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Abstract. We calculate the scalar power spectrum generated by sourced fluctuations due to
coupling between the scalar field, which holds most of the energy density of the universe, and
a gauge field for a general FLRW metric. For this purpose we calculate the curvature pertur-
bation to second order in the presence of gauge fields, and show that the gauge fields behave
like an additional potential term. We then apply the analysis to the case of slow-contraction.
Due to the interaction between the scalar field and gauge fields additional ‘sourced’ tensor
and scalar spectra are generated. The resulting spectra are chiral, slightly blue and arbitrar-
ily close to scale invariance. The only difference between the tensor and scalar spectra is the
coupling constant with an O(1) numerical coefficient, and some momentum space polariza-
tion vectors. As a result the tilt of the spectra are the same. For the nearly scale invariant
case, the momentum integration gives the same leading contribution. Hence, r ' 1 where
the deviation from unity is controlled by the deviation from scale invariance, and is not in
agreement with CMB observations. Deviating considerably from near scale invariance, and
considering a bluer tilt with nT > 0.12, the model cannot account for CMB observations,
but can be detected by LIGO and/or LISA in the future.
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1 Introduction

Current CMB observations of large scales in the Universe have measured a slightly red tilted
spectrum of scalar fluctuations and have placed an upper bound on the tensor to scalar ratio
of r ≤ 0.06 for the ΛCDM concordance model [1, 2]. The inflationary paradigm generi-
cally predicts a nearly scale invariant spectrum, where the value of r is a model dependent
statement. Therefore, as a paradigm, Inflation provides an excellent match to the observed
CMB data. For generic slow-roll models, r is tied to the energy scale of inflation, giving
us an invaluable handle on Physics near the GUT scale. The progressing bounds on r over
the past twenty years have ruled out simple models, including a linear potential [1, 2]. In
addition to the continuing but slow shrinkage in model space, Inflation does not resolve the
Big Bang singularity [3]. It is therefore useful to consider alternatives that resolve the Big
Bang singularity such as bouncing models.

The recent observation of gravitational waves (GW) with LIGO [4, 5] opens up a new
possibility of measuring primordial GW. Such laser interferometers probe much smaller scales
than CMB observations. However, both LIGO and LISA sensitivity bands are order of
magnitudes weaker than CMB sensitivity. The inflationary slow-roll prediction, of slightly
red tensor spectrum, means that the Laser Interferometer (LI) observations will come out
empty handed if they ever surmount the experimental difficulties of cleaning the noise from
the signal. Thus, if Inflation is the actual paradigm realized in Nature, and LI measure a
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primordial GW signal, it can only be due to some New Physics beyond ΛCDM and Inflation.
For instance, on the potential of LISA discoveries, see a recent review [6].

A celebrated example that deviates from the standard slow-roll predictions on various
scales and observables are models with sourced fluctuations, along the lines of [7–13]. In
these models, the coupling between the inflaton and a gauge field generates sourced fluc-
tuations that account for rich phenomena. For example, the sourced fluctuations generate
additional spectra on top of the adiabatic one and disentangle the link between the energy
scale of inflation and r. Nevertheless, the potential discovery of LI points again at considering
alternatives for Inflation, and not just modifying the inflaton or matter lagrangian.

With these motivations in mind, we consider bouncing models that provide a different
approach. There is no Big Bang singularity, and in return, one usually invokes a temporary
null energy condition violation. The outcomes are rather delicate models, prone to vari-
ous instabilities [14–20]. Two characteristic scenarios are slow contraction like the Pre Big
Bang [21] or ekpyrotic model [17], and a matter bounce, where the contracting phase is dom-
inated by matter. In the ekpyrotic case, the Universe starts with a slow contraction, followed
by kinetic dominated contraction, a bounce, kinetic dominated expansion and the reheating
to the Hot Big Bang scenario [17]. The main motivation for considering slow contraction,
rather than a matter bounce, is due to the anisotropic instability [14]. Excluding the matter
bounce, single field bouncing models predict a blue scalar and tensor spectra. To conform
with CMB observations of a slightly red tilted scalar spectrum, an entropic/curvaton mech-
anism is invoked, usually by introducing an additional scalar field. The tensor spectrum is
left unchanged [22, 23], i.e. a very blue spectrum, with nT ∼ 2–3. Hence, LI observations of
the next twenty years might observe such a signal [21, 24–31], while the signal is orders of
magnitude below any devised CMB experiment.

We are interested in considering the fruitful sourced fluctuations idea with the con-
tracting background. Deviating from the scalar field(s) framework of bouncing models, and
considering sourced fluctuations, the above stated predictions change considerably [32–36].
In [36] it was demonstrated for the first time that even in a bouncing model, a nearly scale
invariant tensor spectrum can be generated due to sourced fluctuations. The tensor spectrum
is slightly blue 0 < nT ≤ 0.3, and chiral. These features make such a spectrum rather unique,
and in principle an easy target for detection. The bounds on nT come from backreaction
constraints and assuming a level of tensor to scalar ratio r > 10−4. Such a sourced spectrum
could be observed by CMB observations and by LI observations if nT ∼ 0.3 [37].

However, [36] assumed that the scalar spectrum is somehow being generated in the right
amount, such that it fits CMB observations. As such, [36] was a proof of concept, rather
than a competitive model.1 In this work, we close the gap by calculating the scalar spectrum
generated by sourced fluctuations in the model discussed by [36] and hence the value of r.

Calculation of the scalar spectrum in bouncing models has been plagued by gauge
artifacts [39]. To avoid that, we carried out a full second order derivation of the metric
and field equations, as means of extracting the correct source term. We generalize previous
derivations to any flat FLRW geometry, multiple scalar fields and in the presence of gauge
fields. We show that the gauge fields appear at the second order equations in a manner
similar to a potential term. This should be true in general for any field that gives a negligible
contribution to the background and appears quadratically or with higher power in the action.

1An attempt calculating the scalar and tensor spectrum for a related model γ = 0 has been carried out
in [38] yielding r ' 7. Our calculation disagrees with their results. We will show that the model yields r ∼ 1,
as with the γ 6= 0 case.
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As a result, the sole difference between the tensor and scalar fluctuations is an O(1) factor in
the coupling constants and some phase space factors. At the limit of scale invariance, we find
that r ∼ 1, that is ruled out by observations. The simplest model of inflation with sourced
fluctuations [7] has also been ruled out by non-gaussianity bounds. Therefore, it seems that
while sourced fluctuations are a good alternative for generating primordial spectra, an actual
viable realization, whether inflation or a bounce, is rather non-trivial.

Finally, if we deviate from scale invariance and the idea that the model is responsible
for CMB observations, we can consider a bluer spectrum with nT > 0. In such case, we find
that for some range of parameters the model generates a GW spectrum that is observable
by LISA and/or LIGO.2

The paper is organized as follows. We begin by describing the setup of the model, and
mention some previous results, such as the solutions for the gauge fields and the backreaction
bounds. In section 3 we give the major steps leading to the equation for the gauge invariant
curvature perturbation. The full derivation is given in appendix A. In section 4 we perform
the calculation of the spectra and tensor to scalar ratio. An example of the momentum
integral calculation is relegated to appendix B. In section 5 we analyze the case of the
predictions of the model for present day GW searches assuming that CMB measurements are
explained by some other means. We then conclude.

