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Abstract. Minimally modified gravity theories are modifications of general relativity with
two local gravitational degrees of freedom in four dimensions. Their construction relies
on the breaking of 4D diffeomorphism invariance keeping however the symmetry under 3D
diffeomorphisms. Here, we construct these theories from the Hamiltonian point of view.
We start with the phase space of general relativity in the ADM formalism. Then, we find
the conditions that the Hamiltonian must satisfy for the theory to propagate (up to) two
local gravitational degrees of freedom with the assumptions that the lapse and the shift
are not dynamical, and that the theory remains invariant under 3D diffeomorphisms. This
construction enables us to recover the well-known “cuscuton” class of scalar-tensor theories
in the unitary gauge. We also exhibit a new class of interesting theories, that we dub f(H)
theories, where the usual Hamiltonian constraint #H of general relativity is replaced by f(H)
where f is an arbitrary function.
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1 Introduction

A century after its discovery, the theory of general relativity continues to pass all validity
tests. The latest is the fabulous detection of gravitational waves emitted by a neutron star
merger [1] with the first measure of their propagation speed which is probably the same as the
speed of light in vacuum, as predicted by Einstein. Despite all these successes, the reasons
for believing that general relativity is not the ultimate theory of space-time and that it will
have to be surpassed are numerous and so interesting that modifying gravity has become a
very dynamical field of research per se in theoretical physics and cosmology these last years
(see [2, 3] for example).

Going beyond relativity necessitates the relaxation of one of the fundamental hypothe-
sis of the Lovelock theorem that makes Einstein theory unique: invariance under diffeomor-
phisms, locality, pure metric formulation in four space-time dimensions.

For example, four-dimensional massive gravity [4] gives up the invariance under diffeo-
morphims, and scalar-tensor theories are based on the hypothesis that the metric is accom-
panied by a scalar degree of freedom for describing the physics of the spacetime at least on
very large or very short scales. There exist many modified theories of gravity, and most of
them (exactly like massive gravity or scalar-tensor theories) often share the property that
one or more additional degree(s) of freedom propagate in the theory. When such theories are
designed to account for dark energy for example, the extra degrees of freedom are responsible
for the fifth force that accelerates the expansion of the universe. When constructed to solve
the well-known problems of general relativity in the ultraviolet, these degrees of freedom play



the role of rendering the theory renormalizable and then eventually quantifying [5, 6]. There-
fore, there may be a general opinion that gravity can not be changed without introducing
at least a new degree of freedom in the scenario, in addition to the two massless degrees of
freedom of the gravitational field.

In this spirit, scalar-tensor theories are sometimes considered as the “simplest” theories
of modified gravity because they come with one extra degree of freedom only. In recent
years, they have been at the heart of intense activity and scalar-tensor theories, whose actions
involve up to second derivatives of the scalar field, have been systematically classified and
extensively studied [7-20]. Adding higher order derivatives in a Lagrangian is potentially
very dangerous because it could lead to the situation that not one but two scalars

in the theory, one of them being the Ostrogradski ghost. Degeneracy conditions [13] in
a higher order scalar-tensor theory insure that at most three degrees of freedom propagate,
but the theory must be studied in more detail to see whether these degrees of freedom are
safe or not. Furthermore, it has been realized that degeneracy conditions in the unitary
gauge (where the scalar field is fixed to be a function of time only) are sufficient to ensure
that a unique scalar propagates in addition to the usual two tensor modes [21]. There exists
the possibility that only two tensorial degrees of freedom propagate in a scalar-tensor theory
which is, of course, different from gravity (the scalar mode is in fact shadowy in the sense
of [21]). They form the class of “cuscuton” theories [22, 23]. These theories are particularly
interesting and they can be considered as minimal modifications of general relativity.

A systematic construction of gravitational theories with only (up to) two degrees of free-
dom was initiated in [24, 25]. They were also considered in [26] where the coupling to matter
has been discussed. The idea consists of renouncing to the invariance under four dimen-
sional diffeomorphisms but keeping the three dimensional diff-invariance. This is equivalent
to considering scalar-tensor theories in the unitary gauge. As generically Lorentz-breaking
gravity have more than two degrees of freedom, one has to find the conditions for the theory
to possess enough constraints that would kill the extra degrees of freedom, which would leave
us with (at most) two gravitational degrees of freedom. More precisely, one starts with the
ADM parametrization of the metric

ds? = —N2dt? + hij(da’ + N'dt)(da? + N7dt), (1.1)

where N, N* and h;j are respectively the lapse function, the shift vector and the induced
spatial metric. Then, one considers general actions of the form

SIN, N, hij] = /d% dt Vi L(K;j, Ris, b9, N, V;) | (1.2)

where K;; is the extrinsic curvature, R;; the three-dimensional curvature and V; the spatial
covariant derivative. And finally, one performs a Hamiltonian analysis to find the necessary
conditions for the theory to propagate (at most) two degrees of freedom. This program was
completed in the case where the Lagrangian (1.2) was supposed to be linear in the lapse
function [24]. In that way, one found a large class of modified theory of gravity with only two
degrees of freedom that have been dubbed for obvious reasons “minimally modified gravity”.

In this paper, we construct minimally modified gravity theories from the Hamiltonian
point of view with the idea that the Hamiltonian framework is more suited for studying and
classifying Lorentz breaking theories than the Lagrangian framework. Indeed, we modify the
phase space of general relativity (and not directly the Lagrangian) in such a way that the
modified theory remains invariant under spatial diffeomorphisms only and still propagates



two tensorial degrees of freedom. More precisely, we start with a phase space which is
parametrized by the usual ten pairs of conjugate variables (the metric variables in the ADM
decomposition and their momenta), and we consider a “modified” Hamiltonian of the form

H= /d%\/ﬁ [H(7", Rij, k7 N, V;) + NV | (1.3)

where V; is the usual vectorial constraint, and H is a three dimensional diff-invariant function
which is a priori different from the usual scalar constraint. Then, the problem consists of
finding the conditions that H must satisfy for the theory to propagate two (or less) degrees
of freedom. We address this issue and find that H must be an affine function of the lapse, of
the form

H = NHo(r", Rij, h7,V;) + V(r, Rij, h" | V;), (1.4)

with additional conditions on the functions Hp and V. A necessary condition is that
{Ho(z),Ho(y)}, viewed as an operator acting on the space of functions Fun(M) on the
space manifold by integration, has a non-trivial kernel, and a sufficient condition is that

{Ho(x), Ho(y)} = 0, (1.5)

where &~ means weakly vanishing (i.e. it vanishes up to constraints). In this construction, we
recover the well-known class of “cuscuton” theories that can be extended to non-local theories.
But we also find new classes of theories. In particular, we exhibit a remarkably simple class
of theories with Ho = f(Hgr) where f is an arbitrary function and Hg, is the usual scalar
constraint of general relativity. Such theories are invariant under a four-dimensional local
symmetry (which contains the 3D diffeomorphims) and possess very interesting properties
that we discuss in the paper.

