ε̃~k)

2〉 sin θ = 4
15 〈(∆ε~k)

2〉. Substituting this average into 〈(∆ε̃~k)
2〉, we find

1

〈(∆ε)2〉 tot

=
∑
~k

〈(
k2
x − k2

y

k2

)2〉
1

〈(∆ε̃~k)2〉
=

4

15

∑
~k

1

〈(∆ε̃~k)2〉
, (3.14)
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where 〈(∆ε)2〉tot is the total error in the measurement of the amplitude of the gravitational
wave. For a large number of single-mode states and assuming that the modes are non-
interacting, we can convert equation (3.14) into an integral. With ω = csk, assuming the

BEC has a volume of L3, k =
√(

nxπ
L

)2
+
(nyπ
L

)2
+
(
nzπ
L

)2
, and using spherical coordinates

(with the both the altitudinal and azimuthal integrals between 0 and π
2 ), we have

1

〈(∆ε)2〉 tot

.
π4Mc2

sRτ
2

480L2

∫ ∞
0

n4e−
(2πcsn+LΩ)2τ2

2L2

(
e

2πcsnΩτ2

L − 1

)2

dn ,

=

ML3e−
1
2
τ2Ω2

R

(
e
τ2Ω2

2

(
τ4Ω4 + 6τ2Ω2 + 3

)
− 3

)
7680

√
2πc3

sτ
3

,

(3.15)

neglecting O(ε2) terms and only considering the cases in which the integrand is peaked at
n� 1 (corresponding to gravitational wave frequency much bigger than the lowest acoustic
harmonic of the BEC, Ω� 2πcs

L ).
Now, for a total observation time of tobs, we can approximately run M ∼ tobs/τ separate

measurements of the BEC state. Therefore,

〈(∆ε)2〉tot ≥
7680
√

2πc3
sτ

4e
τ2Ω2

2

L3tobsR
(
e
τ2Ω2

2 (τ4Ω4 + 6τ2Ω2 + 3)− 3
) . (3.16)

Note that R is maximized at φ = π/2, such that Rmax = 3 cosh(4r)− 1. We point out that
squeezing at specific angles is physical and has previously been done [23, 24].

For Ωτ � 1,

〈(∆ε)2〉tot ≥
1024
√

2πc3
sτ

2

L3tobsΩ2R
+O(Ω4τ4) , (3.17)

indicating that shorter (individual) measurement times, τ , for a fixed total observation time
tobs, will maximize the sensitivity of the BEC to an incoming gravitational wave. However,
τ cannot be made arbitrarily short; we shall briefly discuss this in section 4.

Let us now investigate the maximum squeezing of the system. From equation (2.6), for
4|π̇|2 ≈ 3c2

s|∇π|2, which is true on average, the Hamiltonian is

H =
7m2

4λ

∫
d3x|∇π|2 ∼ 7m2

4λ
L3|∇π|2 , (3.18)

where V is the volume of the condensate. In the ground state of the system, we would be
able to write the Hamiltonian as

H = L3

∫
d3k

(2π)2

1

2
ω ∼ L3

32π2
k4cs , (3.19)

where k is the maximum effective wavenumber obeying the linearity condition (2.13):

〈|∇π|2〉 � m2c2
s. Comparing equations (3.18) and (3.19), we find |∇π|2 ∼ λk4cs

56m2π2 . If we

squeeze the ground state, then we require λk4cs
56m2π2 e

2r � m2c2
s. Therefore, after re-inserting ~

and c, we have

e2r � 56π2

λ

(mc
~k

)4 (cs
c

)
. (3.20)

– 7 –
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To calculate λ, we need only to consider the background, such that π = 0. With

Tµν =
2√
−g

δS

δgµν
, (3.21)

and

S =

∫
d4x
√
−gL , (3.22)

where L =
1

4λ

[
gµν∂µχ∂νχ−m2

]2
, we find

Tµν = gµνL+ 4
[
gµ
′ν′∂µ′χ∂ν′χ−m2

]
∂µχ∂νχ . (3.23)

Let ρ = T00 be the energy density. Then, with π̇ = 0, ∇π ∼ π̇, and 2m2c2
s ≈ κ2−m2, we see

(again re-inserting ~ and c),

ρ ≈ 1

λ

m4c2
sc

3

~3
(3.24)

which is a relation that is already established in the BEC community.
Equation (3.20) becomes

e2r � 56π2c3
sρ

ω4~
, (3.25)

where we have also used ω = csk. For a BEC with number density 7× 1020 m−3 containing
atoms of mass 10−25 kg and in the case of phonons of frequency ω

2π = 104 Hz and speed
cs = 1.2 cm/s, we have r . 27.