2 Setup and previous analysis

The scenario we are interested in is a scalar field ϕ coupled to some U(1) gauge field, Aµ
with the action:

S =

∫
d4x
√
−g

[
M2
pl

2
R− 1

2
(∂ϕ)2 − U (ϕ)− I2 (τ)

{
1

4
FµνFµν −

γ

4
F̃µνFµν

}]
, (2.1)

where I (τ) = (−τ)−n ≡ an2e
−nϕ/a1 , a1 = (1 − p)Mpl/

√
2p ∼ Mpl/

√
2p, and a2 can be read

off by equating ϕ ≡ a1 ln(−a2τ) with equation (2.5) below. Another possible function, such
as I(τ) ∼ ϕn, would add logarithmic corrections to the behavior discussed below, but the
qualitative behavior will remain unchanged. If γ is indeed a parameter then parity is explicitly
broken. However it can easily be a vev of some pseudoscalar (See for example [11].)

2.1 Background solution

Writing the flat FLRW metric in cosmic (t) and conformal time (τ):

ds2 = −dt2 + a2(t)d~x2 = a2(τ)
[
−dτ2 + d~x2

]
, (2.2)

a dot denotes differentiation with respect to cosmic time and prime denotes a differentiation
in conformal time. In the absence of gauge fields, an exact scaling solution of the equations
of motion is given by:

U = −U1e
−
√

2/pϕ, a (t) ∼ (−t)p , −∞ ≤ t ≤ 0, (2.3)

2We thank the anonymous referee for posing the question of whether the model is detectable by LI obser-
vations.
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ϕ1 is written in Planck units and p > 0 is dimensionless. Power law inflation corresponds to
p� 1, U1 < 0, the matter bounce to p = 2/3, U1 > 0, and p� 1, U1 > 0 to ekpyrosis. The
generalization to several fields is:

a = (−t)p , p� 1, p =
∑
i

2

c2
i

, H =
p

t
(2.4)

ϕi =
2

ci
ln

(
−
√

Ui
2/c2

i (1− 3p)M2
pl

t

)
, ϕ̇i =

2

cit
, ϕ̈i = − 2

cit2
, (2.5)

U = −
∑
i

Uie
−ciϕi = −p (1− 3p)

t2
. (2.6)

We will use conformal time, −∞ < −τ ≤ 0 with −τ = (−t)1−p / (1− p). Then the scale
factor is

a (t) ∼ (−t)p = (− (1− p) τ)p/(1−p) , H =
p

(1− p) (−τ)
(2.7)

ϕ′i =
2

ci (1− p) τ
, ϕ

′′
i = − 2

ci (1− p) τ2
, U = − p (1− 3p)

(− (1− p) τ)2/(1−p) . (2.8)

We normalize the scale factor so that it is unity at the end of ekpyrosis, a (τ) = (−τ/τend)b,
and b ≡ p/ (1− p) . In ekpyrosis, p� 1, so b ' p.

2.2 Scalar and tensor perturbations

Denoting X̂ = ζ̂, ĥ as the curvature and tensor perturbation respectively, and defining Q̂k =
aX̂, the equation of motion for the perturbation is:[

∂2
τ +

(
k2 − f ′′

f

)]
Qλ

(
τ, ~k

)
= Jλ

(
τ, ~k

)
(2.9)

where Jλ is a source term due to the presence and interaction of gauge fields and λ are the
helicity eigenstates of +,-. In the case of vacuum fluctuations J ≡ 0. f = a(τ) for the
tensor perturbation and f = −H

ϕ̇ a(τ) for the curvature perturbation. In our specific model

−H/ϕ̇ =
√
p/2, hence f ′′/f = a′′/a in both cases. Decomposing into vacuum and sourced

fluctuations:

Qk (τ) = Qv~k(τ) +Qs~k(τ) (2.10)

Qvk (τ) = b(~k)fk(τ) + b†(−~k)f∗k (τ),
[
b(~k), b†(~k′)

]
= δ(3)(~k − ~k′). (2.11)

The power spectrum is related to the correlator via

< X̂kX̂k′ >=
2π2

k3
δ(~k + ~k′)(PvX(k) + PsX(k)) (2.12)

where X̂k denotes the curvature (scalar) and tensor perturbations. The power spectrum for
scalar perturbation ζ̂ is

PS(k) ' AS
(
k

k0

)nS−1

(2.13)
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where nS ' 0.97 is known as the spectral tilt, the amplitude is measured to be AS '
2.1× 10−9 [1, 2]. For gravitational waves, ĥ, the power spectrum is

PT (k) ' AT
(
k

k0

)nT
(2.14)

and r ≡ AT /AS with current constraints r < 0.06 [1, 2]. In ekpyrosis, with p � 1 the
spectra are very blue P ∼ k2 giving negligible contribution on CMB scales. Hence, bouncing
models need an additional source to generate the measured scalar spectrum. The inclusion
of gauge fields provides a natural candidate for such a source. The tensor spectrum due to
sourced fluctuations from (2.1) was calculated in [36], allowing 0 < nT . 0.3 in accord with
current data:

PsT '
11.1

256π6nT

e4πξ

b4ξ6

(
Hend

Mpl

)4( k

Hend

)nT
(2.15)

where ξ ≡ −γn, with nT = 4(2 + n) for n < −1/2 and nT = 4(1 − n) for n > −1/2, and
Hend is the Hubble parameter at the end of the slow contraction. Note that n = −2, 1 imply
a scale invariant spectrum, and the deviation from these values controls the deviation from
a scale invariant spectrum. We will calculate the scalar spectrum resulting from the action
with gauge fields, and the resulting r can be compared to observations.

2.3 Inclusion of gauge fields

In order to deal with the source term that will appear in the equation of motion, we redefine
the gauge field, Ã = IA. In the Coulomb gauge, A0 = ∂iAi = 0, for the canonically
normalized field, the lagrangian is [11]:

L =
1

2
Ã′

2
i −

1

2

I ′′

I
Ã2
i − γ

I ′

I
εijkÃi∂jÃk. (2.16)

Note that this term is invariant under

n→ −1− n, γ → −γ n

1 + n
. (2.17)

Notice that ξ is also invariant under these transformation, as follows:

ξ ≡ −nγ → ξ. (2.18)

ξ parametrizes the enhancement of the gauge field fluctuations and hence the scalar and
tensor sourced fluctuations spectra. The gauge field operator is decomposed according to:

~A(τ, ~x) =
∑
λ=±

∫
d3k

(2π)3/2

[
~ελ(~k)aλ(~k)Aλ(τ,~k)ei

~k·~x + h.c.
]

(2.19)

with the standard commutation relations:[
aλ(~k), a†λ′(

~k′)
]

= δλλ′δ
(3)(~k − ~k′). (2.20)

The polarization vectors ~ελ fulfill ~k·~ε±
(
~k
)

= 0, ~k×~ε±
(
~k
)

= ∓ik~ε±
(
~k
)

, ~ε±

(
~−k
)

= ~ε±

(
~k
)∗

,

and are normalized according to ~ελ

(
~k
)∗
· ~ελ′

(
~k
)

= δλλ′ . The annihilation and creation

operators of the gauge field commute with the operators of the tensor and scalar fluctuations:[
b(~k), a†λ′(

~k′)
]

=
[
b(~k), aλ′(~k

′)
]

= 0 (2.21)
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which is the reason why there are no cross terms in (2.12). The mode functions Ãλ are the
solution of:

Ã
′′
λ +

(
k2 + 2λξ

k

τ
− n (n+ 1)

τ2

)
Ãλ = 0. (2.22)

With the boundary conditions of Bunch-Davies vacuum as τ → −∞ the solutions are
Coulomb wave functions:

Ã =
1√
2k

(G−n−1(ξ,−kτ) + iF−n−1(ξ,−kτ)) . (2.23)

For our purposes, the important region is outside the horizon as −kτ � 1/ξ � 1 and for
λ = + that is enhanced by a factor of eπξ:

Ãλ(τ,~k) '
√
− τ

2π
eξπΓ(|2n+ 1|)|2ξkτ |−|n+1/2| (2.24)

and will be used in section 4 to express the source term in the equation of motion, and obtain
the curvature perturbation.

