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Abstract. We study the formation of primordial black holes when they are generated by
the collapse of large overdensities in the early universe. Since the density contrast is related
to the comoving curvature perturbation by a nonlinear relation, the overdensity statistics is
unavoidably non-Gaussian. We show that the abundance of primordial black holes at forma-
tion may not be captured by a perturbative approach which retains the first few cumulants
of the non-Gaussian probability distribution. We provide two techniques to calculate the
non-Gaussian abundance of primordial black holes at formation, one based on peak theory
and the other on threshold statistics. Our results show that the unavoidable non-Gaussian
nature of the inhomogeneities in the energy density makes it harder to generate PBHs. We
provide simple (semi-)analytical expressions to calculate the non-Gaussian abundances of the
primordial black holes and show that for both narrow and broad power spectra the gaus-
sian case from threshold statistics is reproduced by increasing the amplitude of the power
spectrum by a factor O(2 =+ 3).
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1 Introduction

Since the first detection of gravitational waves originated by the merging of two ~ 30M, black
holes [1], the idea that Primordial Black Holes (PBHs) might form a considerable fraction of
the dark matter [2-4] has attracted again much interest [5] (see ref. [6] for a recent review). A
popular mechanism for the formation of PBHs is the scenario in which PBHs are originated
from the enhancement of the curvature power spectrum at a given short length scale due to
some features [6]. If the power spectrum of the curvature perturbation is enhanced during
inflation to values ~ 1072 on small scales and subsequently transferred to radiation during
the reheating process, PBHs may form from sizeable fluctuations if the latter overcome the
counter effect of the radiation pressure.

Since the perturbation of fixed comoving size does not collapse till it re-enters the
cosmological horizon, the size of a PBH at formation is related to the horizon length and its
mass M is approximately the mass contained in such a horizon volume. Fluctuations collapse
immediately after horizon re-entry to form PBHs if they are sizeable enough. We indicate



by § the overdensity and by ag its variance

3
0% = / ((21;;3 W?2(k, Ry) Ps(k), (1.1)
where Ps is the overdensity power spectrum, Ry being the comoving horizon length Ry =
1/aH, H is the Hubble rate and a the scale factor. The quantity W (k, Ry) is a window
function, for which we choose a top-hat in real space. Under the assumption that the den-
sity contrast is a linear quantity obeying gaussian statistics, threshold statistics (or Press-
Schechter) predicts that the primordial mass fraction 3(M) of the universe stored into PBHs
at the formation time is given by'

dd

P(6 > 6;) = B(M) = / 92 (1.2)
5. V2T og

Here 4. is the threshold for formation of the PBHs which quantifies how large the overdensity

perturbations must be and depends on the shape of the power spectrum [7, 8, 10]. By defining

Ve = —, (1.3)
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the Gaussian mass fraction can be well approximated by (v. > 5)
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This expression for the PBH mass fraction comes about when identifying the PBHs with

regions whose overdensity is above a given threshold, hence the name of threshold statistics.
Alternatively, one can identify the PBHs with the local maxima of the overdensity, and

one may use peak theory [11] to compute their mass fraction. In such a case one has [12]?

1 /()2 . 1 [ &3k
gk::)m<<3>> Ry (V2 —1)e /% with <k2>—2/(%)3 kK? Ps(k),  (1.5)
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where now [8]
5C
Vpk = Lk) (16)
of)
and ¢7, is to be identified with the critical value of the overdensity at the center of the peak
above which an initial perturbation eventually collapses into a PBH [8, 10]. Notice that here

we follow refs. [7, 8] and do not introduce a window function for the peak theory. Indeed, for

'In the literature sometimes this expression may be multiplied by a factor of 2 to account for the cloud-in-
cloud problem [9]. There seems to be no agreement if this factor should be included for PBHs. Numerically
it makes little difference.

2We differ slightly from the corresponding expression in ref. [12]. First by a factor of 3 to account for
the fact that one counts the number density of peaks at superhorizon scales, but the PBHs formed once the
overdensity crosses the horizon at a slightly later time [8] (see also section 3). Secondly, by the fact that
we define the mass going into PBH to be M = (4m/3)pR3;, where p is the background radiation density.
More importantly, we use here the definition (1.6) for the critical value vpx. We will give more details in
section 3. At the gaussian level, peak theory gives a PBH abundance which is systematically larger than the
one provided by the threshold statistics [12].



the examples we will discuss the window function is not strictly necessary because they are
characterised by a well-defined scale in momentum space and the corresponding distribution
is already smooth on length scales smaller than that characteristic scale. Also, in the case of
peak theory a typical length pops out automatically, that is the scale R..

The gaussian expressions (1.4) and (1.5) make already manifest the essence of the prob-
lem we are going to discuss in this paper. PBHs are generated through very large, but rare
fluctuations. Therefore, their mass fraction at formation is extremely sensitive to changes
in the tail of the fluctuation distribution and therefore to any possible non-Gaussianity in
the density contrast [13-26]. This implies that non-Gaussianities need to be accounted for
as they can alter the initial mass fraction of PBHs in a dramatic way. For instance, the
presence of a primordial local non-Gaussianity in the comoving curvature perturbation can
significantly alter the number density of PBHs through mode coupling [27-32].

In this paper we will be dealing with a source of non-Gaussianity which is unavoidably
generated by the non-linear relation among the overdensity 6(Z,t) (¢ is the cosmic time)
and the comoving curvature perturbation ((Z). It is important to stress that this non-linear
relation makes the overdensity non-Gaussian even if the curvature perturbation is gaussian.
In this sense, the non-Gaussianity we will discuss here is ineludible.

Let us briefly discuss where this non-linearity relation comes from. As we mentioned
above, in the early radiation-dominated universe, the PBHs are generated when highly over-
dense regions gravitationally collapse directly into a black hole. Before collapse, the comoving
sizes of such regions are larger than the horizon length and the separate universe approach
can be applied [33]. One therefore expands at leading order in spatial gradients of the various
observables, e.g. the overdensity. At this stage, the slicing and the threading of the spacetime
manifold are to be fixed. For instance, the so-called comoving gauge seems appropriate as
it has been adopted to perform numerical relativity simulations to describe the formation of
PBHs and to calculate the threshold for PBH formation [7].

In the comoving slicing, the overdensity turns out to be [33]
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As the universe expands, the overdensity grows. Regions where it becomes of order unity
eventually stop expanding and collapse. This happens when the comoving scale of such
a region becomes of the order of the horizon scale. Even though the gradient expansion
approximation breaks down, it has been used to obtain an acceptable criterion for the PBH
formation (that is to compute the overdensity threshold) and this approximation has been
confirmed to hold by nonlinear numerical studies [6, 34].