The rest of the paper is organized as follows. We start, in section 2 with the simpler case
of a spin-1 field to illustrate our construction. Hence, we construct modified Maxwell theory
in a four dimensional Minkowski space-time, where the dynamical variable is a one form A,,.
To mimic the construction of minimally modified theories of gravity, we relax some hypothesis
which makes Maxwell theory unique: we break the U(1) gauge symmetry and also the global
Lorentz invariance keeping, however, a symmetry under one rotational subgroup SO(3) (the
one that leaves Ag invariant). Then, we modify the Maxwell Hamiltonian and find the
conditions for the new theory to propagate only (up to) two degrees of freedom. Finally, we
give some concrete examples. In section 3, we turn to the more interesting case of minimally
modified gravities. We write conditions that the modified Hamiltonian constraint (1.3) must
satisfy to have (up to) two tensorial degrees of freedom. These conditions (1.4) and (1.5)
appear to be very simple in the Hamiltonian framework, and they can be explicitly solved
in some cases. As we mentioned previously, we recover the cuscuton theories, and we find
an interesting and remarkably simple new class of theories, dubbed f(#) theories, where the
usual Hamiltonian constraint of general relativity Hy, has been replaced by f(Hg:) where f is
an arbitrary function. We quickly study their cosmology to show interesting differences with
general relativity. We conclude with a brief summary of our results and some perspectives.



2 Minimally modified Maxwell theory

Following the ideas that lead to the construction of minimally modified gravity theories, we
build, in this section, a large class of modified Maxwell theories which propagates 2 (vectorial)
degrees of freedom in the 4-dimensional Minkowski space-time. Maxwell theory provides us
with a simpler but very interesting context to illustrate the construction of minimally modified
gravity theories from a Hamiltonian point of view that we will present in section 3.

2.1 Framework: symmetry breaking and degeneracy

Maxwell theory is the unique free action for a U(1) connection A, evolving in a Minkowski
space-time, which is invariant under the usual U(1) gauge symmetry, also invariant under
the global Lorentz symmetry (i.e. the isometry group of the Minkowski metric SO(1, 3)), and
which in addition produces (at most) second order equations of motion. The U(1) invariance
implies that the action is a functional of the curvature two-form only

Fl = 0,4, — 0,A,. (2.1)

The global Lorentz symmetry implies that the curvature components must be contracted
with the metric 7, = diag(—1,1,1,1) (and its inverse) such that the Lagrangian density is
a scalar for the Lorentz group. Finally, the freeness of the theory says that the action is at
most quadratic in the connection. Hence the only possible theory is described by the action
(in vacuum)

S[A,] = —4;0 d'a Fy F, (2.2)
where pg is the usual permeability, and indices are raised with n*”. A simple analysis shows
that this very well-known theory propagates only 2 degrees of freedom which are the 2
(tranverse) photons. Generalizing the action to any space-time is straightforward.

In order to mimic the construction of minimally modified theories of gravity, we relax
some of the conditions that make Maxwell theory unique. In minimally modified gravity
theories, one breaks the full space-time diffeomorphism invariance and keep only symmetry
under three dimensional diffeomorphisms. In the case of Maxwell theory, there is only the
one-dimensional local symmetry group U(1) that we choose to break, and then there is no
remaining local symmetry in the theory. However, to be close to the gravity case, we also
decide to break the global Lorentz symmetry keeping only the invariance under the subgroup
of rotations SO(3) that leaves Ay invariant. In that sense, Ay is similar to the lapse function
in the context of Maxwell theory. As a consequence, we look for theories whose action is of
the form

S[Ag, Aj] = / d'a £(Ao, Ao, A, Ai, 1), (2.3)

where L is the Lagrangian density. In other words, £ is constructed from Ay, A;, their first
time derivatives and their space derivatives at any order.

As we are going to see in a few lines, this theory propagates generically more than
2 degrees of freedom. To find the conditions for the theory to propagate only 2 degrees of
freedom, we perform a Hamiltonian analysis. Hence, we start by introducting the phase-space
variables

{Au(x), P (y)} = 0, 6°(z —y). (2.4)



If there is no constraints, the theory propagates 4 degrees of freedom. The presence of a
primary constraint is then an obvious necessary condition for the theory to propagate only
2 (vectorial) degrees of freedom. The theory admits a primary constraint if its action is
degenerate, i.e. the 4 dimensional Hessian matrix defined by
oL
HY = —/———, (2.5)
0A,04,

for u,v € {0,1,2,3} is not invertible. Furthermore, as we want vector modes to propagate,
we add the condition that the submatrix HY, for i,j € {1,2,3}, is invertible. If this is the
case, we can formally reformulate the Lagrangian density in (2.3) as a function

L(Ag, Ao, Ai, Ai, 0;) = F(Ao, Aiy Ai — i Ag, 0), (2.6)

where a; depends on the connection A, and their spatial derivatives in general. In general
(even when there is no coupling to external current) time derivatives of Ay cannot be absorbed
into a redefinition of A;. But, for simplicity, we assume that Ag is not a dynamical variable
as in the original Maxwell theory, and then it does not appear a priori with time derivatives
in the action, which means that a; = 0. In that case, the theory possesses the simple primary
constraint!

P=P'~0, (2.7)

where we recall that ~ means weakly vanishing,

At this stage, there is no more primary constraint (which is a consequence of the fact
that H¥ is not degenerate), and then one can (in principle) uniquely express (at least locally,
on any open set of the phase space) the velocities A; in terms of the momenta P’. As a conse-
quence, one can construct (formally) the canonical and the total Hamiltonians, respectively
given by

H= /d?’xH(Au,Pi,a,'), Hio = H+/d3x)\P0, (2.8)

where A is a Lagrange multiplier which enforces the primary constraint.