4 Sensitivity for specific experimental parameters

4.1 Non-interacting modes

Let us now analyze the experimental feasibility of using a BEC to detect gravitational waves.
We will consider condensates with non-interacting modes, which corresponds to the model
described in sections 2 and 3. In reality, this is an oversimplification, and we discuss how our
model will be affected by damping effects in section 4.2.

Numerical simulations involving optomechanics and trichromatic lasers have been able
to squeeze phonons by at least 7.2 dB [25], corresponding to a squeezing parameter of
r = 0.83.4 Phonons have been squeezed using second-order Raman scattering [27, 28], though
this was in the presence of a crystal lattice. Even though we are interested in a BEC in a
curved spacetime, it may still be possible to exploit this feature.

As shown in [29], the presence of an optical lattice potential implies that the flat space
BEC Hamiltonian can be written as a Bose-Hubbard Hamiltonian. In this case, a modifi-
cation of the methods of squeezing phonons in crystal lattices, such as second order Raman
scattering [27] or pump-probe detection scheme [30] might potentially be used. The current

4Note that position squeezing s is reported in decibels and can be converted to the squeezing parameter r
with s = −10 log10

(
e−2r

)
[26].
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Figure 1. Theoretical sensitivities of a BEC gravitational wave detector (top curve) using current
experimental capabilities, where f is the frequency of the gravitational wave. With L = 10−3 m,
tobs = 106 s, τ = 10−3 s, φ = π/2, and r = 0.83, a BEC is unable to detect kHz gravitational
waves. The thick blue line corresponds to the maximum design sensitivity of aLIGO (extrapolated
to 104 Hz) [37, 38]. Note that phonons of frequency f

2 are necessary to detect gravitational waves of
frequency f .

limitation on squeezing phonons arguably represents one of the greatest challenges for using
a BEC as a gravitational wave detector. With r = 0.83 and φ = π/2, we see that R ≈ 41.
If phonons were squeezed 20 dB, corresponding to r = 2.3, then R ≈ 1.5× 104. An increase
in the amount of squeezing would exponentially increase the sensitivity to the gravitational
wave [31], though we note that this will be extremely difficult to achieve. For simplicity, we
have assumed that the BEC is cubic in shape with no external potential, but realistically,
we note that only certain trap geometries and trapping potentials lend themselves to large
(number) squeezing [24].

Let us now consider the ratio c3s
L3tobs

. Experiments have been done to create condensates

with lengths on the order of tens of microns to mm [32–34]. However, these lengths are
only in a single direction, with the other length (in the case of quasi-two-dimensional BECs)
much smaller. As shown in [35, 36], speeds of sound in BECs were analyzed as a function of
the density, with a speed of approximately 1.2 cm/s being obtained at a number density of
7× 1020 m−3.

For a gravitational wave of period T , sensitivity is optimized for T . τ . td, where td
is the decoherence time of the phonons, which we discuss in more detail in section 4.2. For
gravitational waves in the kHz frequency range, the minimum time required is τ & 10−3 s.
One proposal in [9] is to use quantum dots to make measurements on the BEC in which they
suggested using 1500 dots to make 106 measurements per second.