The standard procedure in the literature is to expand the relation (1.7) to first-order in ¢

4

&1 =~ g

V(%) (1.8)
and to relate the power spectrum of the overdensity to the one of the curvature perturbation

by the relation
16 Kk
Ps(k,t) = ———P:(k). 1.9
5( ) ) 81 atHA C( ) ( )
The question is to what extent this is a good approximation given the fact that even tiny
changes (percent level) in the square root of the overdensity variance are exponentially am-

plified in the PBH mass fraction.



To get the feelings of the numbers, let us roughly estimate the impact of the exponential
e~%(@), Calling k, the typical momentum of the perturbation, from eq. (1.8) we get

9a2H?
(¢~

9a%H?
12 0~ 102 0c ~ 0.15, (1.10)
where we have taken the threshold . ~ 0.5 and k, ~ 2.7aH [8]. This gives e~ ~ 0.7.
This looks as a small change, but in fact it has an exponentially large effect in the mass
fraction when the corresponding overdensity variance is calculated.

The goal of this paper is to deal with the intrinsically non-Gaussian nature of the
overdensity onto the mass fraction of PBHs. First of all, we will provide a simple argument
to convince the reader that the non-Gaussianity introduced by the non-linear relation (1.7)
between the overdensity and the gaussian curvature perturbation has an impact on the PBH
mass fraction which may not be accounted for by a perturbative approach. Based on this
finding, we will proceed by computing the mass fraction taking into account such intrinsic
non-Gaussianity. We will do so by using two methods.

Since PBHs may be thought to originate from peaks, that is, from maxima of the local
overdensity, we will resort to peak theory [11] to calculate the probability of formation of
the PBHs. This method is based on the fact that for high values of the overdensity at
the peaks, their location can be confused with the location of the peaks in the comoving
curvature perturbation as long as such peaks are sufficiently spiky, that is if their curvature
(proportional to the second spatial derivatives) is large enough at the center of the peak [7].

Alternatively, we will use the non-Gaussian threshold statistics and provide an exact
expression for the probability to form PBHs. Both methods indicate that the inevitable non-
Gaussian nature of the overdensity makes more difficult to generate PBHs, independently
from the shape of the power spectrum.

Let us also add a cautionary note. The intrinsic non-Gaussianity of the overdensity
changes also the shape of the profile of the peaks which eventually give rise to PBHs upon
collapse. Since the threshold depends on the shape of the overdensity, such non-Gaussianity
influences as well the threshold value. This will be discussed in a separate publication [35].

The paper is organised as follows. In section 2 we offer a simple criterion to show that
the intrinsic non-Gaussianity cannot be described by perturbative methods. Sections 3 and
4 will describe the two methods mentioned above. Section 5 contains our conclusions. The
paper contains as well several appendices for the technical details.

2 A simple criterion to show that intrinsic non-Gaussianity matters

In order to establish if the intrinsic non-Gaussianity introduced by the non-linear rela-
tion (1.7) is relevant, we start from the non-Gaussian threshold statistics developed in ref. [36]
and refined in ref. [24] by means of a path-integral approach. We do not report all the details
here and the interested reader is refereed to those references for more details. We do not use
here the window function which would introduce painful, but useless technicalities without
changing the conclusions. Suffice to say that the probability of having the overdensity larger
than a given threshold can be viewed as the one-point function of the threshold quantity

P35> d.) = <@(5 - Vcaé)> - / [Dé(f)]P[é(f)]@(é(f) - VC05>, (2.1)



where ©O(z) is the Heaviside function. By defining the connected correlators of the
overdensity as

(8(@)--0(F)) = &al@r, -, Fn), (2:2)

one finds that, in the limit of large v, the threshold statistics is given by [24, 36]

P(6>6.)=p(M) = \/217r7 exp {—1/3/2 + Z (_nl|)n§”(0) (6c/a§)”} , (2.3)
c n=3

where the label 0 means that the correlators are computed at equal points. To see under which
circumstances the non-Gaussianity of the overdensity alters the predictions of the gaussian
primordial abundance of PBHs in a significant way, we define dimensionless quantities, the
cumulants, by the relations

n—times
g __ & _ (0@ -6@), (2.4)
RGO 20D

Following ref. [24] we may define the fine-tuning A,, to be the response of the PBH abundance
to the introduction of the n-th cumulant as

_ dInpg(M)

- 2.
An dln S, (2:5)

Each cumulant allows to express the non-Gaussian PBH abundance in terms of the gaussian
abundance as

va(M) _ A,

(M) e (2.6)

This implies that the PBH abundance is exponentially sensitive to the non-Gaussianity unless
A, is in absolute value smaller than unity

Al S 1. (2.7)

Inspecting egs. (1.4) and (2.3), we see that

16\ o (e
Al = o (2] sl 28)

This tells us that intrinsic non-Gaussianity in the overdensity alters exponentially the gaus-
sian prediction for the PBH abundance unless

2
o5 n!
<[ =] —. 2.9

To investigate how restrictive this condition is, we take the simplest case possible, i.e. a very
narrow power spectrum for the comoving curvature perturbation which we approximate by

a Dirac delta )
2
P(k) = k—@ﬂ(k) and Pe(k) = Ak, dp(k — k). (2.10)



Here A is the amplitude of the power spectrum and k, is the characteristic scale of the
power spectrum. Its relation with the cosmological horizon at formation Ry has to be fixed
running numerical simulations [8, 10]. For the case at hand, it is given by k, ~ 2.7/Ry (more
comments on this later on). We do not report all the technical details here, which can be
found in appendix A, where we have consistently calculated the variance, the skewness S3
and the kurtosis Sy up to third-order in perturbation theory (in the power spectrum P, that
is up to A2). We get

1 11
(0%)e = 05 = 2k} A, (1 + —23As + —53 A§> :
3889
63 = —c3k5124% (1 + =— A4,
(0”) k1245 {1+ 70¢ ;
(6%)e = 240ctk} A3,

4 [ ke \2
22 2= ) ~3.2 11
c k2 9<QH> 3.2 (2.11)

One can check that the criterion (2.9) for the skewness (kurtosis) gives the lower bound
Ag 2 6.0(4.0)-1073, (2.12)

where we have taken §. = 0.5. We now impose the condition that the PBHs form at most
the totality of dark matter, which provides an upper bound on their mass fraction given by

MO\ /2
< 1. = . 2.13
£<1.3x%x10 <M®> (2.13)

For instance, for PBH masses around the interesting value of 10712M, [38, 39], one would
get from the gaussian mass fraction (1.4) 3 ~ 10715, v, ~ 8 and therefore A, ~ 3.7 - 1074
This figure violates the bound required (2.12) to neglect the non-Gaussianity by one order of
magnitude. More importantly, the kurtosis does not provide a bound which is much weaker
than the skewness. This signals the breaking of the perturbative approach and calls for a
more refined treatment.