Considering the additional gauge fields, one needs to verify that they do not dominate
over the scalar field in charge of the slow contraction. The analysis was carried out in [36]. It
limits the parameter n to be between −2 < n < 1, otherwise the energy density of the gauge
fields diverges and the slow contraction analysis is not valid. Furthermore, it constrains the
Hubble parameter H during the slow contraction to be:

H/Mpl �
√

3/D1,2(n) p2ξ3/2e−πξ, D2(n) ≡ 1

4π2

(n+ 1)2Γ(−2n− 1)2

21−2nπ(n+ 2)
. (2.25)

whereD2(n) refers to−1/2 > n > −2 andD1(n) is obtained by the substitution of n→ −1−n
and is relevant for 1 > n > −1/2. The result obtained in [36] of 0 < nT . 0.3 is in accordance
with this backreaction bound.

3 Second order Klein-Gordon equation

Let us derive the second order differential equation for the curvature perturbation. In this
section we report mostly the single field result as we shall only consider a single field in our
analysis. Nevertheless, we provide the full derivation of the multi-field case in appendix A.
The derivation is valid for any FLRW metric, without any fast-roll or slow-roll approxima-
tions. Working in the flat gauge, we closely follow the derivation by Malik in [40], with the
addition of gauge fields at second order. We use natural units where 8πG = M−2

pl = 1. The
action becomes

S =

∫
d4x
√
−g
[
R

2
− 1

2
(∂ϕ)2 − U(ϕ)− I2(ϕ)

4
(F 2 − γF F̃ )

]
. (3.1)

The Klein-Gordon (KG) equation is given by:

1√
−g

∂µ
(√
−ggµν∂νϕ

)
+
dU

dϕ
= −1

4

dI2

dϕ
(F 2 − γF F̃ ). (3.2)

As long as (2.25) is fulfilled, we can neglect the gauge field contribution to the back-
ground. In the KG equation the first order contribution δAµ appears only quadratically, so
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it is a second order contribution. Hence, in deriving the KG equation in closed form, there
will be no changes in the zeroth and first order equations. For bookkeeping the gauge field
term behaves as a second order potential term, and therefore will only change the diagonal
terms of the Einstein field equations (EFE) at second order.

U(ϕ) +
I2(ϕ)

4
(F 2 − γF F̃ ) = U0 + δU1 +

1

2
δU2 +

I2(ϕ0)

4
(F 2 − γF F̃ )

= U0 + Uϕδϕ1 +
1

2
(Uϕϕδϕ

2
1 + Uϕδϕ2)

+
I2(ϕ0)

4
(F 2 − γF F̃ ) (3.3)

where U0 ≡ U(ϕ0) and Uϕ = ∂U
∂ϕ , Uϕϕ = ∂2U

∂ϕ2 etc.
We would like to express the evolution equation of the fluctuations using just the scalar

field fluctuations δϕ and gauge field fluctuations δAµ. Then using the gauge invariant quan-
tity for the curvature perturbation ζ = − H

ϕ̇0
δϕ = − H

ϕ′
0
δϕ, we will calculate the scalar power

spectrum of the sourced fluctuations.

3.1 Zeroth and first order

The Klein-Gordon equation at zeroth order is:

ϕ′′0 + 2Hϕ′0 + a2Uϕ = 0 (3.4)

Using the EFE, we get an equation for the first order field fluctuation which has no metric
fluctuations in it, but just field fluctuations and background quantities:

δϕ′′1 + 2Hδϕ′1 −∇2δϕ1 + a2

{
Uϕϕ +

1

H

(
2ϕ′0Uϕ +

ϕ′20
H
U0

)}
δϕ1 = 0 . (3.5)

These first order fluctuations generate the well known vacuum fluctuations of a slowly
contracting Universe with a blue spectrum PS ∼ k2. As an indication that our analysis is
correct, we find that the entire term in the curled brackets vanishes. This confirms the known
result that in a slowly contracting Universe, one cannot neglect the metric perturbations as
they exactly cancel the contribution from the potential, and the behavior of the curvature
perturbation, ζ is that of a massless free field [39]. The gauge fields from (3.1) will appear
at 2nd order in the KG equation as a source term, hence their name ‘sourced fluctuations’.

3.2 Second order

The 2nd order KG equation in the flat gauge for the multi-field case in the presence of gauge
fields is given by:

δϕ′′2I + 2Hδϕ′2I −∇2δϕ2I

+a2
∑
K

[
UϕKϕI +

1

H

(
ϕ′0IUϕK + ϕ′0KUϕI + ϕ′0Kϕ

′
0I

1

H
U0

)]
δϕ2K

+
2

H

[
δϕ′1I

∑
K

XKδϕ1K +
∑
K

ϕ′0Kδϕ1K

∑
K

a2UϕIϕKδϕ1K

]

+

(
1

H

)2∑
K

ϕ′0Kδϕ1K

[
a2UϕI

∑
K

ϕ′0Kδϕ1K + ϕ′0I
∑
K

(
a2UϕK +XK

)
δϕ1K

]
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−2

(
1

2H

)2 ϕ′0I
H
∑
K

XKδϕ1K

∑
K

(
XKδϕ1K + ϕ′0Kδϕ

′
1K

)
+

1

2H
ϕ′0I

∑
K

δϕ′1K
2

+a2
∑
K,L

[
UϕIϕKϕL +

1

H
ϕ′0IU,ϕKϕL

]
δϕ1Kδϕ1L + C

(
δϕ′1K , δϕ1K

)
+a2 1

4

{
dI2

dϕ0I
+
ϕ0I

H
I2

}
(F 2 − γF F̃ ) = 0 (3.6)

where C (δϕ′1K , δϕ1K) contains gradients and inverse gradients quadratic in the field fluctu-
ations and is defined in the appendix and XI = a2

(
1
HU0ϕ

′
0I + UϕI

)
.

The above equation for multiple scalar fields contains only terms of the field fluctuations
δϕ2I and δϕ2

1I . The detailed derivation appears in appendix A.

The result (3.4), (3.5), (3.6) do not assume any slow/fast-roll approximation, and they
are general for any source term that appears at second order in the fluctuations. For exam-
ple coupling fermions in a Yukawa type interaction yϕIΨ̄Ψ will also behave similarly, with
contributions behaving as δU2. The reason is obvious. As long as these additional fields
are a negligible amount of the energy density, their sole appearance is in quadratic form.
(Otherwise they break Lorentz symmetry.) Thus, these fluctuations are inherently second
order and appear as a potential term.