In figure 1, we assume that a BEC can be constructed with the best experi-
mental/numerical parameters that have been achieved: modes are squeezed by 7.2 dB
(r = 0.83) [25], the BEC has a length of L = 10−3 m [32–34], the speed of sound of
cs = 1.2 × 10−2 m/s [35, 36], the quadrature angle is φ = π/2, and there is a total ob-
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(b)

Figure 2. Theoretical sensitivity to kHz gravitational waves for a futuristic BEC with cs = 1.2 ×
10−2 m/s, tobs = 106 s, φ = π/2, and τ = 10−3 s. In (a), L = 10−3 m, while L = 1 m in (b). The thick
blue line is the design sensitivity of aLIGO (extrapolated to 104 Hz) [37, 38].

servational time of 106 s. It is seen that our maximum sensitivity for a gravitational wave
in the kHz regime is approximately 6× 10−14 Hz−1/2. From equation (3.16), though smaller
speeds of sound will increase the sensitivity, the available frequency range will also decrease
because the chemical potential µ = mc2

s becomes smaller. To detect a gravitational wave
of 1 kHz using atoms of m = 10−25 kg, the maximum sensitivity of 4 × 10−11 Hz−1/2 occurs
when µ = 500 Hz (cs ≈ 1.8 mm/s).

In figure 2a, we illustrate how increased squeezing can affect the BEC’s sensitivity to
gravitational waves. We assume that a BEC in the future can be constructed with similar
properties as those in figure 1, but with r in excess of 0.83. It is necessary to squeeze
phonons above r = 15 in order to rival LIGO-level sensitivities. In an alternate scenario
shown in figure 2b, we suppose that metre-long BECs can be constructed. For this case,
we can exceed a LIGO-level sensitivity at r ≈ 10. We acknowledge that several difficulties
exist in constructing large-scale BECs, such as how to cool to sufficiently low temperatures.
This is a major experimental challenge for the future that we will not further consider here.
Indeed, attaining values r ≥ 1 is currently unfeasible, and would require advances in squeezing
techniques.

The average number of particles in a squeezed vacuum state is 〈n〉 = sinh2(r), with its
energy expectation value being sinh2(r)~ω [39]. It should be mentioned that, even though
figures 2a and 2b demonstrate that the desired sensitivity can be achieved for r ≈ 10 and
r ≈ 15, depending on the size of the condensate, we note that this results in 〈n〉 ≈ 108

and 〈n〉 ≈ 2 × 1012, respectively. In fact, for r ≈ 27, which is the maximum squeezing
possible before our model breaks down, we have 〈n〉 ≈ 7 × 1022. Using current techniques,
these expectation values exceed the number of particles that can be confined in rubidium
BECs, which is on the order of 2×107 [40], though 109 particles were confined in a hydrogen
BEC [34]. If such values of squeezing were achieved without also increasing the number
of particles present in a condensate, additional effects may manifest themselves that might
act to decrease the sensitivity to gravitational waves. However, in the case of figure 2b, an
increase in the length of the condensate will probably also correspond to an increase in the
number of particles present in the BEC, thereby negating this problem.
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4.2 Decoherence (damping) from interacting modes

Let us now look at the maximum value of τ . As derived in [41], in the case that
r0 > max[µ0/µ∞, µ∞/µ0] the decoherence time of a BEC is

td =
1

γB
ln

(
µ0

µ∞
+ µ∞

µ0
− 2 cosh(2r0)

µ0

µ∞
− cosh(2r0)

)
, (4.1)

where µ0 is the initial purity, µ∞ is the purity as t → ∞, r0 is the initial squeezing (which
will decay over time), and γB quantifies the damping rate. For low temperatures, Beliaev
damping is dominant and at zero-temperature is given by [42]

γB ≈
3

640π

~ω5
~k

mnc5
s

, (4.2)

where ω~k is the frequency of the single phonon mode ~k, m is the mass of the atoms making up
the BEC, and n is the number density. For simplicity, consider the case in which r0 is large

enough such that ln

( µ0
µ∞

+µ∞
µ0
−2 cosh(2r0)

µ0
µ∞
−cosh(2r0)

)
∼ O(1). From equation (3.15), note that phonons

with a frequency ω~k ≈
Ω
2 are most important for the gravitational wave detection. In this case,

sensitivity to gravitational waves is maximized when our measurement duration is in the range
2π
Ω ≤ τ . 1

γB
. Taking our BEC to have cs = 1.2×10−2 m/s, n = 7×1020 m−3, m = 10−25 kg,

our sensitivity to gravitational waves is optimal when 2π
Ω ≤ τ . (3.6× 102 sec)

(
f

2π·103 Hz

)−5
.