As we have already emphasized above, the relation between the Lagrangian and the
canonical Hamiltonian is, in general, implicit. It can be made explicit in simple cases only,
for free (quadratic) Lagrangians for instance. Furthermore, it will be much more convenient
to find the conditions for the theory to propagate (at most) 2 degrees of freedom in its
Hamiltonian formulation than in its Lagrangian formulation. For all these reasons, we will
construct modified Hamiltonian Maxwell theories, and in some cases, we will show how to
recover the associated Lagrangian.

2.2 Killing the extra degrees of freedom

From now on, the starting point is the Hamiltonian (2.8) together with the primary con-
straint (2.7). The stability under time evolution of the primary constraint leads to a sec-
ondary constraint

_ _OM o (O N a9 N &
§={(P.H} =5 az<a(8iA0>)+azaj(a(aiajA0)>+ ~0, (2.9)

The generalization to a non-zero «; is immediate and the primary constraint is replaced by the combination
P=P°+a,P' ~0.



when H depends explicitly on Ag. In the particular case where H does not depend on Ag
(and on its spatial derivatives), then the Lagrangian itself does not depend on Ay and the
theory propagates 3 degrees of freedom. For this reason, we assume from now on that H
depends on (the spatial derivatives of) Ag. To be more precise, we exclude the case where H
depends on Ag and its spatial derivatives only through a total spatial derivative.

Even in that case, the theory could propagate up to 3 degrees of freedom (if there is no
more constraint and if the two constraints are second class). To go further and to find the
conditions on the Hamiltonian for the theory to propagate (at most) two degrees of freedom,
we compute the Poisson bracket between the primary and the secondary constraints,

Az,y) ={S(z), P(y)}, (2.10)

and one studies whether it (weakly) vanishes or not. Notice that we are using the shortened
notations F(z) = F(A,(z), P(x), ;) for any function F in the phase space.

First, we study the case where A is not weakly vanishing. There are no more constraints
in the theory, and the pair (P, S) form a set of second class constraints. Hence, the theory
propagates [(2 x 4) — 2]/2 = 3 degrees of freedom, i.e. one more than Maxwell theory. The
extra degree of freedom is the longitudinal mode which comes with the usual two polarizations
of the graviton.

Now, we study the more interesting case where A is weakly vanishing. The number of
degrees of freedom depends on whether the bracket Q(z,y) = {S(x), H(y)} is vanishing or
not. If Q is weakly vanishing, the theory has no more constraints, the pair (P, S) forms a set
of first class constraints, which means that there is a “hidden” local symmetry in the theory.
Furthermore, the theory propagates [(2 x 4) — (2 x 2)]/2 = 2 degrees of freedom, as in the
Maxwell theory. If € is not weakly vanishing, there is a tertiary constraint 7, but this may
be not enough to insure that the theory propagates 2 degrees of freedom only. If one of the
three constraints is first class (which is necessary the case if all the constraints are local),
then the theory admits an extra symmetry and only 2 degrees of freedom. If this is not the
case, one needs the presence of an extra quaternary constraint which would definitively imply
that there is strictly less than 2 degrees of freedom.

As a consequence, in any cases, we see that a necessary condition for the theory to
propagate 2 or less degrees of freedom is that

{P(x), {P(y),H}} =0, (2.11)

i.e. it vanishes up to terms proportional to S. Let us make this condition more explicit, and
show that it necessarily implies that S = {P, Hy} does not depend on Ay. For that, let us
assume the reverse is true, and then S is supposed to depend at least on Agy or on one of its
spatial derivatives. Hence, the constraint S(Ag, 9; Ao, ---) = 0 can be viewed as a differential
equation that we can solve for Ay (with appropriate boundary conditions) in terms of the
remaining phase space variables, at least formally. In that case, the secondary constraint can
be (locally) replaced by the equivalent constraint

S=Ag— Ay(A;, P1D;) =~ 0, (2.12)

where A is the explicit solution for Ag. As a consequence, the new bracket between the
constraints {S(x),P(y)} = d(x — y) is clearly non-vanishing, and then the theory propa-
gates 3 degrees of freedom, which contradicts the initial assumption. As a consequence, the



condition (2.11) is (locally) equivalent to the condition that S can be written as
S = v(Ag) Ho(Ai, P, 9;) (2.13)

where Hy does not depend neither on Ay nor on its derivatives, and v is an arbitrary non-
vanishing function of Ay, say positive. Hence, the Hamiltonian density takes necessarily the
form (up to a total spatial derivative)

H=V+ N(Ag)Ho, (2.14)

where Ho and V depends on A;, P! and their spatial derivatives only. The function N is an
integral of v, and then it is an increasing function of Ay (as v is supposed to be positive).
Furthermore a simple canonical transformation allows us to fix (locally) N(Ap) = Ay without
loss of generality.

2.3 Complete Hamiltonian description

To summarize, we found that any Hamiltonian theory which satisfies the necessary condi-
tion (2.11) is defined (up to a canonical transformation) by a phase space parametrized by the
4 pairs of canonical variables (2.4) whose dynamics is governed by a Hamiltonian of the form

H- /d% [V(A;, P',0:) + Ao Ho(Ar, P',83)] | (2.15)

together with the primary constraint P ~ 0 (2.7). Hence, the secondary constraint is now
simply given by

S =Ho(A;, P,0) = 0. (2.16)

The existence of this constraint implies immediately that the constraint P = 0 is in fact first
class, and it corresponds to the (on-shell) invariance of the theory under the arbitrary shift,

Ay — Ao+ u, (217)

of the non-dynamical variable Ay, by an arbitrary function u(z).
Requiring conservation under time evolution of the secondary constraint leads to the
condition

/dSy ({Ho(x), Ho(y)} Ao(y) + {Ho(z), V(y)}) = 0, (2.18)

whose resolution depends on the properties of A(z,y) = {Ho(z), Ho(y)} viewed as an op-
erator acting on the space of functions Fun(R?) by integration. When A is invertible, the
condition (2.18) fixes completely the Lagrange multiplier Ay in terms of the phase space
variables. Furthermore, in that case, A(z,y) is necessary not scalar? (it involves derivatives
of Dirac distributions) and the constraint on Ay is in fact a partial differential equation which
would need appropriate boundary conditions to be explicitly resolved. There is no quater-
nary constraint as the time evolution of 7 = 0 fixes completely the Lagrange multiplier.
Then the theory admits three secondary constraints with a non-scalar Dirac matrix and a

2A two-point distribution F(x,y) is scalar if and only if F(x,y) = F(x,0)é(z — y) where § is the Dirac
distribution.



non-scalar Poisson bracket between P and 7 in particular. As a consequence, the theory is
not well-posed.