Ṽ = f(ϕ0I)V (δ2). (3.7)

After this general result, we will simplify our analysis considerably. Our goal is to
calculate the scalar spectrum due to sourced fluctuations in a slowly-contracting model
of (2.1). For this purpose, it is sufficient to use a single scalar field. Furthermore, con-

sidering the specific potential U = −U1e
−
√

2/pϕ causes many potential terms such as XI =
a2
(

1
HU0ϕ

′
0I + UϕI

)
= 0 to vanish. These simplifications lead to:

δϕ′′2 +2Hδϕ′2 −∇2δϕ2+
1

2H
ϕ′0δϕ

′
1

2
+C

(
δϕ′1, δϕ1

)
+a2 1

4

{
dI2

dϕ0
+
ϕ0

H
I2

}
(F 2−γF F̃ ) = 0 .

(3.8)

Note that as in the first order calculation, the potential terms exactly cancel the metric
fluctuations. The contribution at second order will only come from first order squared terms
such as δϕ2

1 and the gauge field source term. Using

I(τ) = (−τ)−n ≡ an2e−n
√

2p/(1−p)ϕ (3.9)

we see that {
dI2

dϕ0
+
ϕ′0
H
I2

}
=

(
−2n

√
2p

1− p
+

√
2

p

)
I2(ϕ0). (3.10)

This will be useful since we will absorb a2I2(ϕ0) into the definitions of the gauge field and
get the known Coulomb wave function solutions. Before carrying out the sourced spectrum
calculation, we should address the δϕ2

1 terms appearing in (3.8). These terms appear also in
the absence of the gauge field.
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1

2H
ϕ′0δϕ

′
1

2
+ C

(
δϕ′1, δϕ1

)
=

1

2H
ϕ′0δϕ

′
1

2
+

(
1

H

)2

δϕ′1,l∇−2
(
ϕ′0δϕ

′
1

) l
,
− 2

ϕ′0
H
∇2δϕ1δϕ1

+
ϕ′0
2H

δϕ1,lδϕ
l

1, +

(
ϕ′0
2H

)2 ϕ′0
H

[
− δϕ1,lδϕ

l
1,

]

− ϕ′0
H
∇−2

{(
δϕ1,l∇2δϕ l

1, +∇2δϕ1∇2δϕ1+δϕ′1∇2δϕ′1+δϕ′1,lδϕ
′ l
1,

)

−
(
ϕ′0
2H

)2
[

+ δϕ i
1, δϕ1,j

] j

,i

}
. (3.11)

In a bouncing model, we have a fast-roll rather than slow-roll. Hence, terms with ϕ′0/H =√
2/p� 1 dominate, contrary to inflation where they are slow-roll suppressed. Considering

the dominant terms in ϕ′0/H we expect the last term in the second line and the term in the
last line to be the most dominant. Since 〈δϕ1δϕ1〉 ∼ P vS ∼ k2 we expect these terms to again
give a very blue spectrum that is completely irrelevant for large scales. After neglecting these
δϕ2

1 contributions, we are left with a simple second order differential equation with a source:

δϕ′′2 + 2Hδϕ′2 −∇2δϕ2 = −a2 1

4

(
−2n

√
2p

1− p
+

√
2

p

)
I2(ϕ0)(F 2 − γF F̃ ). (3.12)

4 Calculation of the spectrum

The curvature perturbation is ζ = − H
ϕ̇0
δϕ2/Mpl =

√
p
2δϕ2/Mpl. Performing the transforma-

tion of variables to Q = aδϕ2 we arrive at the following equation:

Q′′ − a′′

a
Q−∇2Q = − a3

4Mpl

(
−2n

√
2p

1− p
+

√
2

p

)
I2(ϕ0)(F 2 − γF F̃ ), (4.1)

and in Fourier space:

Q′′k +

(
k2 − a′′

a

)
Qk = − a3

4Mpl
C(−τ)−2n(F 2 − γF F̃ )k, (4.2)

where we denoted
(
−2n

√
2p

1−p +
√

2
p

)
= C, and used I(ϕ0) = (−τ)−n. Notice that this factor

C, that can be traced back to the expression of I(τ) as a function of ϕ, is the only place that
breaks the duality of n → −1 − n, ξ → ξ. Unlike the tensor spectrum where the duality is
exact, here it is broken. But because − H

ϕ̇0
C = (1− 2np

1−p) and p� 1 the effect on r is negligible.
The l.h.s. is the same equation as the tensor perturbation, and therefore the vacuum solution
and the retarded Green’s function of (4.2) are identical to [36] up to the − H

ϕ̇0
normalization:

Gk
(
τ, τ ′

)
= iΘ

(
τ − τ ′

) π
4

√
ττ ′
[
H

(1)
1/2−b(−kτ)H

(2)
1/2−b

(
−kτ ′

)
−H(1)

1/2−b
(
−kτ ′

)
H

(2)
1/2−b(−kτ)

]
.

(4.3)

In many bouncing models, the slow-contraction is followed by kinetic domination, with
b = 1/2. At this phase the Green’s function vanishes outside the horizon and the production
mechanism of sourced fluctuations is shut down. As we have seen in (2.24), the gauge
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field fluctuations get amplified at horizon crossing −kτ = 1, and we are interested in their
amplitude during freeze-out, after horizon exit. Already from dimensional grounds E ∼ A/τ
while B ∼ kA, hence the B/E ∼ −kτ � 1. Therefore the leading behavior of the source
term will come from the ~E2 term:

J ≡ − a3

4Mpl
CI2(ϕ0)(F 2 − γF F̃ ) ' − a3

4Mpl
CI2(ϕ0)(−2)

~̂
E2 =

a3

2Mpl
CI2 ~̂E2 (4.4)

Ê
(λ)
i (~k, τ) = − 1

a2
ε
(λ)
i (k̂)∂τ Âλ (4.5)

Âi(τ, k) =
∑
λ=±

ε
(λ)
i (k̂)

Ãλ(k, τ)

I(τ)
[âλ(~k) + â†λ(−~k)] (4.6)

Ãλ(τ, ~q) '
√
− τ

2π
eξπΓ(|2n+ 1|)|2ξqτ |−|n+1/2| (4.7)

Jλ(τ,~k) ' a3

2Mpl
CI2

∫
d3p

(2π)3/2
Ê

(λ)
i (~p, τ)Ê

(λ)
i (~k − ~p, τ)

' a3

2Mpl
CI2

∫
d3p

(2π)3/2

[
a−4ε

(λ)
i (p̂)ε

(λ)
i

(
ˆ~k −~p

)(
∂τ

(
Ãλ
I

))2

×[âλ(~p) + â†λ(−~p)][âλ(~k − ~p) + â†λ(−(~k − ~p))]

]
Jλ(τ,~k) =

C

2aMpl

∫
d3p

(2π)3/2
ε
(λ)
i (p̂)ε

(λ)
i

(
ˆ~k −~p

)
[âλ(~p) + â†λ(−~p)][âλ(~k − ~p) + â†λ(−(~k − ~p))]

×

(
Ã′λI − ÃλI ′

)2

I2
. (4.8)

Thus from equation (4.2) the curvature perturbation is given by:

ζ̂ =

√
p

2

δφ2

Mp
=

√
p

2

Qλ
a(τ)Mp

=

√
p

2

∫ τ

dτ ′
Gk(τ, τ

′)

a(τ)Mp
Jλ(k, τ ′)