For a 10 kHz gravitational wave, we find td ≈ 3.62 s, which is greater than the period of the
gravitational wave.

We can analyze decoherence effects more rigorously by noting that the squeezing pa-
rameter evolves in time as [41]

cosh[2r(t)] = µ(t)

(
e−γBt

cosh(2r0)

µ0
+

1− e−γBt

µ∞

)
, (4.3)

where

µ(t) = µ0

(
e−2γBt +

µ2
0

µ2
∞

(
1− e−γBt

)2
+ 2

µ0

µ∞
e−γBt

(
1− e−γBt

)
cosh(2r0)

)−1/2

(4.4)

is the purity. We will now determine the measurement time of τ = t in order to maximize
the sensitivity to gravitational waves. Taking er, er0 � 1 and µ0 = µ∞ = 1, we note that
equation (4.3) behaves as

e2r ∼ e−γBτe2r0 + 1− e−γBτ√
e−2γBτ + (1− e−γBτ )2 + 2e−γBτ (1− e−γBτ ) e2r0

. (4.5)

We see that the squeezing decays from e2r0 → er0 on a time-scale of

τ ∼ − 1

γB
ln

[
−
√
e2r0 − e4r0 − e6r0 + e8r0 + 2e2r0 − e4r0 − 1

4e2r0 − 3e4r0 − 1

]
∼ 2

5γB
(4.6)
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Figure 3. The theoretical sensitivity of a BEC to gravitational waves, with τ optimized and r0
maximized within the validity of the model (solid black and purple lines), including decoherence due
to interacting modes. Over this frequency range, the measurement duration corresponds to τ ∼ 1

ω .
We have set tobs = 106 s, m = 10−25 kg, n = 7 × 1020 m−3, µ0 = µ∞ = 1, cs = 1.2 × 10−2 m/s,
and φ = π/2. To facilitate comparison, we have also considered r = 10 for two different condensate
lengths, assuming damping to be negligible (dashed blue and orange lines), where we have τ = 10−3 s
in both cases. The overall trend of the design sensitivity of aLIGO is indicated by the thick blue line
(extrapolated to 104 Hz) [37, 38].

Consider phonons at a frequency of Ω
2 . For τ ≈ 2

5γB
and large er, er0 , we can combine

equations (4.5) and (3.13) to find

1

〈(∆ε̃)2〉
∼ τ4e4r0e−2γBτ , (4.7)

which is maximized at τ = 2
γB

.
Let us now consider more formally how decoherence could affect the sensitivity to grav-

itational waves. We can incorporate decoherence into (3.13) with equation (4.3) by letting
r → r(t) and following the same steps that were used to arrive at equation (3.16). We also
note from [43, 44] that the purity divides the covariance matrix, equation (3.6), so µ(t) also
multiplies equation (3.13). By integrating over all the modes, we can then determine an
equation analogous to (3.16), such that 〈∆ε2〉tot now includes effects arising from decoher-
ence. We note that this is only an approximation; decoherence should, strictly speaking, be
introduced prior to solving equation (2.11).

In figure 3, we consider the maximum value of the squeezing parameter from equa-
tion (3.25) and the optimal measurement duration to maximize the sensitivity to gravita-
tional waves in the kHz range. As we are considering all modes, in this regime τ ≈ 1

ω
(verified numerically). We see that, because of decoherence, the sensitivity decreases for
higher frequencies.
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It will be necessary to constantly regenerate the BEC [40, 45] in order to repeatedly
perform measurements over the tobs = 106 s. With such a BEC machine, it will be possible
to generate multiple BECs simultaneously. In equation (3.16), we assumed that the number
of measurements was M ∼ tobs/τ . For N BECs, the sensitivity to gravitational waves will

improve by 1/
√
N . To obtain a sensitivity

√
〈∆ε2〉√
f
≈ 10−23 Hz−1/2 to a gravitational wave of

frequency f = 104 Hz using the parameters in figure 1, we would therefore require O(1022)
BECs, which is impractical. This number is commensurate with other work [46], though an
alternative detection scheme has been argued to be possible [47]. Improved techniques of
increasing the squeezing of the phonons and increasing the volume of the condensate will be
necessary for a BEC kHz gravitational wave detector to be achievable.