The case where A is a non (weakly) vanishing operator with a non-trivial kernel is much
more complicated to study. To understand this situation, it is convenient to decompose the
space of functions on which A acts as the direct sum Fun(R?)=Im(A) @ Ker(A) where Im(A)
and Ker(A) are respectively the image and the kernel of A. Hence, the condition (2.18) not
only fixes the component of Ay in Im(A) but also can produce a new (quaternary) constraint
obtained by projecting (2.18) into Ker(A). The new constraint may be non-scalar, the general
Dirac analysis appears to be very subtil, and it should be done on a case-by-case basis. For
that reason, we will exclusively consider the simpler case where A is weakly vanishing:

{Ho(z), Ho(y)} = 0. (2.19)

If this is the case, the conservation of the secondary constraint under time evolution leads
either to a tertiary constraint

T (@) = {Ho(x), / PyV(y)}, (2.20)

or to no new constraint if T is itself weakly vanishing. In any of these two cases, the theory
propagates 2 degrees of freedom or less.

e Case where T = 0 is automatically satisfied. The theory admits 2 first class constraints
P ~ 0 and Hop ~ 0. The constraint P is associated to the (on-shell) symmetry described
above (2.17), and the constraint S generates a gauge symmetry acting on the phase
space variables (A;, P?), exactly as in Maxwell theory. As a result the theory propagates
[(2 x4) = (2% 2)]/2 =2 degrees of freedom.

e Case where 7 = 0 is a new constraint, and T does not commute with Hy. The Dirac
analysis stops here with one first class constraint P ~ 0 and two second class constraints
Ho ~ 0, T ~ 0, which lead to [(2 x 4) — (2+ 1+ 1)]/2 = 2 degrees of freedom.

e Case where 7 =~ 0 is a new constraint, and 7 commutes with Hy. Either the Dirac
analysis continues producing constraints, or 7 and Hg are first class. In any case, the
theory propagates 1 or 0 degree of freedom.

As a conclusion, any deformation of Maxwell theory which breaks the U(1) symmetry, which
is invariant under the global SO(3) group that leaves Ay invariant and which propagates at
most 2 degrees of freedom has necessarily a Hamiltonian of the form (2.15). Furthermore,
the condition (2.19) is sufficient to insure that the theory propagates at most 2 degrees of
freedom, but it has not been rigorously proven that it is also necessary because the theory
admits a quaternary (eventually non-local) constraint when A is non-vanishing with a non-
trivial kernel.

2.4 Example: quadratic theories

Let us illustrate the previous analysis with a simple example. We consider a Hamiltonian
which is, at most, quadratic in the phase space variables (Ag, A;, P").



2.4.1 General Hamiltonian analysis

Furthermore, we assume that the Hamiltonian can be written in terms of the fields and
their first order (spatial) derivatives only. In that case Hg is linear in (A;, P*) whereas V is
quadratic in (4;, P*). Hence, these two functions can be written as

V=uo A? + o p? + a3 (AP) + ay (8A)2 + a5 (8P)2 + ag (814)(8]3)
— Q7 a]AzajAl — Qg 8JP18‘7P’L — (g 8JA18]P’L s (221)
Ho = 51 0A+ B2 0P, (2.22)

where a7 and (8 are constant, and we used the shortened notations
X =9;X', XY =X,Y' X?’=X;X*, (2.23)

for X being A or P. Notice that indices are lowered and raised with the flat metric d;; and
its inverse §%. As Hq trivially satisfies the condition (2.19), the theory propagates at most 2
degrees of freedom for any values of the coefficients oy and (.

Let us study these theories in details. First, using canonical transformations, we can
simplify the shape of the Hamiltonian. Indeed, canonical transformations (with no explicit
time dependency) which preserves quadratic and first order Hamiltonians are of the form

Ar— 2A+yP, Pr— zA+wP, Tw—yz=1. (2.24)
Hence, (when (2 # 0) one can find a canonical transformation such that

V= a1 A% 4 ag P? 4+ a4 (0A)? + a5 (OP)? + ag (DA)(OP)
— Q7 ainain — Qg GJR(‘)JP’ — Q9 OJAZWP’ N (2.25)
Ho = —0P, (2.26)

which corresponds to taking a3 = 0, 51 = 0 and 82 = —1 in the general expression (2.22).
As a consequence, the expression of the constraint Hy ~ 0 has exactly the same form as in
Maxwell theory, and then, one can fix a5 = 0 without loss of generality (by a redefinition of
the Lagrange multiplier Ap). Notice that, even though the constraint Hy ~ 0 is the same as
in Maxwell theory, it is not necessarily first class. This can be easily seen if one re-expresses
the total Hamiltonian as follows

1 g o .
H = /d3.7} |:—A08P + OQP2 — 5044FZ-]~F” + OngiJ'@]PZ + (ag - OZG)PZ‘AAZ
+ [a1 A% + (a7 — ag) A;AAY, (2.27)

where F),,, is the curvature of the connection (2.1). The first line in (2.27) is invariant under
the U(1) gauge symmetry 0.A; = 0;e. The second line is clearly not, which makes the
constraint second class, and, from its expression, we see that the conditions for the theory to
be U(1) gauge invariant are immediately given by a3 = 0 and a7 = ay.

For the moment, let us complete the Hamiltonian analysis. Using the notations of
section 2.2, the secondary constraint is S = dP. To compute the remaining constraints, it is
convenient to first write the equations of motion:

A; = {Ai, Ho} = 8;Ag + 202 P; — ig0;(A) + 208 AP, + agAA; (2.28)
P = {P;, Hy} ~ —2a1A; + 2040;(0A) — 207 AA; — agAP; . (2.29)



The tertiary constraint is obtained from the requirement that & =~ 0 has to be weakly
conserved under time evolution, which means that

Sx0+= 0P = 0+=T =[a1 + (a7 — ag) A](A) = 0. (2.30)
Using suitable boundary conditions, one can replace the constraints 7 by the condition
0A =0, (2.31)

except if a3 = 0 and a4 = a7, in which case the constraint S is first class, as we have already
seen previously. Clearly, the constraints S and 7 do not commute, and then the conservation
of 7 under time evolution does not lead to any new constraints. As a conclusion, the Dirac
analysis of the theory closes with one first class constraint P ~ 0 and the two second class
constraints S &~ 0 and 7 = 0. This leads to 2 degrees of freedom, as expected.