The same conclusion can be obtained in the case where the power spectrum of the
comoving curvature perturbation is parametrised by a log-normal shape of the form

2
Pe(k) = 1;1;0 exp [_m ;iék*)] : (2.14)

Using the results in appendix A, one finds the following (for o = 0.2)
(6%)e = 05 = 1.4- Ik} Ay (14204 + 15042)
(0%)e = —18- KO AZ (1 + 344,)
(6%)e =400 - c}kS A2, (2.15)
The criterion (2.9) in this case results in a lower bound
Ay 23.8(2.2)-1073, (2.16)

for the skewness and kurtosis respectively, while requiring again 3 ~ 10715 for M ~ 10712 M,
gives Ay =2.5- 10~%. Again we do not see signs of convergence in the perturbative approach.



3 The non-Gaussian probability from peak theory

Having shown that perturbation theory fails to provide the probability for PBH formation,
we first resort to peak theory [11]. As we already mentioned in the introduction, PBHs trace
the peaks of the radiation density field on superhorizon scales where the number of peaks
per comoving volume is constant. Notice that we are dealing with peaks of the overdensity
rather than the peaks of the curvature perturbation. This is because one cannot impose
any constraint on the value of the gravitational potential (or curvature perturbation) on
superhorizon scales because constant gravitational potentials cannot lead to any observable
effect. Nevertheless, one can start from the following important point: large threshold peaks
of the overdensity may be identified within a Hubble volume with the peaks of the curvature
perturbation if the Laplacian of the curvature perturbation (that is the curvature of the
peak) at the peak is large enough [7]. More in details, one can show that if the value of ¢ is
comparable to the threshold value at a peak, one can find the associated peak of { well inside
the horizon patch and centered at the peak of § as long as the peaks in ( is spiky enough.
Let us elaborate about this point in the next subsection.

3.1 Spiky peaks of the curvature perturbation may be confused with peaks of
the overdensity for large thresholds

The argument given in ref. [7] is as follows. Let us consider the nonlinear expression (1.7)
relating § and ¢ on superhorizon scales and in radiation domination

4

0Tt = — 52

e |V20(@) + LaC(@)0C()] (3.1

We can expand the comoving curvature perturbation ((#) for points & around the peak
position &, of the overdensity® §(7,t)

C(F) = () + 0G(E — ) + 500CEN —ah)(@ — ). (32)

Around such a peak we can also write

§(Zo, t) ~ — e XK@IV2¢ (7)), (3.3)

4
9a2H?
where we neglected the second term in the square bracket since its contribution is of higher
order in ¢ with respect to (3.3).

Since the peak amplitude of the overdensity must be larger than some critical value &7,
we deduce that the curvature of the peak in { is bounded from above

9a2H?
4

This is what we meant by saying that the peaks in ( must be spiky enough. Now, the peak
in ¢ is located in ¥, such that 0;((%,.) = 0, or

0iC(Tne) + 0:0;C(Foi) (Yse — 30) = 0 0 (g — 23) = —(C)5(Fni) 03¢ (Tn), (3.5)

where we have used in the last passage the notation 0;0;((Z,) = (ij(Zo). Performing
a rotation of the coordinate axes to be aligned with the principal axes of the constant-(

—V2(Z) > 2@ ge . (3.4)

3We indicate by 9;¢(Zpk) the gradient 0;¢(Z) computed at #px, and so on.



ellipsoids gives the eigenvalues of the shear tensor (;; to be equal to —o2);, where o2 is the
characteristic root-mean-square variance of the components of ¢;; (that of 9;( is 01) and

v ¢(Z) o 2 /dek' 2 dk 25
D L Pk = | Epk. (36
30 7 o " 0002 anad g 272 ¢(k) k Pe(k) (36)

The crucial point is now that the moments 0]2- are typically much smaller than (aH )’ (because
of the presence of the amplitude of the power spectrum). From eq. (3.4), we deduce that

27172
9a H 62<(

—VZ((Zp) ~ Aioa > )58, > o (3.7)
and therefore \; ~ yv > 1 (the probability to have negative eigenvalues is small for large
curvatures around the peak [11]). This implies

b — ab] = |o1/oa)i| < |o1/o2| < 1/aH, (3.8)

where in the last equality we have used the fact that o1/02 ~ k! < Ry. Therefore the high
overdensity peaks in § lie close to the peaks of the curvature perturbation (i.e. within the
Hubble volume) if the latter are characterised by a large second derivatives at the origin of
the peak. This statement if of course valid in the probabilistic sense.

Since some approximations have been made along the way, in appendix B the reader
can find a numerical simulation we have performed to support this result.

3.2 The calculation of the probability from peak theory

If the argument above is correct, one can associate the number of rare peaks in the overdensity
with the number of peaks in the curvature perturbation which are spiky enough, see eq. (3.7).
Therefore, expanding around the peak location &, of ¢ (where 0;((Z,) = 0) we can write

- 4 oz - Lo N 4 oz S
5(xpk7t) - _9a2H26 2 (@pie) V2C(mpk) + 581C(xpk)a C(xpk) = _9a2H26 2( pk)vzg(xpk)
4
= a2 12 €200 0y, (3.9)
where . o
v= (@) and z = —M. (3.10)
oo 02

Since the number of peaks (if spiky enough) in ¢ is approximately the number of peaks in 6,
we can use the expression (A.14) of ref. [11] to find the number of peaks of the overdensity

—v2/2 e 2 )
e exp[—(z — 24)*/2(1 — 7]
dvdx = dvd 3.11
Npk(y7$) vax (27T)2R§ (x) [27_‘_(1_,72)]1/2 v x? ( )
where )
Ro=v32, v=21 and =, (3.12)
g9 gp02

and f(x) is provided by the expression

fz)= (:”:3;?’:”) [erf (x\/§> +erf (;”\/g)

N 2 31x2+8 _%jL 2 8 _ss?
-— - e ——= e .
57 4 5 2 5




Thus the number density of non-Gaussian peaks of the overdensity above a given threshold
45, is simply given by

) oo —v2/2 A 2 _ A2
_ ¢ expl—(z — 2.)2/2(1 — 4*)]
Npk‘/_ood”/zgmdx R T - .
where 2 2
9
O (3.15)

accounts for the fact that only large enough Laplacian values at the peak of the curvature per-
turbation have to be accounted for, see eq. (3.4). Notice that if we take the lower limit (3.15)
at v =0, 2§(0) ~ (9a*H? /404)0,, we automatically reproduce the gaussian case. We have
checked numerically that in such a case, the peak theory abundance of PBHs obtained from
the number density (3.14) with x§(0) reproduces the abundance (1.5) within a factor of order
unity. This gives us extra confidence that identifying large threshold peaks in § with the
spiky enough peaks in ( is a correct procedure. From the expression above one can see that
the narrower is the power spectrum (that is the closer to unity is the parameter ) the more
the integrand is peaked at the value ¢ ~ x, ~ v.