5 Conclusion

We have investigated the feasibility of using a BEC as a gravitational wave detector by
modelling the wave as h+ = e−t

2/τ2
sin(Ωt), where the exponential prefactor is included

to model the measurement duration. We have derived an analytic expression for the mean-
square error in the amplitude of the gravitational wave, which depends on the squeezing of the
phonons in the BEC, volume of the BEC, speed of sound, and frequency of the gravitational
wave. Turning to a consideration of currently available techniques to improve sensitivity
within the linear dispersion regime, we find that a BEC constructed using the best possible
parameters to maximize the sensitivity will be unable to detect gravitational waves in the
kHz range, in contrast to the work of [9]. A full analysis would require making use of the
non-linear dispersion relation in appendix A.

Though a BEC as a gravitational wave detector is currently not feasible for observing
kHz gravitational waves, it could be a promising method for observing waves at this frequency
once it is understood how to increase phonon squeezing as well as the volumes of BECs. In
the meantime, it will be productive to analyze how properties of the BEC can be optimized
to improve sensitivity to gravitational waves by investigating different trap geometries and
understanding the effects of vortices and inhomogeneities on the sensitivity. Furthermore,
different trapping and optical potentials should be examined as this could have ramifications
for the amount of squeezing that can be done and the speed of the phonons. The introduction
of additional effects into the BEC may result in a way of using a BEC to detect gravitational
waves without resorting to such large values of the squeezing parameter.

While here we focused on BECs at zero temperature, finite temperature effects can
further affect the metrology and decoherence (through Landau damping), and will be studied
in future work. Furthermore, we have considered a homogeneous BEC. Recent work [48] has
emphasized the importance of using inhomogeneous BEC condensates, since they scale with
the number of condensate atoms instead of the number of phonons as in the homogeneous
case. It would be of interest to extend our work to the inhomogeneous case to see how to
better optimize detection. It is only once these questions are answered that it will be possible
to rival the sensitivities of LIGO (and its successors) for kHz gravitational waves.

– 13 –



J
C
A
P
0
7
(
2
0
1
9
)
0
3
2

A Calculation of the BEC’s dispersion relation

Let us now determine the general dispersion relation for the BEC. Inserting

φ =

√
κ2 −m2

2λ
exp [i(κt+ π) + σ] , (A.1)

(with real σ and π) into equation (2.1), we find the Lagrangian to be

L=
(κ2−m2)

2λ
e2σ
[
∂µσ∂

µσ−(∇π)2+(π̇+κ)2
]
−m

2(κ2−m2)e2σ

2λ
− (κ2−m2)2e4σ

4λ
, (A.2)

where

2σ = ln

[
(κ+ π̇)2 − (∇π)2 −m2

κ2 −m2

]
. (A.3)

Writing σ and π in terms of their inverse Fourier transforms,

σ =

∫
σ̂(ω,~k)ei(k·x−ωt)dωd3k , (A.4)

π =

∫
π̂(ω,~k)ei(k·x−ωt)dωd3k , (A.5)

we find

2λ

κ2 −m2
L2 =

(
π̂∗ σ̂∗

)(ω2 − k2 + 2(m2 − κ2) −2iκω
2iκω ω2 − k2

)(
π̂
σ̂

)
(A.6)

for the quadratic term in the Lagrangian.
Setting the determinant of this matrix equal to zero and solving for ω gives the dispersion

relation,

ω2 = k2 −m2 + 3κ2 ±
√
m4 + 4k2κ2 − 6m2κ2 + 9κ4 . (A.7)

From equation (2.8), we can write

κ =

√
1− c2

s√
1− 3c2

s

m. (A.8)

Requiring k � m and cs � 1, equation (A.7) (for the minus sign, associated with the
low-frequency Goldstone mode) can be expanded in k and cs to find

ω2 = c2
sk

2 +O
(
k4

m2

)
. (A.9)

Therefore ω ≈ csk (indicating that cs does represent the speed of sound), as long as
ω � µ ≡ mc2

s, i.e. frequency is much smaller than the chemical potential µ.
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