2.4.2 Lagrangian

Let us focus on the case with a1 # 0 or ay # a7, in which the theory has one first-class
constraint and two second-class constraints. The first class constraint allows us to choose a
gauge where Ay = 0. In this gauge, the equations of motion (2.28) and (2.29) simplify into

A = 2(042 + Ong)]Di + agAA;, (2.32)
—Pi = 2(&1 + 047A)A2‘ + agAP; , (233)
with the constraints that 0P = 0 = 0A, which means that both vectors are transverse.

From this, we immediately see that the theory admits 2 degrees of freedom only which are
governed, after decoupling the previous system, by the equation

_Az + Oég(AAi — Az + OLQAA) — 4(0(2 + OégA)(Oq + 017A)Ai =0. (234)

Notice that this equation is second order in time but higher order (up to fourth order) in
space. This ensures that the theory is healthy and does not propagate Ostrogradski ghosts.
Notice that the presence of higher space derivatives in the equations of motion could mean
the existence of generalized instantaneous mode (or shadowy modes) which would appear in
a “covariantization” of the theory similar to what happens in scalar-tensor theories [21].

It is also instructive to compute the Lagrangian and study some of its properties. As
the Hamiltonian is quadratic, the associated Lagrangian is easily obtained from the Legendre
transformation

LA,] = /d4:n (PA —V+ Aoap) , (2.35)

where the momenta P’ are expressed in terms of the velocities A; solving the equation of
motion (2.28). Formally the momenta variables are given by

1 .
P = 5(0@ + agA)THA; — 0 A0 + a6di(DA) — agAA;]
1 .
= 5(0&2 + OégA)_l [FOi + CXG@]Fij + (Oéﬁ — Oég)AAZ'] , (2.36)

which, to be defined, needs suitable spatial boundary conditions.

~10 -



First, we immediately remark that a non-vanishing ag coefficient in the Hamiltonian
makes the Lagrangian (spatially) non-local. In general, any terms which involve spatial
derivatives of the momenta in the Hamiltonian will produce non-local terms in the La-
grangian, even though we started from a local Hamiltonian. For simplicity, we restrict the
analysis to local Lagrangians, which, in this case, implies ag = 0. Notice that P; is not U(1)
gauge invariant when ag # ag. The calculation of the Lagrangian is now immediate and
shows that it contains higher spatial derivatives but not higher time derivatives as expected.
This is obviously consistent with the equation of motion for the vector field A; (2.34).

2.4.3 Modified gauge invariant Maxwell theories

To finish with this example, let us consider quadratic theories which are gauge invariant,
ie. a; = ay — ag = 0. For simplicity, we assume ag — ag = 0 as well as ag = 0. In
that case, Ho = 0 is first class, and the full connection transforms as expected according to
Ay — A, + 0,0 where 0 is an arbitrary function, under the symmetry. The infinitesimal
transformation law of A; comes from the Poisson action of H,

6 A = { A, / d3ze(x)Ho} . (2.37)

The transformation law for Ay under gauge transformations can be seen from the gauge
invariance of the full (covariant) Lagrangian. In that context, the canonical Hamiltonian is
simply given by

1 L .
H= / Bz [—Aoap + apP? — P FY 4 aGFijaﬂpl] , (2.38)

and, after some calculations, one finds that the action is given by

1 4 1 0i ij 0‘% 2
S[Ao,Ai] = 5 /d x [_MF(MF "4 Oé4FijF” — T&Q(OjF”) . (2.39)
As expected, the action is not Lorentz invariant, it contains spatial higher derivatives terms
and its equations of motion are given by

2
BFY =0,  8oF" + danasd; Fil + %AajF” —0, (2.40)

which we can compare to standard Maxwell equations 9, F*” = 0. Using the usual definitions
of the electromagnetism field E* = F% and B! = ¢ F};, we obtain the following modified
Maxwell equations in the vacuum,

. .~ OE
where 1 = a2/(8agay) and A = —1/(4aza4). The equations divB = 0 and rotE + 0B /0t = 0
which are equivalent to the existence of the gauge field A, are obviously unchanged. Hence,
the propagation equations become

92V

+pA%V =0, (2.42)
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where V can be either E or B. It is obvious that A parametrizes the deviation to the speed
of light and p parametrizes higher derivatives deviations. As the theory is still linear and
A is constant, we can fix it to A = 1 by a rescaling of the time variable, provided that A is
neither vanishing nor divergent.

To close the analysis of this example, let us make a couple of remarks. First, It is easy
to generalize our analysis to cases where higher derivatives have an order higher than two,
including in H terms with higher than 2 spatial derivatives of the fields A,. Introducing
higher derivatives of the momenta variables would produce non local actions.

Second, as we briefly discussed below (2.5), one could have started with a dynamical
Ag variables in the Hamiltonian framework. For that, one would have replaced the primary
constraint by a more general constraint P(P?, P*) ~ 0 which would mix all the components
of the momenta. The analysis would be similar to what we have done. Another way to make
Ap dynamical would be to the consider “disformal-like” transformations on the connection
which preserve the quadratic form:

Ag— Ag + vaAl , A= A+ yaon , (243)

where = and y are constant.

3 Generalization to gravity

In this section, we adapt the previous construction to gravity, and we construct a large class
of minimally modified gravity theories from the Hamiltonian point of view. We first find
(sufficient) conditions on the Hamiltonian for the theory to propagate at most two tensorial
degrees of freedom. Then, we illustrate our construction with examples. In particular, we
will exhibit a new interesting class of minimally modified gravities, dubbed f(#) theories.
We start with the ADM parametrization of the metric in terms of the lapse function IV,
the shift vector N’ and the induced spatial h;j, as it was recalled in the introduction (1.1).

3.1 The modified phase space

The phase space is parametrized by the usual ten pairs of canonical variables

{hij(x), 7 (y)} = 0} 6(x — y) | (3.1)
{N'(@),mj(y)} = &5 6(z —y), (3.2)
{N(z), mn(y)} = 6(z —y). (3-3)

We want to construct a Hamiltonian in this phase space which satisfies the properties of
minimally modified gravity, i.e.

e It is invariant under space-like diffeomorphisms;
e It propagates only 2 tensorial degrees of freedom (or less);
e The lapse and the shift are non-dynamical.

Notice that the last requirement is not necessary, and one can relax the condition that the
lapse function is not dynamical at the price to add a degeneracy condition as it is done in
the context of DHOST theories [13]. Another way to make the lapse function dynamical
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would be to perform a disformal transformation on the metric variables. For simplicity, we
will consider only the case where N is not dynamical.