We conclude that the non-liner relation between the curvature perturbation and the
overdensity makes it harder to generate PBHs, independently from the shape of the curvature
perturbation power spectrum.

From the knowledge of the number density of peaks N, we can compute the mass
fraction of PBHs [ at the time of the formation ¢;. Since PBHs trace the peaks of the
radiation density field on superhorizon scales and since the number of peaks per comoving
volume is constant, the number of enough sizeable peaks on superhorizon scales provides the
number of PBHs formed once the overdensity has crossed the horizon and one has properly
rescaled it to the formation time [8, 10].

The next question is therefore what defines the horizon crossing. In cosmology we
are used to the concept of the horizon crossing associated to a given comoving wavelength
k~! and we say that horizon crossing takes place when k = aH. In the case of PBHs, the
large inhomogeneities have characteristic profiles in coordinate space and therefore it is not
immediate to associate to them a given wavelength or momentum. The procedure we will
follow is the one adopted to define the threshold for collapse [10]. Suppose the overdensity
has an average profile in real space given by [11]*

5(r,t) = b, %é’;’t s) ,

where &5(r,t) is the two-point correlator. One can define a scale 7, through the relation

" dr o (r, t)r?
7473;1 — M' (3.17)
O(Tm, t)
This scale is relevant since one can show that the threshold for PBH formation is given
by [8, 10]

(3.16)

2
e 05(tm)
)
3 §2 (Tm’ tm)
4As mentioned already in the introduction, we do not include here the non-Gaussianities in the average

overdensity profile, whose effect we will study elsewhere [35]. As for the variance around the average profile,
it is negligible for dgy /o5 > 1.

c _
0oy =

(3.18)




where 6. = 38(rpm,tm), since 7, is precisely the scale at which the compaction function
C ~25M/ar (being 6 M the overmass generated by the averaged curvature perturbation) is
maximised [10]. Such a maximum is located at distances larger than the cosmological horizon.
It is then natural to define the “horizon crossing” as the time at which® a(t,,) H (tp)rm = 1.
Numerical simulations must provide a relation between the scale r,, and the characteristic
momentum appearing in the power spectrum of the curvature perturbation.
The mass fraction at formation time (that is when the horizon forms) from peak theory
will then be
pk M (RH ) %

NG T ﬁf a? pk> (319)

where M (Ry) is the mass of the PBH associated with the horizon size® Ry,

4
and p; and p,, are the background radiation energy densities at the time of formation and
horizon crossing, respectively. Numerical simulations show that the ratio af/ay, is rather
independent from the shape of the power spectrum and ~ 3 [8]. We therefore have

41
B 23+ S RNy (3.21)

3.3 The log-normal power spectrum

We assume a power spectrum of the form

Pe(k) = —22 exp [_

2o

2
" (k/k.) ;’;ék*)] , (3.22)

where changing the value of ¢ changes the broadness of the power spectrum. For the case at
hand it turns out that [§]
1 1

mHm: a5 T 4=
“ Ry 2.7

ki (3.23)
and one has to choose the critical value 05, = 1.16 corresponding to d. = 0.51 [8, 10].

In figure 1 we plot the mass fraction for various values of ¢ as a function of A;,. We see
that the inclusion of the intrinsic non-Gaussian effects systematically lowers the PBH abun-
dance (having kept fixed the amplitude of the power spectrum of the curvature perturbation).
Said in other words, keeping the amplitude of the fluctuations fixed, it is more difficult to gen-
erate PBHs. This will remain true also using the threshold statistics, as we show in the next
section. Quantitatively, in the case considered, for the usual value of 3 ~ 10~1° necessary for
PBHs to be all the dark matter in the universe for masses of the order of 1072 M, we find
that in the gaussian case the value of the amplitude is consistent with the one reported in
ref. [8] once the difference in the normalisation of the power spectrum is taken into account,
while the non-Gaussian abundance is suppressed.

>The condition should read ™) a(ty)H (tm)rm = 1, but ((rm) < (zpx) and we can safely neglect this
correction.

5Tn case, one can take into account that the PBH mass is not precisely the expression M (Rz), but scales
with the initial perturbations [37].

~10 -
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Figure 1. Mass fraction P* as a function of A, for log-normal power spectrum (PS) computed using
peak theory for both the gaussian and the non-Gaussian case.

3.4 Broad power spectrum

We also consider a broad power spectrum, that is a top-hat function with amplitude A; as
PC(k) = At Q(kmax - k) @(k - kmin) (324)

where © stands again for the Heaviside step function and kpax > kmin, such that the
scale kpyin in practice does not participate in the PBH formation [8]. In this case one finds
Emax =~ 3.5/7m, dc is again 0.51, and 6%, ~ 1.22 [8] and the variances are obtained by putting
amH, as the infrared cut-off since the unphysical long wavelength modes should be disre-
garded. Figure 2 shows the mass fraction as a function of A;.” As predicted, both for narrow
spectra and broad ones, the intrinsic non-Gaussianity in the overdensity makes it harder to
produce PBHs.

4 The non-Gaussian probability from threshold statistics

In this section we present an alternative way to calculate the non-Gaussian probability to form
PBHs which does not rely on the fact that spiky peaks of the curvature perturbation coincide
with peaks of the overdensity for large thresholds. The price to pay is that we will be dealing
with the threshold statistics (the threshold being identified with J. [8]). This might be not a
great sacrifice as regions characterised by large thresholds are likely to be regions of maxima
of the overdensity [40]. The gain is that the expressions we are going to obtain are exact.

Let us consider again the curvature perturbation (%) as a random field. Following the
notation of the appendix A of ref. [11], we define

G =0(, Gy = 0;0;C. (4.1)

"We do not introduce a window function to be able to compare with the gaussian results of ref. [8] which
are reproduced in the gaussian case.
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Figure 2. Mass fraction 8P* as a function of A; for the broad (top-hat) power spectrum computed
using peak theory for both the gaussian and the non-Gaussian case. In this plot (and in the following)
we show in the horizontal axes the value of the amplitude of the power spectrum and its corresponding
root of the variance og.