=

√
p

2

C

2M2
pl

∫ τ

dτ ′
Gk(τ, τ

′)

a(τ)a(τ ′)∫
d3p

(2π)3/2
ε
(λ)
i (p̂)ε

(λ)
i

(
ˆ~k −~p

)
[âλ(~p) + â†λ(−~p)][âλ(~k − ~p) + â†λ(−(~k − ~p))]

×

(
Ã′λI − ÃλI ′

)2

I2
. (4.9)

Now that the curvature perturbation is found, we can calculate the power spectrum. To
simplify this, we note that there is a one to one correspondence with the tensor case discussed
in [36]. The tensor source term is:

Jλ(τ,~k) =
−1

2Mpla

∫
d3p

(2π)3/2

∑
λ′=±

ε
(λ)∗
i (~k)ε

(λ)∗
j (~k)ε

(λ′)
i (~p)ε

(λ′)
j (~k − ~p)

×
[
âλ(~p) + â†λ(−~p)

] [
âλ(~k − ~p) + â†λ(−(~k − ~p))

] (Ã′λI − ÃλI ′)2

I2
(4.10)
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where we correct a factor of 1/2 compared to (7.8) of [36]. Thus, we see that the only
difference between the scalar (4.8) and tensor source (4.10) is the relevant projection tensor
and the factor C in (4.8).

ĥλ = − 1

M2
pl

∫ τ

dτ ′
Gk(τ, τ

′)

a(τ)a(τ ′)

∫
d3p

(2π)3/2
Pλ(~k, ~p,~k − ~p)[âλ(~p)+â†λ(−~p)][âλ(~k − ~p)+â†λ(−(~k − ~p))]

×

(
Ã′λI − ÃλI ′

)2

I2
(4.11)

where Pλ(~k, ~p,~k − ~p) ≡ ε
(λ)∗
i (~k)ε+i (~p)ε

(λ)∗
j (~k)ε+j (~k − ~p), because only the (+) polarization is

enhanced. Thus, both scalar and tensor spectra and their ratio can be written schematically
in the following way for X̂ = ζ̂, ĥ:

< XkXk′ > =
2π2

k3
δ(~k + ~k′)(PvX(k) + PsX(k)). (4.12)

PsT,S =
2N T,S 2

m I2
m

2π2

e4πξξ2α

M4
pl

k6+2α × fT,S(q) (4.13)

r ≡
PsT
PsS

=

(
1− 2np

1− p

)−2 fT (q)

fS(q)
(4.14)

where α = (−1)m(2n+1), where m = 2 is used in the n < −1/2, and m = 1 in the n > −1/2

case. The numerical factor for the m = 2, n < −1/2 case is N T
2 = −2×4n(n+1)2Γ(−2n−1)2

π ,
and a similar one is obtained by n → −1− n for the m = 1, n > −1/2 case. For the scalar,

N S =
√

p
2CN

T = (1− 2np
1−p)N T , and fT , fS are the momentum integrals for the tensor and

scalar terms respectively. The time dependence integral Im is identical to the tensor one.

I2 ≡
∫ τ

dτ ′
Gk(τ, τ

′)

a(τ)a(τ ′)
(−τ ′)2n

' 1

k2b
end

(
Γ(1/2− b)Γ(1− b+ n)

22b−2nΓ(1/2− n)
k−2+2b−2n − (−τend)2−2b+2n

2(1− b+ n)

)
(4.15)

where kend = Hend/b. The first term dominates for −1 < n < −1/2 and the second term for
−2 < n < −1 for b = p/(1 − p) � 1.3 Hence the only difference can come from the phase
space integration. The tilt of both spectra will be the same. We are thus led to consider only
cases where n→ −2 or equivalently n→ 1, since such n will give us a scale invariant or nearly
scale invariant spectrum. Notice that the tilt is still slightly blue, but we assume this can be

overcome easily by making the argument in the exponent of the potential U = −U1e
−
√

2/pϕ

a slowly varying function of ϕ [17].

The momentum integrals are

fS =

∫
d3p

(2π)3
|εiεi|2(p|~k − ~p|)2n+1 (4.16)

fT =

∫
d3p

(2π)3
|Pλ|2(p|~k − ~p|)2n+1. (4.17)

3A corresponding expression exists for the −1/2 < n < 1 case.
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where ε is the polarization vector, such that [7, 8, 36]:

|ε(λ)
i (p̂)ε

(λ′)
i

(
ˆ~k −~p

)
|2 =

1

4

[
1− λλ′p̂

(
ˆ~k −~p

)]2

(4.18)

|Pλ(~k, ~p,~k − ~p)|2 =
1

16

(
1 + λ

~k · ~p
kp

)2(
1 + λ

k2 − ~k · ~p
k|~k − ~p|

)2

. (4.19)

The momentum integral can be dealt with using standard dimensional regularization tech-
niques, and does not require a numerical approximation, contrary to previous works.

A cumbersome but straightforward calculation yields4

fS =
1

(128π3(2n+ 1))

(
√
π2−4n cos2(πn)Γ(−2n− 1/2)Γ(2n+ 1) (4.20)

−32 sin(2πn) (n(8n+19)+(n+2)(4n+3)(4n+5) cos(2πn)+12) Γ(−4n− 6)Γ(2n+2)2

)

fT =
Γ(2n+ 1)

32768π3

976896 sin(πn) cos3(πn)Γ(−4n− 7)Γ(2n+ 4)

4n+ 9

−


(n(n(2n(2n(2n(256n(4n(n+ 12) + 245)+

+ 177885) + 613759) + 1320225) + 1728341) + 627237))

π−3/242n(n+ 1)(n+ 2)(2n+ 1)(2n+ 3)(2n+ 5)Γ
(
2n+ 11

2

)
+

(n(n(2n(2n(2n(32n+ 861) + 10831) + 58401) + 153349) + 94821) + 21492)

π−3/242n(n+ 1)(n+ 2)(2n+ 1)(2n+ 3)(2n+ 5)Γ
(
2n+ 11

2

)
cos(2πn)

+
95832

π−3/242n(n+ 1)(n+ 2)(2n+ 1)(2n+ 3)(2n+ 5)Γ
(
2n+ 11

2

)

 . (4.21)

The important point is the expansion of r around n = −2. In this case:

r =

[
1+ 1

96(n+2)
(
2950−1503γ+9π2+240 log(2)−1623 log(4)−1623ψ(0)

(
3
2

)
+120ψ(0)

(
7
2

))](
1− 2np

1−p

)2

' 1 + 1.68(2 + n)(
1− 2np

1−p

)2 (4.22)

where ψ(0) is the PolyGamma function. Note that the leading contribution for the phase
space integration is identical, fT /fS = 1 +O(n+ 2).

Finally, at the limit of n→ −2 we arrive at:

lim
n→−2

r =

(
1− p
1 + 3p

)2

. (4.23)

So for p � 1, we get r ' 1, e.g. for p ∼ 1/50, we get r ∼ 0.85 which is ruled out by
observations.5 The rationale behind the ekpyrotic scenario suggests a phase of stiff matter

4We have already factored out the k5+4n factor, and this factor is a part of the k6+2α in equation (4.13).
5The model discussed in [38] corresponds in our analysis to n = 2, γ = 0. In such case fT /fS = 7/6 and

r ∼ 1 for p� 1 and the tilt is very red with nS = nT = 4(1− n) = −4.
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w � 1 to avoid the anisotropy instability. Recall that p = 2
3(1+w) . If we wish to saturate the

bound, w = 1 corresponds to p = 1/3, which implies r = 0.11 still ruled out by observations.
Finally, r ≤ 0.06 requires p ≥ 0.44 close to radiation domination of p = 1/2. Hence, an
observable GW signal on CMB scales brings back the anisotropy instability which the slow
contraction tries to avoid in the first place.