The invariance under space-like diffeomorphisms implies immediately that the canonical
Hamiltonian takes the form

o= / BV [Hhij, 79, N,V:) + NV | (3.4)

where V; = -2V (m;;/ V/h) is the usual vectorial constraint of gravity, and # is a priori an
arbitrary scalar. At this stage, with no restriction on the function H, it is straightforward to
see that the theory generically propagates 3 degrees of freedom.

Following what has been done for Maxwell theory in the previous section, we can im-
mediately show that a necessary condition (up to a redefinition of the lapse function by a
canonical transformation) for the theory to propagate (up to) 2 degrees of freedom is that

H=V+NH, (3.5)

where Ho and V are three-dimensional scalar which depend on h;;, 7 and their covariant
spatial derivatives only. The fact that there are scalars insures that they commute with the
vectorial constraint. Hence, the conservation under time evolution of the constraints my = 0
and m; &~ 0 creates respectively the constraints

Ho ~0, V; = 0. (3.6)

By construction, the vectorial constraints V; ~ 0, together with m; ~ 0, are necessarily
first class.

Then, requiring that the theory has enough constraints to kill the extra degrees of free-
dom implies, as in the vector case, leads to the condition that {Ho(x), Ho(y)} has necessarily
a non-trivial kernel (see (2.18) and the paragraph below). A sufficient condition is that

{Ho(z), Ho(y)} ~ 0, (3.7)

and we restrict our analysis to that case only where the conservation under time evolution
of Hg =~ 0 implies the condition

{Ho(x), V(y)} = 0. (3.8)

If this condition is trivially (weakly) satisfied, then there is no tertiary constraints in the
theory. The constraints Hg ~ 0 and 7 ~ 0 are also first class, and the theory propagates
[10x2—(3x2+3%x2+1x2+1x2)]/2 = 2 degrees of freedom, as in Einstein theory. Further-
more, in that case, the theory admits an extra symmetry in addition to three-dimensional
diffeomorphisms.

If, on the contrary, the condition (3.8) is not trivially satisfied, then the theory admits
a new constraint which is

T(z) = {Ho(x),H} ~ 0. (3.9)

The existence of this new constraint is sufficient to conclude that the theory propagates
at most 2 degrees of freedom. Indeed, as the constraint mn =~ 0 is necessarily first class
(because the theory is invariant by any redefinition of the lapse), the theory admits 7 first
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class constraints in addition to the two constraints Hg ~ 0 and 7 = 0, which implies
immediately that the theory propagates 2 or less degrees of freedom. It has exactly 2 degrees
of freedom if Hg and T are second class, and no degrees of freedom if they are first class.
As a conclusion, the following Hamiltonian satisfies the three conditions recalled at the
beginning of this section and thus defines a class of minimally modified theories of gravity:

H= /d% Vh [V(hij,wij,vi) + NHo(hij, 77, V;) — 2N*VI <\7T/JE>} : (3.10)

with {Ho(z), Ho(y)} =~ 0. (3.11)

In that case, the function V is totally free. Notice that, as N and N? are not dynamical, the
Hamiltonian comes with the primary constraints m; =~ 0 and 7wy = 0 which are first class.
They are associated to the invariance of the theory under arbitrary redefinitions of the lapse
and shift.

3.2 Simple examples: H is the Hamiltonian constraint and V is polynomial in 7

To illustrate the previous general construction, let us consider the simple example defined by

H0:|}1z| (wijniﬂ'—;n2> - R, V=1 —pu/|h|, (3.12)
where A and p are constant, and R is the three-dimensional curvature. We notice that, as
H is the Hamiltonian constraint of gravity, it trivially satisfies the condition (3.7). In fact,
if we fix Ho to this expression, one could have chosen any arbitrary function for V but for
simplicity we make the choice above.

With this example, one can easily compute the explicit action which is given by

y K 3\ 7
_ 4 - 2
S_/de\/E [K”K”—K +R+)\<N—4N2>+N], (3.13)
where K;; is the usual extrinsic curvature
1 /.
Kij = 3 (hij = Vil; = V;N:) (3.14)
and K = K! is its trace.
Let us remark that the change of variable
e A
Kij = Kij + ﬁhij R (315)

allows to see that the previous action (3.13) takes exactly the same form as the general
relativity action

5 = /d4:c NvVh (K»JK“ ~K'+R+ %) : (3.16)

up to the u-term. However, as Fij cannot be interpreted as the extrinsic curvature of a
metric, the theory is not equivalent to general relativity. To illustrate the difference between
the modified theory and general relativity, let us now make the following time dependent
change of variable on the metric components

]All'j = G_Athl'j , NZ = e_AtNi , N = e_At/QN . (3.17)
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Hence, the action takes the form
5= / iz NV (xw R e MR+ ew@ (3.18)

which makes obvious that the theory propagates only 2 tensorial degrees of freedom because
the modification affects only terms with spatial derivatives in the action.

To finish with this example, let us remark that the action (3.13) can easily be made
covariance introducing, as usual, a scalar field ¢ whose gradient is orthogonal to the space-like
hyper-surfaces. Using the results of [20], one obtains

2
Slgu, ] = /d493 lg| [R - gln(XQ)ng - %X +2uv =X . (3.19)

From this action, it is clearly not obvious that only two gravitational degrees of freedom are
propagating. But the theory belongs to the class of “cuscuton” theories [22, 23].

A more interesting example would be to assume that V is a scalar quadratic in 7;;, in
which case, it can be written as

1 y A
V= ] </\17r”7rij — 227r2> ; (3.20)

where A\; and \g are constant.
Using the results of the Hamiltonian analysis of DHOST theories [14], we see that such
a Hamiltonian can be obtained from a DHOST theory in the unitary gauge with a k-essence
term, a generalized cubic galileon term and a quadratic DHOST term with
ar g 1 as N + X

- - - <~ _ 1= 3.21
FCAR OIS VI VR § T V1) W ey (3.21)

in the unitary gauge. We notice that the theory belongs to (the safe) class I only if a;+ao = 0,
which implies that Ay = A2. Otherwise, perturbations about any cosmological background
develop gradient instabilities. Furthermore, all these theories belong by definition to the class
of extended cuscuton [22, 23].