The correlations of these fields are provided by the expressions

(¢¢) = at, (4.2)
(G =~ s, (43)
1] 3 17 .
(¢Gi) =0, (4.4)
af
(GiG) = 3%‘7 (4.5)
2
(GijCrt) = %(@'ﬁkl + 801 + 0djk), (4.6)
(Gijr) = 0. (4.7)

These variances will be computed numerically using the Fourier transform of the top-hat
window function in real space, that is

sin(kry,) — krp, cos(kry,)

NE (4.8)

k2dk .
P [ WAk ) PR, W (ki) = 3

The matrix —(;; can be diagonalized with eigenvalues o2 );, ordered such that A\; > A > A3.
Thus we define

Vv? AL— A Al =2+ A
$:—7C=)\1+)\2+)\3, Yy = ! 3, 2:#- (4-9)
g9 2 2
Introducing again v = ((&) /0y, the correlations become
=1 @)=1 (w)=y @) =1/15 (*)=1/5 (4.10)
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and all the others are zero. The joint gaussian probability distribution for these variables is
provided by the expression (from now on we will label n; = ()

d3
P(v, 7, z,y, z)dvd®ndadydz = N|2y(y? — 2'2)|67Qdyda:dydzU—;7 (4.11)
0
as a function of ) o
20 =24 TS g2 52y BT (4.12)
(1-7?) 07
and 2 5/2 3
oh (15) 6oy,
x = s = —, N g . 413
L e 3273 o3 (1 — 42)1/2 (4.13)

The variables y and z are unconstrained and we integrate them out. With the ordering of
the eigenvalues previously defined, we see that the variable z lies in the range [—y, y], while
y > 0. The result is therefore given by®

P(v, 7, z)dvd®ndz = Ce~?2dvd3nd, (4.14)

where we have defined

6v/3

C = 4.15
8m5/2,/2(1 — v?)o} (4.15)
and ( 2 o
2, (@ — @ 317 - 1
2Q9 = v° + 1=7) + 7 (4.16)
We can then write the § as a function of these variables as
o 4 @) [w2 i o Lo i 1 4 |
o(Z,t) = ) ek V(X)) + 5@(33)C (az) = 92i2¢ vy = 511 - (4.17)
Now we perform the change of variables:
L 1[4 (2500 — L5 - 7l
Ts =, ns =1, vV = T‘OIH ( 9a2}1225 ) . (418)

The argument of the logarithm is positive for x5 > 75 - 7j5/202. The Jacobian of the trans-
formation is given by

1
=|—]. 4.1
J 250’0 ( 9)
Therefore the distribution in terms of the new variables is given by
P(6, 75, x5)dod®*nsdzs = De~ 3O (z500 — 12 /2)d0d>nsdas (4.20)
where we have defined
6v/3 1
D)=CJ = 4.21
©) 872,/2m(1 — 42)o? | 2600 (4.21)

8Notice that, assuming the linear relation between & and ¢ as in eq. (1.8), one recovers the Press-Schechter
result in eq. (1.2).
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and

2
1 4 _l_,‘_, 1 4 _l—»'—» _,\.—»
2Q3:1n2[ (2572 57h 775)]+ {x(;— 7 [ (w302 = 55 776)” L35

403 9a2H?6 (1—~2) 200 9a2H?6 o?

(4.22)
Finally, since the probability distribution is only a function of the modulus 75 - 75 = 77(%, one
can change variable as d%n; = 77(% sin 05dnsdfsdos and perform the integration on the angles
which trivially results in

P(0,ns, x5)dddnsdzs = 47777§D6_Q3@(x502 — n§/2)d5dn5dx5. (4.23)
Finally we get
= 47r/ d5/ dns n? / das D(0, x5,m5)e” 3. (4.24)
Se 2 /202

This is an exact result, no approximations have been made at this stage.”

4.1 Spiky power spectrum

In the limit of v ~ 1, i.e. for power spectra whose width is very narrow (typical of the PBHs),
we can simplify our expressions dramatically. First of all, from eq. (4.16) one sees that the
distribution in x5 becomes a Dirac delta centered in z, ~ v. We then obtain

4 —1n2
P(0,n5,x5)dddnsdas —47r17 Ee @15 (.%'5—1 [(%022%)

> O(z502— 13 /2)dddnsds

200 9a2H2(5
(4.25)
where
6v3 1 1 4 (33502 — 1772) 317
= d = 2Qs= 5ln? | 27000 4 T 4.26
87200 2009 @a= g2t [ 02HZ | | o? (4.26)
Then, to perform the integral in dns, we rewrite the Dirac delta as
1 4 (.7}502 - lng) 9a2H?50
0 ——In| 22001 =§ K ,
D (za 900 n [ 9a2H?2§ p (s — ) 620075 \ B9t — 1802 H206270%5
(4.27)
where
9
g = \/202% _ §a2H256200m5 (4.28)

and where we have chosen the positive root since ns is always positive. The root imposes the
condition

20915 — gaQHQ(Se?UW > 0, (4.29)

which is solved by (W, and W_; are the so-called principal and negative branches of the
Lambert function)

1 9a’H?0( 9a’H?0(0
_(6) = —— - ——W_ — | = ) 4.30
o) = gt (20 <y < -y (<20 ),

9We checked that using eq. (4.24) gives the same numerical result obtained by computing the probability of
the overdensity integrating eq. (4.14) with the insertion of a Heaviside function of the form © (6 — d.) leading
to the limit of integration in the variable & given by the condition 2 > (9a>H? /402 )exp(2v00)de.
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Figure 3. Mass fraction 8" in the case of a spiky power spectrum as a function of A, for the
non-Gaussian and the gaussian cases computed using the threshold statistics.

with the requirement that!”

1 2
0<d< -~ 2

= . 4.31
e 9a2H?0y + (4.31)

After integrating in dns, we find that the joint probability is

54v/3 a3 H® o2
P(d, $5)d5d$5 = 871-20"213\/41‘6 a2H2 — 9562 05

1 3a’H? o9
X exp [—21% + 200x5 — 152 (4:1;5 212

- 956200%)} dodzs.  (4.32)
1

This means that the threshold probability is

0+ z4(9) 4 33
e = / dé / as P30 \/4 92 _ 9ge2o0ns
oc z_(9)

’ 8Tv2 o 2
1 3a?H?
X exp [—zxg + 2005 — ZUQ (4955 a; Iir? — 9(56200$5):| , (4.33)
1

where the higher extremum of integration in § is due to (4.31). In figure 3 one can find the
comparison of the gaussian and non-Gaussian mass functions computed using the threshold
statistics for a spiky power spectrum. To proceed further and provide more analytical in-
sights, we notice that the integration over x5 in eq. (4.33) is highly dominated by the lower
extremum of integration z_ (§). As we show in appendix C, the integrand in this region is

"The condition (4.31) leaves a really narrow window in terms of §, 0 < § < 0.59. This means that the
Dirac delta power spectrum would not be a good choice where the threshold is larger than 0.59. Of course,
such a monochromatic power spectrum is only an approximation for more physical narrow power spectra.
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very well approximated by

W 546 a2H20)?

z_ (8) {4ogo? +602+x_ (§)[0? —120009
. 3 / ddv/1—20¢x_ (9) exp[ { ! 5 [ I}

01 e 207

z4(5) 3 ) 0?6
/ dzs/xs—x_ (§) exp [_ a2tz (9) [201 0002] s
z_(9)

g7
Since the integral in the second line is highly dominated by the lower extremum of integration,
we can set x4 (J) — oo and perform the integration analytically, obtaining (for v ~ 1)

. N54 /3 a2H2/9a2H2ooe 1—209z_ () e_u(é)[zj@—wo] (4.35)
N {oox_ (8)+3[1—200z_ (8)]}*/? S

In appendix C we show that this expression is extremely accurate for the case of a Dirac
delta power spectrum of the curvature perturbation.