5 Model predictions for present day searches

The ongoing search of a stochastic GW background using current PTA and LIGO experiments
and future LISA mission can also target the dynamics described here. The above analysis
showed that nS − 1 = nT and that rAS = AT , with r given by (4.14). Hence, to explain
CMB observations we were led to nT = 0 that led to r ' 1 that is ruled out. However, the
calculation did not fix AS . Hence, if the dynamics does not have to account for the observed
CMB scalar spectrum, it could still act as a generator of a stochastic background that we may
observe with LIGO/LISA/PTA [5, 6, 42]. Such a possibility has to fulfill three requirements:

• The amplitude of both sourced scalar and sourced tensor spectrum are negligible on
CMB scales.

• The amplitude of the sourced tensor spectrum is large enough at the relevant
LIGO/LISA/PTA scale, such that ΩGW today is above the future sensitivity curves
of these experiments, but lower than the current sensitivity curves.

• On all scales the spectrum fulfills the backreaction bound of (2.25).

As such, the spectra do not have to be nearly scale invariant. For −2 < n < −5/4 or
1/4 < n < 1, we get a tensor tilt of 0 < nT , nS − 1 < 3, and its exact functional form is:

PsT,S =
2N T,S 2

m I2
m

2π2

e4πξξ2α

M4
pl

k6+2α × fT,S(q) (5.1)

PsT =
11.1(4− nT )2Γ (3− nT /2)4

216−nT π6nT

e4πξ

b4−nT ξ6−nT

(
Hend

Mpl

)4( k

Hend

)nT
=

11.1(4− nT )2Γ (3− nT /2)4

216−nT π6nT

e4πξ

ξ6−nT

(
kend

Mpl

)4( k

kend

)nT
≡ C(nT , ξ, kend,Mpl)k

nT (5.2)

with fT,S as given in (4.20) for the scalar and in (4.21) for the tensor. To simplify the analysis,
in the second line we approximated fT ' 11.1

64π2(2+n)
= 11.1

16π2nT
with an accuracy of better than

10% for −2 < n < −1.32.6 In the third line we substituted Hend = bkend that causes b to drop
out of the expression of the spectrum. Apart from the requirements mentioned above, there
are additional bounds such as BBN constraints and the absence of primordial black holes, but
the backreaction constraint is stronger than the others, so fulfilling the backreaction bound
is sufficient [36]. We shall specify both the spectrum and backreaction bound in terms of the
tilt nT , kend, that specifies the duration of contraction, and ξ that is in charge of enhancing
the spectrum.

6The constraints due to the dual branch of 1/4 < n < 1 are the same.

– 13 –



J
C
A
P
0
7
(
2
0
1
9
)
0
5
0

Experiment Ωexp
GW kexp (Mpc−1)

LIGO/aLIGO 1.7× 10−7 > Ωexp
GW > 10−9 3× 1016–1.3× 1017

PTA/SKA− PTA 1.3× 10−9 > Ωexp
GW > 1.3× 10−12 ∼ 1.5× 108

LISA Ωexp
GW > 10−13 1.5× 1012–1.5× 1013

Table 1. Current and forecast detection of the fractional energy density of stochastic GW background
by present and future GW observations. The upper bound is a current constraint and the lower one
a future detection threshold.

The aforementioned experiments probe the present day fractional energy density stored
in stochastic GW. The relation between the primordial tensor spectrum to the fractional
energy density for k > keq is given by [41]:

ΩGW = 4.2× 10−2PT
aeq

a(τ0)
' 4.2× 10−2 PT

3400
, (5.3)

since a(τ0) ' 3400aeq. Using

k =
2πa(η0)f

c
, (5.4)

the projected forecasts for the different experiments are listed in table 1, [43]. Given that the
tensor spectrum is a simple power law, the first two requirements can be phrased in terms of
the power spectrum as follows:

PsT (k0) < 1.3× 10−10, PsT (kexp) > 0.8× 105 Ωexp
GW

⇔ 0.8× 105 × Ωexp
GW ×

(
k0

kexp

)nT
< PsT (k0) < 1.3× 10−10 (5.5)

where kexp is the relevant range of wave numbers for each experiment and Ωexp
GW is the

minimal detectable fractional density of each experiment. The upper bound is from the
CMB measurements of r < 0.06 and AS = 2.1 × 10−9 as reported by PLANCK. In the
analysis below, we shall take k0 ∼ 0.01Mpc−1,Mpl = 1028Mpc−1. Substituting the relevant
kexp,Ω

exp
GW such that (5.5) is not an empty set, we get a lower bound on nT . For LISA,

kLISA = 1013Mpc−1 we get a necessary condition nT > 0.12. The same exercise gives for
LIGO nT > 0.30–0.31 and for the SKA-PTA nT > 0.27.

Substituting the backreaction bound (2.25) for (5.2) gives:

PsT =
11.1(4− nT )2Γ (3− nT /2)4

216−nT π6nT

e4πξ

b4−nT ξ6−nT

(
Hend

Mpl

)4( k

Hend

)nT
� 99.9× 4nT

(nT − 4)2
ξnT b4

(
k

kend

)nT
. (5.6)

We see that the larger b is the easier it will be to satisfy the bound. Substituting the above
parameters, the bound is fulfilled if

(4− nT )4Γ (3− nT /2)4

9× 218−nT π6n2
T

e4πξ

b4ξ6

(
kend

Mpl

)4

� 1. (5.7)

We see that this can be easily fulfilled for nT > 0.12, for a nice range of ξ, kend and b. These
parameters are interrelated. In our analysis, let us consider nT > 0.12 so the spectrum may
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be detected. For a valid contraction we consider 1/60 ≤ b ≤ 1/20. kend that determines the
duration of the contraction is taken within the range 1018 < kend < 1022Mpc−1, the lower
bound corresponding to at least one more decade beyond the LIGO band, and the upper
bound to 60 e-folds of contraction. Depending on these parameters, ξ is limited to be ξ < 4.5–
9. We find three possible regimes of detection — LISA only, (advanced) LIGO only, and a
narrow range of detection by both observations. The LISA only regime is characterized by a
relatively flat spectrum with 0.15 < nT < 0.31. The mutual regime by 0.85 < nT < 1.1 and
the LIGO only regime by 1.1 < nT < 2.72.7 The range of spectra is shown in figure 1, where
we phrase everything in terms of PsT . The horizontal lines represent current observational
constraints (dashed lines) and forecasted sensitivities according to table 1, solid lines. Spectra
outside the shaded region either violate the backreaction bound, or CMB observations, or
are unobservable by any of the experiments assuming their forecasted sensitivity. In all cases
PS ' PT < 0.01 and therefore do not generate primordial black holes, except potentially the
last e-fold of the steeper LIGO only case at k ' 1018. It is clear that the shaded regions show
spectra that are not observed by CMB or PTA and that LISA will cover the largest part of
the parameter space.