3.3 A new class of theories: f(#) theories

In this section, we introduce a new interesting class of minimally modified theories of gravity.
To explain the construction of this class, we first recall that a Hamiltonian of the form (3.4)
corresponds to a theory with (up to) two tensorial modes only if the “modified” Hamiltonian
constraint Ho (weakly) commutes with itself (3.11):

{Ho(z), Ho(y)} = 0. (3.22)

The function V is a priori free, but to have a modified theory which is very close to general
relativity, we make the choice V = 0.

In order for the theory to propagate gravitational wave, it is necessary that Hg contains
both K;; terms and three dimensional curvature terms (like the Ricci scalar R) as in the
expression of the Hamiltonian constraint of general relativity (3.12). The presence of such
terms makes difficult the problem of finding an expression of Hy which is different from the
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usual Hamiltonian constraint. However, there is a simple modification that we can think
about which is

. o m — 2
Ho = f(Hegr) with  Her = ”2T - R, (3.23)
where f is an arbitrary function. As H,, is dimensionful, the function f needs at least a mass
scale to be defined, which could be the Planck mass and something else, like the cosmological
constant.

In that case, the modified Hamiltonian constraint satisfies the Poisson algebra

{Ho(N1), Ho(N2)} = [f'(Hgr)]>(N1V;Na — NoV; N1 )V" (3.24)

which is, in general, non-linear. Obviously, the Poisson bracket weakly vanishes. Hence, we
have found a new class of minimally modified theories of gravity that we dub f(#) theories
with reference to f(R) theories. Contrary to f(R) theories, f(H) theories do not propa-
gate scalar modes, and the main reason is that the associated equations of motion remain
second order.

From a Legendre transformation, one can easily compute the corresponding action.
Indeed, the equation of motion for h;; enables us to relate the momenta 7;; to the extrinsic

curvature K;; as follows
' (Her) 1
K. — — —7hii |, 3.25
ij \/W Tij = 5T ( )
from which we can implicitely obtain 7;; in terms of Kj; because, in general, this equation is

non-linear in m;;. Nonetheless, one can compute the action which, after a simple calculation,
is given by

. 2 g
7 4 ) 2
S5, NN = [ /9] | o (K = K%)= £(€)] (3.20)
where C' is formally obtained by solving the equation
Ki;KV — K?
c="“__ __—  _R. 3.27
FOP 320

In the case where f(x) = x, one immediately recovers the action of general relativity. How-
ever, any other choice for f leads to a different theory which admits a four dimensional
symmetry algebra (the constraints satisfy a deformed diffeomorphisms algebra) and prop-
agates only two tensorial modes. For instance, the choice f(z) = z(1 — z/(2A)) could be
interesting for dark energy because the solutions of the deformed Hamiltonian constraint con-
tain both a sector with no cosmological constant and a sector with a cosmological constant
A. In fact, in any situation where f(x) = 0 has a non-vanishing solution ¢, there is in the
theory an effective cosmological constant given by xg = 2A. For this reason, this new class
of theories is very interesting and certainly deserves a deeper study.

3.3.1 Hamilton equations

We can easily compute the Hamilton equations of motion for any function O(h;;, 77) in the
phase space using the definition of the time derivative

O(z) ={O(x), H}. (3.28)
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The explicit form of the time derivative is easily obtained from the Hamilton equations of
general relativity due to the fact that

(O@), H} = / Py V) [ (Ha) No{O@) , He(w)} + N@){O(), Vi(y)}]
4 / &y f (e () N){O(z) , VE(W)} . (3.20)

In the vacuum, the second line vanishes due to the constraint, but this is not the case in the
presence of matter.

Applying this formula to the spatial metric h;; and its momenta 7 and using well-
known results of Hamiltonian general relativity (see [27] for instance) leads immediately to
the expressions

. N f’

hij = DiNj + D]’Ni + — (271’1‘]‘ — Whij) s (330)

Vh
—VhN [ f'RY + % fhii] +Vh(D'DI — W D?)(Nf') — Dy, | 2Nk — Nk

2
Nf! - | 1 .

- \/J% |:27T;€7Tk] — ) — (kakl — 277'2) h”} , (3.31)

where f and f’ are evaluated at Hg. Combining these two equations would allow us in

principle to obtain the modified Einstein equations. To do so, one has to express m;; in terms
of the extrinsic curvature Kj;; using the first equation

Kij = ,](l/(\j'[flgl") (71‘2‘]' — ;ﬂ'hij> y (3.32)

and then one substitutes the obtained expression in the second equation of motion for m;;.
When f(z) = x, we recover immediately the Hamilton equations of general relativity using
the Hamiltonian constraint Hg, = 0.

In the presence of matter, these equations have to be supplemented with source terms.
However, describing explicitly how matter is coupled to the (modified) gravitational field is
subtle and has been analyzed in great details in [25, 28]. A “naive” minimal coupling® of
the matter fields, for instance, would break the gauge invariance generated by the first class
constraint Hg which, as a consequence, would become second class. Therefore, in general, one
extra mode (besides those of the matter field) appears in the phase space. A consistent way
to introduce the matter field is, before inclusion of the matter fields, to split the first class

3If the matter is minimally coupled (with no derivative couplings) and is described by a action Sys associated
to an energy-momentum tensor 7", then the equation for h;; (3.30) is unchanged, the deformed Hamiltonian
constraint becomes

f(Her) + 167G N N*T = 0, (3.33)
and the equation for the momenta ;; contains a source term

. ij . ij 5SIM

T =To Shis
ij

=7 + 87Gx NVh (T” - NiN]'TOU) : (3.34)

where 7'1'éj is the expression of 7% in vacuum given by (3.31). However, as we said, in general such a coupling
leads to new propagating degrees of freedom in addition to the tensors and the matter.
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constraint into a pair of second class constraints by introducing a “gauge fixing condition”.
Since these constraints remain second class after introducing the matter field, the number of
gravitational degrees of freedom remains four in the phase space, i.e., two in the real space.
This strategy has been successfully applied in [25, 28] by adding to the Hamiltonian a gauge
fixing term Hgr which is, by definition, not commuting with the Hamiltonian constraint. In
our case, one need to introduce a gauge fixing term which does not commute with the Hy or
equivalently #,,. Following [25], one could think about adding to the total Hamiltonian a
term which imposes, using a Lagrange multiplier, a new constraint either of the form 9;S ~ 0
or of the form S ~ 0 where § is a three-dimensional scalar, such that, together with Hg, they
form a pair of second class constraints while the invariance under space-like diffeomorphisms
is preserved. The coupling to matter (particularly the choice of Hyt) needs to be studied in
great details and goes beyond the scope of the present work. For this reason, we leave this
analysis for future investigations.