We can perform the final integral (4.35) by changing the variable of integration from §
to z_ (0). The lower and higher extrema of integration then become, respectively, z_ (J.) and
1/20¢. The integrand is highly dominated by the region around the lower extremum, so that
we can send the higher extremum to infinity. We can also evaluate all the integrand, apart
from the exponential factor exp(—x2 (§) /2) at the lower extremum. The integral of this
exponent can be then done analytically, and its result (the complementary error function)
can be expanded in the limit of large argument. This leads to

3 (1-2 3 a2 1 9a2H2000
e =64/ — (1=200z) 55€ 2, Tc=z—(0)=—5—Wo <_a 700

27 22, (3—5 0o x.) / 200
The accuracy of this result is shown in figure 10 of appendix C, performed for the case of

a Dirac delta power spectrum of the curvature perturbation, where it is compared with a
two-dimensional numerical integration of the starting expression (4.33).

(4.34)

> . (4.36)

202

4.2 Log-normal power spectrum
We assume again a power spectrum of the form

A In? (k/ky)
k) = —Z— . 4.37
Pell) = ot oxp | -1 (4.37
Then, one can integrate eq. (4.24) numerically to get the mass fraction. In figure 4 we plot

the beta for various values of o as a function of A,.

4.3 Broad power spectrum

We also consider a broad power spectrum, that is a top-hat with amplitude A; as
Pe(k) = At O(kmax — k) O(k — kmin) (4.38)

where O stands for the Heaviside step function and kmax > kmin- Again, the parameters
used are kpax =~ 3.5/7m, 0. = 0.51 [8] and, to disregard unphysical long wavelength modes,
variances are obtained by choosing a,, H,, as the infrared cut-off. The results are presented
in figure 5.

We conclude that threshold statistics confirms what we found in peak theory:
independently from the power spectrum, non-Gaussian abundances are smaller than the
gaussian ones.
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Figure 4. Mass fraction ™ as a function of A, for the log-normal power spectrum (PS) computed
using threshold statistics for both the gaussian and the non-Gaussian case.
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Figure 5. Mass fraction " as a function of A; for the broad (top-hat) power spectrum computed
using threshold statistics for both the gaussian and the non-Gaussian case.

We also see that the difference between the gaussian and the non-Gaussian cases in terms
of the amplitude of the power spectrum is about a factor (2+3), the same for the Dirac delta
case. This is the shift one should adopt if insisting in using the gaussian expressions.

5 Conclusions

In this paper we have discussed the impact of the non-Gaussianity arising from the non-linear
relation between the density contrast and the curvature perturbation when dealing with PBH
abundances. We have proposed two different methods to deal with such unavoidable and
intrinsic non-Gaussianity, providing simple analytical expressions for the abundance to take
it into account.
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The first method is based on peak theory and on the realisation that the number of
peaks in the overdensity is approximately equal to the number of peaks in the curvature
perturbation as long as one restricts her/himself to those peaks having large spatial second
derivatives at the peak location.

The second method relies on the threshold statistics and contains no approximations.
Both methods show that the intrinsic non-Gaussianity makes it harder to generate PBHs. In
particular, if one insists in adopting the gaussian expression for the abundance coming from
threshold statistics, one has simply to increase the amplitude of the power spectrum by a
factor't O(2 + 3).

Our findings do not alleviate the differences between peak theory and threshold statistics
in the computation of the abundance, already present at the gaussian level [12].

Our results can be surely improved along some directions. It would be important to
have a full non-Gaussian extension of peak theory. More importantly, the intrinsic non-
Gaussianity of the overdensity is expected to change the shape of the profile of the peaks
which eventually give rise to PBHs upon collapse. Since the threshold 47, depends on the
shape of the overdensity, such non-Gaussianity might change as well the value of 47,. We
leave this study for a future publication [35].
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A The cumulants for a narrow power spectrum

In this appendix we derive the relations (2.11) of the main text. We start from eq. (1.7),
that we need to expand as a power series of (. We denote by 6, the term that is of O (¢")

51 = —Cx 8281C7
_1)non—1 _
8 = Cyx %gﬁ (gaiaig _n I 1 agag) , n=234,.... (A.1)

"Our findings agree with those recently obtained in refs. [41, 42], where the PBH abundance has been
derived using the averaged (over a volume of radius r,,) density fluctuation constructed out of a radial profile
in the curvature perturbation ¢. Adopting the volume averaged density provides a clear relation between the
linear gaussian component of the peak height and the non-linear peak height. However, in order to make
use consistently of the obtained critical threshold value, one needs to identify peaks in ¢ with the peaks in d,
which we have shown here is true for spiky peaks in (.

In ref. [7] the authors computed the abundance using peak theory for the comoving curvature perturbation
by setting a threshold on the (, contrarily to our choice of expressing the abundance and the threshold in
terms of the overdensity field.