6 Discussion

In this note, we further explored the idea that sourced fluctuations can generate viable
CMB spectra, and specifically sizable r in contracting scenarios. For that purpose, we have
generalized the second order KG equation to include source terms for any type of cosmology
without using slow-roll/fast-roll approximation. If the source term is of second order, it
simply modifies the KG equation additively as an additional potential term. Finally, we used

an exact solution of the EFE with U = −U1e
√

2/pϕ. In such a case the tensor and scalar
calculation are almost the same, the sole difference appearing in phase space factors of the
momentum integral, and some O(1) coefficient. Specifically the spectral tilt is exactly the
same, and the amplitude differs by this O(1) coefficient. As a result , r ∼ 1 contrary to
current bounds.

Unlike previous works by various authors, it turns out the momentum integral can
be carried out exactly using dimensional regularization, which is certainly an interesting
technical development. Actually, one may consider using a similar technique to calculate
the time integral. If so, it would yield qualitatively different results, as it will remove the
power law divergence. However, for the time integral, there is a physical cut-off which is the
end of the slow-contraction at τend, after which kinetic domination starts and the Green’s
function vanishing outside the horizon, shutting down the sourced fluctuations production
mechanism [36]. Hence, this technique is not suitable for the time integral Im that cuts off
physically at τ = τend. The sourced fluctuations bouncing scenario does give a nearly scale
invariant, blue, chiral spectrum of gravitational waves, making them a potential target for
both CMB and LI experiments. It fails on the quantitative level. Giving up the idea that the
sourced fluctuations bouncing scenario is responsible for CMB results allows us to deviate
from near scale invariance and consider potential detection by other experiments such as
PTA, LISA and LIGO. We have found that in such case the sourced fluctuations bouncing
scenario predicts a GW spectrum that is potentially observable by LISA and LIGO, but not
by PTA.

7The nT < 2.72 was taken so we could use the approximation for fT . Otherwise, also 2.72 < nT < 3 is
valid. Such a blue spectrum with the backreaction bound may only be detected by LIGO.
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Figure 1. The GW spectrum Ps
T as a function of wavenumber k. The shaded region in all plots is

allowed by the backreaction bound (5.7). Current observational constraints- CMB, PTA, and LIGO
are denoted by dashed lines from left to right. Future sensitivity curves are denoted by lines from
left to right, - PTA, (purple), LISA, (black), and LIGO, (cyan). The upper left panel corresponds
to LISA only detection (black thick line). The flattest allowed spectrum (red) corresponds to nT =
0.15, ξ = 4.55, kend = 1022Mpc−1 and b = 1/60, the steepest one (magenta) to nT = 0.31, ξ =
8.22, kend = 1018Mpc−1 and b = 1/20. The upper right panel corresponds to detection by LIGO
and LISA. The flattest spectrum (green) corresponds to nT = 0.85, ξ = 8.49 and the steepest (red)
to nT = 1.1, ξ = 8.58. In this range we always took kend = 1018Mpc−1 and b = 1/20. In the lower
panel, the LIGO only region 1.1 < nT < 2.72, and ξ = 8.58 for the flattest spectrum, ξ = 9 for the
steepest one. Again, kend = 1018Mpc−1 and b = 1/20.
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A Derivation of the curvature perturbation equation

Here we provide the detailed derivation of (3.6). A comma denotes differentiation with respect
to the spacetime coordinates. The metric tensor up to second order for scalar perturbations is

g00 = −a2 (1 + 2φ1 + φ2) , (A.1)

g0i = a2

(
B1 +

1

2
B2

)
,i

, (A.2)

gij = a2 [(1− 2ψ1 − ψ2) δij + 2E1,ij + E2,ij ] . (A.3)
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and its contravariant form is

g00 = −a−2
[
1− 2φ1 − φ2 + 4φ2

1 −B1,kB
k

1,

]
, (A.4)

g0i = a−2

[
B i

1, +
1

2
B i

2, − 2B1,kE
ki

1, + 2 (ψ1 − φ1)B i
1,

]
, (A.5)

gij = a−2
[(

1+2ψ1+ψ2+4ψ2
1

)
δij−

(
2E ij

1, +E ij
2, −4E ik

1, E
j

1,k+8ψ1E
ij

1, +B i
1,B

j
1,

)]
.(A.6)

Note that (A.1)–(A.6) are without gauge restrictions, i.e. no gauge has been specified. We
work in the flat gauge where

ψ1 = ψ2 = E1 = E2 = 0. (A.7)

Einstein’s field equations (EFE) are given by

Gµν = Tµν (A.8)

Tµν =
∑
K

(
ϕK,µϕK,ν−

1

2
gµνg

αβϕK,αϕK,β

)
−gµν

[
U(ϕK)+

I2(ϕK)

4
(F 2−γF F̃ )

]
. (A.9)

The scalar fields is expanded up to second order according to

ϕK(τ, ~x) = ϕ0K(τ) + δϕ1K(τ, ~x) +
1

2
δϕ2K(τ, ~x). (A.10)

The potential is expanded accordingly,

U(ϕI) = U0 + δU1 +
1

2
δU2, δU1 =

∑
K

UϕKδϕ1K ,

δU2 =
∑
KL

UϕLϕKδϕ1Kδϕ1L +
∑
K

UϕKδϕ2K . (A.11)

The zeroth order and first order are unchanged with respect to [40]. The deviation
occurs at second order, where the gauge fields appear.

A.1 Zeroth order

The zeroth order equations 0− 0 component δij and KG respectively are simply:

3H2 =
1

2

∑
I

ϕ
′2
I0 + a2U0

H2 − 2
a′′

a
=

1

2

∑
I

ϕ
′2
I0 − a2U0

ϕ′′I0 + 2Hϕ′I0 + a2UϕI = 0. (A.12)

A.2 First order

Starting from the KG equation at first order,

δϕ′′1I + 2Hδϕ′1I + 2a2UϕIφ1 −∇2δϕ1I − ϕ′0I∇2B1 − ϕ′0Iφ′1 + a2
∑
K

UϕKϕI δϕ1K = 0 . (A.13)
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Using the background equations, the 0− 0 component at first order will be:

2a2U0φ1 +
∑
K

ϕ′0Kδϕ1
′
K + a2δU1 + 2H∇2B1 = 0 , (A.14)

the 0− i part gives

Hφ1 −
1

2

∑
K

ϕ′0Kδϕ1K = 0 . (A.15)

From the i− j component of the Einstein equation we get the trace free part

B′1 + 2HB1 + φ1 = 0 . (A.16)

Using (A.16) and the zeroth order equations, we get the first order trace:

Hφ′1 +
1

2

[
a2δU1 + 2a2U0φ1 −

∑
K

ϕ′0Kδϕ1K
′

]
= 0 . (A.17)

Using the EFE, we get an equation which has no metric fluctuations in it, but just field
fluctuations and background quantities:

δϕ′′1I + 2Hδϕ′1I −∇2δϕ1I+

+a2
∑
K

{
UϕKϕI +

1

H

(
ϕ′0IUϕK + ϕ′0KUϕI + ϕ′0Kϕ

′
0I

1

H
U0

)}
δϕ1K = 0 (A.18)

and for single field:

δϕ′′1 + 2Hδϕ′1 −∇2δϕ1 + a2

{
Uϕϕ +

1

H

(
2ϕ′0Uϕ +

ϕ′20
H
U0

)}
δϕ1 = 0 . (A.19)