3.3.2 Cosmology

To illustrate the difference between f(#) theories and general relativity, we consider simple
examples. First, let us study the cosmology of these theories in the presence of a perfect fluid
(of density p and pressure p) which corresponds to taking a time dependent lapse function
N (t), a vanishing shift vector N* = 0, homogeneous and isotropic spatial metric and momenta
as follows

hij = a*(t)0ij, 77 = b(t)57 . (3.35)

Here we assume that the spatial slices are flat. To make the dynamics in the cosmological
sector more interesting, we consider the coupling to matter in the form a perfect fluid, as we
have said previously. In that case, contrary to the generic situation, we do not really need an
explicit form of Hyr. Indeed, if the gauge-fixing condition is of the form 0;S ~ 0, then it is
trivially satisfied by FLRW space-time with the (space-independent) time reparametrization
symmetry unbroken (namely, the lapse function is arbitrary). On the other hand, if the
gauge condition of the form § ~ 0, it may imply a specific choice of the lapse function if
S involves a fixed function of time, for instance. In this case, the (space-independent) time
reparametrization symmetry is broken. In any cases, the gauge fixing term does not explicitly
show up in the equations of motion, and we can consider a minimal coupling to matter (as
described in the footnote 3) where the lapse is either free or fixed to a specific value. Hence,
the deformed Hamiltonian constraint simplifies drastically and becomes

3/b\°
f(Hgr) +167nGnp =0 with Hg = ) <a> . (3.36)
Furthermore, the Hamilton equations of motion reduces to
Nf'(Hgr . N A
G = f(Qg)b, b= 5 [f(?—[gr) + ' (Hgr) <a> —167GNp (3.37)

Notice that FLRW cosmology could also be analyzed starting from the Lagrangian (3.26)
where C' has been defined by the relation (3.27). The result is, as expected, the same as in
the Hamiltonian formalism.
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In general, the Friedmann equations are strongly modified compared to the classical
ones. To write them, it is useful to introduce

Flp) = [ (~167Gyp) —> f/(ng):%V, (3.38)

in order to reformulate the previous three equations (with N = 1) equivalently as follows

b 2 F'(p)

<a>2 =—3F(p), b= stNd’ b=8rGya [p—i—p — 325,(&))] , (3.39)

which lead to the following modified Friedmann equations

H? = —§(8WGN)2 [15((;’))]2 , (3.40)
F(p)" ~8I2F"(p)(p + p) = (87G)? [p . ;ﬁm , (3.41)

whereas the conservation equation for the fluid remains unchanged
p+3H(p+p)=0. (3.42)

When f(z) = x, one immediately recover the usual Friedmann equations. Furthermore, in
vacuum (when p = 0 = p), these equations admit a self-accelerating solution if F'(0) < 0.
This is for instance the case for

fay=x(1-55) = F(p)=A[-1%/T-32aGwp/A] (3.43)

where A is a non-negative constant. The function F(p) has two branches, and the minus
branch, which is such that F'(0) = —2A < 0, admits a self-accelerating solution in vacuum
with cosmological constant A. This result has a simple interpretation. Indeed, in vacuum,
the modified Hamiltonian constraint reduces to f(Hg) = 0 whose solutions fall into two
branches: Hg = 0 which corresponds to general relativity with no cosmological constant and
Hgr = 2A which corresponds to general relativity with a cosmological constant. In general,
any deformation of general relativity associated to f(x) admits a self accelerating solution if
f(z) = 0 admits a non-negative solution x.

Notice that in the absence of matter, the FLRW background reduces to a de Sitter
spacetime and that the analysis of scalar perturbations about the de Sitter background
(without matter nor gauge fixing term) confirms that no scalar modes are propagating in
these theories.

To close this section, let us mention that the analysis of linear perturbations about a
cosmological background can be performed. It shows that the no-ghost condition reduces to
f'(z) > 0 where x is the value of Hg, on the background. In addition, we also need to require
that f’ ~ 1 at low energy so that the speed of gravitational waves at low energy is unity.
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4 Conclusion

In this paper, we constructed theories of minimally modified gravity (MMG) from the Hamil-
tonian point of view. To illustrate the construction, we started in section 2 with a complete
study of minimally modified Mawxell theories which propagate 2 (vectorial) degrees of free-
dom in the 4-dimensional Minkowski space-time. The minimally modified Maxwell theory
provides us with a simpler but very interesting context to present the main ingredients that
enter in the construction of minimally modified gravity theories from the Hamiltonian point
of view. Then, we considered the more interesting case of gravity. We started with the phase
space of general relativity parametrized with 10 pairs of canonically conjugate variables (the
metric components and their momenta) and whose dynamics is governed by the Hamilto-
nian and vectorial constraints. We modified the theory in such a way that, first, the lapse
function and the shift vector remain non-dynamical (i.e. with vanishing conjugate momenta),
second, the theory is still invariant under 3D diffeomorphisms, and third the theory propa-
gates only two tensorial degrees of freedom. We found that these three requirements lead to
a Hamiltonian of the form (3.10) with the condition (3.11).

We showed that these MMG theories encompass the so-called cuscuton theories (in the
unitary gauge) which are (higher derivative) scalar-tensor theories with only two tensorial
modes. In these theories, the scalar degree of freedom is in fact a shadow mode [21] and thus
does not propagate. Notice that our construction naturally extends the cuscuton models
to non-local theories which involve infinite spatial derivatives. We also found a particularly
interesting and simple novel class of MMG whose Hamiltonian differs from the Hamiltonian
of general relativity by the fact that the Hamiltonian constraint Hg has been replaced by
f(Hgr) where f is an arbitrary function. We dubbed them f(#)-theories.

The class of f(H)-theories opens numerous new windows in cosmology and in astro-
physics. We have quickly studied cosmological solutions for a generic choice of function f(x),
but it would be interesting to make a systematic analysis of cosmological perturbations and
of the constraints that observations put on these theories if they account for dark energy. For
that, it is important to first understand in details how to consistently couple matter in these
theories following the analysis of [25, 28]. This would also allow us to study, for instance, the
structure of stars in these theories and to see how Newton laws are modified in this frame-
work. From a more formal point of view, we are curious to understand the relations and the
differences with the very well-studied f(R) or f(R,T) theories. We hope to investigate all
these questions in the future.

Note added. After submission of the present paper, we were notified that ref. [26] also
studied f(H)-theories from a different point of view.
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