~ 18 —



Using the convention

3 C - -
(%) = / ((217:;3 6P ¢ (), (A.2)

for the Fourier transform of the curvature perturbation, and symmetrizing over the momenta
p; of the Fourier modes, the above relations can be cast in the form

. n—1 n d3 n n—1 n
0 (0) = e, 2 HU(QP)‘;,WIC)} {Zpﬁiz S pp| =284
T k=1 T i=1

i=1 j=i+1

(A.3)
We are interested in computing the connected 2-, 3- and 4-point correlation functions of
6 (0) = >°77 b, where by connected we mean terms that cannot be factorized as products

of smaller-order correlation functions. Under the assumption of Gaussianity of the curvature
¢, all the correlators can be broken down to the products of the two-point function of ¢,

€@ = o) 6 7+ @ = 25 Pep) 26 (). (A4)

The practical effect of computing a connected, rather than a full, correlator is that some of
the contractions are not included. To give just one example, we have

(03 (0)), = (83 (0)) —(82(0))*
_ 2/d3p1d3p2d3Q1d3Q2 [ 2, 2]31'52] [ 2

— Y% (271')12 b2 9 2
(A5)
with
(€ (1) ¢ (p2) C(q1) € (@2)). = (C (P1) ¢ (q1)) (€ (P2) C(G2)) + (C(P1) C(q2)) (C (ﬁz)C(@Tl)(), |
A6

with the omission of the (¢ (p1) ¢ (P2)) (¢ (q1) ¢ (g2)) term.
More in general, we note that the first cumulants are related to the full correlators by

(8(0)) = (6(0))
(62(0)), = (6%(0)) = (5(0))",
(6°(0)), = (6°(0)) — 3(5(0)) (6°(0)) +2(5(0))°,
(54(0)),, = (54(0)) — 4(5(0)) (5°(0)) = 3(5%(0))” + 12 (3(0))* (3*(0)) — 6 (3(O))*. (A7)

It is worth noting that only the first cumulant is affected by the average of §. In fact, the
expressions (A.7) show that a shift 6 — 6 + C, where C' is a constant, only affects the first
cumulant, (6). — (6), + C, while the higher cumulants are unchanged.

Working up to cubic order in the power of (, we compute

(6%(0)), = (67 (0)), + (85 (0) + 261 (0) 83 (0)),, + (3 (0) + 202 (0) 64 (0) + 261 (0) J5 (0))..,
(63(0)), = 3(57 (0) 82 (0)), + (357 (0) 04 (0) + 681 (0) 52 (0) I3 (0) + 5 (0)),
(64(0)),, = (667 (0) 85 (0) + 447 (0) 63(0)), , (A.8)
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where we have kept together terms that are of the same order in P;. We note that the last
expression does not contain the contraction of 6 (0) as it has no connected component.

The evaluations of the correlators in (A.8) is tedious, but straightforward. We expand
the various terms according to (A.3) and we then split the correlators in sums of connected
products of (¢ () ¢ (¢)). Half of the integrals over momenta are then removed with the Dirac
delta functions arising from eq. (A.4). We divide the remaining half into integrals over the
magnitude of the momenta and the angles. We encounter the following nontrivial angular
integrals

6473

/dQ d€,dQps, (P1 - pQ) =3

/dQﬁldQﬁdeﬁs (p1-p2) (P1-p3) =0,

AN 6473
/dQﬁldQﬁ2dQﬁ3 (p1 - P2) (P1 - P3) (P2 - P3) = 9 (A.9)

The explicit evaluations then give

(6° (0)>6263/dpp37’< (p)

dpy d 85
/ ﬂﬂ?’g (p1) Pe (p2) [4p?+4p%+p§p§]

6
dp dp dp 32 415
¢ / 2P (p1) Pe (o) Pe (p3) 3(p%+p§+p§)+7(p?p§+p?p§+p§p§) :

p1p2p3
dp d
(6%(0)),=—6c / ﬂﬂ’& (1) Pc (p2) pips [pT+D3]
d d d 577
—c / % {46 (pi+p3) (P3+p3) (Pi+p3) +9p?p§p§} Pe (1) Pe (p2) Pe (p3),

dprdped
(6%(0)),=ct / % [16 (pip3+pips+psps) +64pip3p3 (p1+p3+13)] Pe (1) Pe (p2) Pe (p3)-
(A.10)

In the case of a very narrow power spectrum of the curvature perturbation, that can be ap-
proximated by a Dirac delta function as in eq. (2.10), these expressions give the results (2.11)
reported in the main text.

B Spiky peaks in the curvature perturbation versus peaks in overdensity:
a numerical treatment

We start from the relation between ¢ and ¢

4 1 4 1

07 t) = —5 e 7 (v?cm - ;aiaf)aic(f)) = @y, (B

One can simulate numerically a realisation of the gaussian random field ((Z) in a
n-dimensional box of dimensions N which is discretised using a grid of N™ points with a
spacing Az = 1 between them in all directions. We choose to present the analysis in a
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Figure 6. A depiction of the two-dimensional simulation. Left: gaussian field {(x,y). Right: density
contrast d,(x,y) found using the relation in eq. (B.1). The stars indicate the location of the spiky
peaks in ¢ and the peaks in J,, showing the location correspondence. The color code is the same as
in figure 7.

2-dimensional space (n = 2) since the results can be more easily depicted. We set the pa-
rameters of the perturbation assuming a narrow power spectrum described by a log-normal
function as

2
P¢(k) = 0.01exp [—%] . (B.2)

The variance of the field turns out to be ag = 2.5-1073. The characteristic momentum has
been chosen to be k, = 0.2/Ax. The realisation of the field {(#) and the corresponding field
0;(Z) can be seen in figure 6. There the stars indicate the location of the spiky peaks in ¢ and
the peaks in d,, showing the location correspondence. The color code is the same as in figure 7.
In figure 7 one can find an analysis of the field values obtained in the simulation. More
in detail, each point of the plot represents a peak in { with the corresponding values of the
rescaled amplitude v and the curvature . The red, cyan and yellow lines correspond to lower
bounds on x > z§(v) in terms of the absolute maximum of the density contrast dmax in the
simulation as
_ 9a%H?

6200115ma>c7 (B3)
409

x§(v
with dpax = 0.4. This bound corresponds to the condition (3.15). With red, cyan and yellow
dots we highlight the points which, at the same positions, have a peak in ¢, with x satisfying
the corresponding lower limits. Green dots are peaks in ¢ as well, but they do not satisfy
these conditions. This shows the correspondence between peaks of ¢ and peaks of d, provided
the condition (3.15) is met. We expect that this correspondence will be even more satisfied
when rarer events are simulated. We also checked that, by extending the simulation to three
dimensions, and these findings are confirmed.

These results strongly indicates that, assuming condition (3.15), peaks in § are located
at the positions of peaks in (.
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Figure 7. A plot with field values of v and x (corresponding to ¢ and —V?2(¢) in a position of the
grid. See the text for a more detailed explanation of the color code. All points are peaks in (, but
only those spiky enough are also peaks of §, as predicted.

C Analytic integration of the PBH abundance for spiky power spectra
using threshold statistics

In this appendix we derive the expressions (4.34) and (4.35) of the main text. We start from
eq. (4.33). One can verify that the integration over xs of this equation is highly dominated by
the lower extremum z_ (§) (from now on, in this appendix, we do not write the dependence
of z_ on § to shorten the notation). We therefore perform an expansion of the integrand for
x5 ~ x_ that allows us to perform the integration analytically. We expand the expression in
the square root and in the exponent by linearising the exponential in x5 — x_

02 2 N 02 200
dxs =y 95e“70%0 ~ 41'(;@ —90e“7°" [1 4+ 200 (x5 — )]
4 (1 — 20’0.%'_) g2
= a2H?2 (1‘5 - .CU*) ) (Cl)
where the second line has been obtained exploiting the fact that z_ satisfies (exactly)
§e2°07— = 4oox_ /9a’H?. We also approximate the first two terms in the exponent of
eq. (4.33) as
1 —(z_+4
- 5953 + 200x5 =~ :U(x2+00) —x_xs, (C.2)

where we have linearised the first term on the left-hand side to first order in x5 —x_, while in
the second term we simply put x5 = z_ (since this term is highly subdominant). With these
approximations, the expression (4.33) reduces to the form (4.34) written in the main text.

The integration over x5 in eq. (4.34) is highly dominated by the lower extremum of
integration, and we can set x;+ — o0o. In this way the integration can be done analytically,
leading to

o 18 1 a’H? (30005\"? 5+d5 VI=200z_ elesim)
NOT 8 Vo oo ot 5 ( )3/26 (€3

00.%'_4-30(37;2 (1—20033_)
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Figure 8. Validity of the analytic result (C.4), in the case of a Dirac delta power spectrum of . We
show the normalised probability P = P/ (25/9m/§w3A§’/ 2) for § = 0.51 and A, = 6- 1072,

2
71~ 1 then leads to the expression (4.35)

Recalling that these results are valid for v = = ~

written in the main text.

In the case of a Dirac delta power spectrum of the curvature perturbation (, see
eq. (2.10), we have o; = w\/A, ki, where w = W (ky, ). Recalling that k, ~ (27/10)an, Hp,
the probability distribution reduces to

(12+8w2AS—11;@,)5@, 6-5&_

PG ag)~ 2 fT—d e wEA i i e wra (C.4)
977\/§w3A‘Z/ 2
where on the right-hand side we have defined & = 2wyAsxrs and 2_ = 2w/ Asx_ =
—Wo (—500/81) (which is the expression of the first root in eq. (4.30) in the present case).
Figure 8 confirms the validity of this result. The probability in the figure is shown for
Z ~ &_ ~ 0.54 (for the value of § chosen in the figure), while Z; ~ 1.67. We note that indeed
this expression is highly dominated by the lower bound & ~ Z_ (this extends also for the
values of & not shown in the figure).
The integration over x5 of this expression leads to

81/50e x 81/50e s 22
h o / ! d5/ " dzgP (6, zg) ~ —0_ 1 e Y e
bc T_ 9\/% ’LU\//TS e (6 _ 5537)3/2
(C.5)

where we stress that £_ depends on §. The higher extremum of integration is the upper
bound in eq. (4.31) written in the present context. This result is extremely accurate, as we
show in figure 9.

The expression (C.5) can be integrated, proceeding as we did in the main text to obtain
the result (4.36) from (4.35). We obtain

A\ 3/2 22
o 12\/3 < 1 :c) wvAs e A d. = (6) =W (_50&)‘ (C.6)

6 — 52 Ze
This expression also follows immediately from (4.36), in the limit of Dirac delta power spec-
trum of the curvature perturbation, and noting that x. = &./20¢9 = &./2w+/As. The high

accuracy of this result is shown in figure 10, where we compare it with a fully numerical
two-dimensional integration of the starting expression (4.33).
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Figure 9. Validity of the analytic result (C.5) in the case of a Dirac delta power spectrum of (.
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Figure 10. Validity of the analytic result (C.6) in the case of a Dirac delta power spectrum of (.
This result is compared with the exact two-dimensional numerical integration of the expression (4.33).
Left panel: we fix A, = 6-1072 and we vary d.. Right panel: we fix 6. = 0.51 and we vary A,.

D Peaks versus thresholds

In the past literature PBHs have been identified either with peaks or with thresholds of the
superhorizon overdensity, where by thresholds one means those regions in real space where
the value of the density contrast is larger than a given threshold, in our case the critical value
dc. Regions characterised by large thresholds of the overdensity are indeed probable to be
also local extrema. We first find the average threshold statistics profile §(r) of the density
contrast 0(r) at a given distance r from the point » = 0 (therefore without threshold) in the
following way

8(r) = (8(r)|60 > vos) = /_00 dd(r) 6(r)P(6(r)|0g > vos), (D.1)

where

P((r), b0 > voy)

P(0(r)]dg > vos) = P(69 > vog)

(D.2)
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and 69 = §(0). If both 6(r) and dp are Gaussian variables, one can calculate the above quantity
by recalling that P(d(r), dp) is constructed in the standard way through the covariance matrix

P(5(r), 60) = W:mexp (57 c5p2)
o1 = (80,6(r)),

C:< o3 52(7’)>, (D.3)

&(r) o

where

-,

§2(r) = (8(7)5(0)) (D.4)

is the two-point correlator in coordinate space. From these expressions we derive

B e—0%(r) /203 (fg(r)é(r) - Vag’)
P(6(r), 00 > vos) = EN (1 + Erf [ osVIdei T ,

P(6p > vos) = %Erfc (1//\@) , (D.5)

where Erfc(z) is the complementary error function. Combining the different terms we

finally get
L Ea(r) z e~V /2
or) = o5 \/;Erfc (v/V2) (D-6)

Using the expansion for large values of the argument

a2
Erfc(z > 1) = ::W’ (D.7)

we can finally evaluate the average d(r) at distance 7 from the threshold for v > 1

o(r) ~v £Q(T). (D.8)
os
Taking v = §,,./os one finds
3r) = 3,200, (D.9)
75

which is exactly the average profile derived in peak theory [11].'2 This already suggests that
large thresholds overdensity should correspond to extrema. To have further evidence, we
follow ref. [40] and consider the curvature of the large threshold regions. The mean value of
the second derivative of §(r) in any random direction at r = 0 is (by expanding the density
contrast around the origin in powers of r and taking the mean value of it) with 6(0) = 6,

< d?6(r)

> O d%6(r)
dr? N

D.10
o—g dr2 ( )

r=0 r=0

2For the non-Gaussian extension of this result, see ref. [35].
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The scatter of the second derivative from its mean value is found by averaging over all
d?5(r)/dr?|,—o and J,,, yet keeping §(0) = J,,
I

5= [dzfs(r) b AEa(r)

o 03 dr?

dr?

r=0

_ diG(r)| 1 (d%6(n) ? d11)
drt |,_, o? dr? |,_,/) '
We then get
i< d?s(r) > AL o _ O (D.12)
Yo\ dr? | _, o212, rd o5’

where we have taken & (0) ~ 0% and assumed that the profile varies over a characteristic scale
rm. The condition to have large threshold, that is d,, > o5, implies that large threshold
regions are most likely to be local extrema, that is peaks.
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