A.3 Second order

To make the crucial algebraic manipulations transparent, we keep the terms δU2 as such in
the KG equation:

δϕ′′2I + 2Hδϕ′2I −∇2δϕ2I + a2∂δU2

∂ϕ0I
+ a2 1

4

∂I(ϕ0I)
2

∂ϕ0I

(
F 2 − γF F̃

)
+

+2a2U,ϕIφ2 − ϕ′0I
(
∇2B2 + φ′2

)
+ 4ϕ′0IB1,kφ

k
1, +

+2
(
2Hϕ′0I + +a2UϕI

)
B1,kB

k
1, + 4φ1

(
a2
∑
K

UϕIϕKδϕ1K −∇2δϕ1I

)
+

+4ϕ′0Iφ1φ
′
1 − 2δϕ′1I

(
∇2B1 + φ′1

)
− 4δϕ′1I,kB

k
1, = 0. (A.20)
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Substituting δU2 gives:

δϕ′′2I + 2Hδϕ′2I −∇2δϕ2I + a2
∑
K

UϕIϕKδϕ2K+

+a2
∑
K,L

UϕIϕKϕLδϕ1Kδϕ1L + 2a2U,ϕIφ2 − ϕ′0I
(
∇2B2 + φ′2

)
+

+4ϕ′0IB1,kφ
k

1, + 2
(
2Hϕ′0I + a2U,ϕI

)
B1,kB

k
1, +

+4φ1

(
a2
∑
K

UϕIϕKδϕ1K −∇2δϕ1I

)
+ 4ϕ′0Iφ1φ

′
1

−2δϕ′1I
(
∇2B1 + φ′1

)
− 4δϕ′1I,kB

k
1, = −1

4

∂I(ϕ0I)
2

∂ϕ0I

(
F 2 − γF F̃

)
.

(A.21)

Now we need to use the field equations to substitute the metric perturbations. Consid-
ering (A.9), we see that the gauge field term is already second order in the perturbations.
Hence, the metric in front of it will be zeroth order. Therefore, the only change in the
energy-momentum tensor will come from diagonal terms. The change in the diagonal terms
will behave as an additional ‘potential’ term, i.e. wherever there is a 1

2δU2 term it has to be

replaced with 1
2δU2 + I2(ϕ)

4 (F 2 − γF F̃ ). The 0− 0 component at second order gives:

a2U0

(
φ2 +B1,kB

k
1,

)
+H∇2B2 +

1

2

[
B1,klB

kl
1, −

(
∇2B1

)2]−
−2Hφ1,kB

k
1, + a2 I

2(ϕ0I)

4
(F 2 − γF F̃ )

+
1

2

∑
K

[
ϕ′0Kδϕ

′
2K + a2δU2 + 4a2δU1φ1 + δϕ′1K

2
+ δϕK,kδϕ

k
K,

]
= 0. (A.22)

For future reference we see that the equation looks like:

∇2B2 =
1

H

[
· · · − a2 1

2
δU2 − a2 I

2(ϕ0I)

4
(F 2 − γF F̃ )

]
. (A.23)

The 0− i Einstein equation is the same as in the absence of gauge fields:

Hφ2,i−4Hφ1φ1,i+2HB1,kiB
k

1, +B1,kiφ
k

1, −∇2B1φ1,i−
1

2

∑
K

[
ϕ′0Kδϕ2K,i + 2δϕ′1Kδϕ1K,i

]
= 0 .

(A.24)
Using first order 0− i and taking the trace gives:

H
(
φ2 − 2φ2

1 +B1,kB
k

1,

)
− 1

2

∑
K

ϕ′0Kδϕ2K +∇−2
(
φ1,klB

kl
1, −

−∇2B1∇2φ1

)
−
∑
K

∇−2
(
δϕ′1K∇2δϕ1K + δϕ′1K,lδϕ

l
1K,

)
= 0, (A.25)
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where we introduce the inverse Laplacian, ∇−2(∇2)X = X. Let us rewrite the equation as
an expression for φ2:

φ2 = −
(
−2φ2

1 +B1,kB
k

1,

)
+

1

H
1

2

∑
K

ϕ′0Kδϕ2K −
1

H
∇−2

(
φ1,klB

kl
1, +

+∇2B1∇2φ1

)
+

1

H
∑
K

∇−2
(
δϕ′1K∇2δϕ1K + δϕ′1K,lδϕ

l
1K,

)
. (A.26)

The i− j Einstein equation is given by{
2a2U0

(
φ2 − 4φ2

1 +B1,kB
k

1,

)
+ 2Hφ′2 − 8Hφ1φ

′
1 − 2φ1,kφ

k
1, + 4HB′1,kB k

1,

+∇2
(
B′2+2HB2+φ2

)
−2φ′1∇2B1+B1,klB

kl
1, −

(
∇2B1

)2
+4
(
a2δU1+2a2U0φ1

)
φ1

+

[∑
K

(
δϕ1K,lδϕ

l
1K, − ϕ′0Kδϕ′2K − δϕ′1K

2
)

+a2δU2+a2 I
2(ϕ0I)

2
(F 2−γF F̃ )

]}
δij

−
(
B′2+2HB2+φ2

) i
, j

+2φ i
1, φ1,j+2B i

1, j

(
φ′1+∇2B1

)
(A.27)

−2B i
1, kB

k
1, j − 2

∑
K

δϕ i
1K,δϕ1K,j = 0 .

After additional manipulations outlined in [40], we finally reach a trace equation for the
spatial EFE:

3a2U0

(
φ2 − 4φ2

1 +B1,kB
k

1,

)
− 2φ1,kφ

k
1, − 2φ′1∇2B1 − 6HB k

1, (2HB1,k + φ1,k)

+3Hφ′2 − 12Hφ1φ
′
1 +∇2

(
B′2 + 2HB2 + φ2

)
+

1

2

[
B1,klB

kl
1, −

(
∇2B1

)2]
+ 6φ1

(
a2δU1 + 2a2U0φ1

)
+

1

2

∑
K

(
3a2δU2+3a2 I

2(ϕ)

2
(F 2−γF F̃ )−3ϕ′0Kδϕ

′
2K−3δϕ′1K

2
+δϕ1K,lδϕ

l
1K,

)
= 0 . (A.28)

We now substitute all the metric perturbations in the KG eqation (A.21). First, sub-
stituting only the second order potentials, we use (A.23), (A.26) leading to:

δϕ′′2I + 2Hδϕ′2I −∇2δϕ2I + a2
∑
K

UϕIϕKδϕ2K

+a2
∑
K,L

UϕIϕKϕLδϕ1Kδϕ1L + a2 1

4

dI(ϕ0)2

dϕ0

(
F 2 − γF F̃

)

+4φ1

(∑
K

a2UϕIϕKδϕ1K −∇2δϕ1I

)
− 4δϕ′1I,kB

k
1, + 4a2U,ϕIφ

2
1 +

2

H
δϕ′1I

∑
K

XKδϕ1K

+
1

H
ϕ′0I

{
2φ1

(
a2δU1 +

∑
K

XKδϕ1K

)
+

1

2

∑
K

(
δϕ′1K

2
+ δϕ1K,lδϕ

l
1K,

)}

+2
XI

H
∇−2

{
∇2B1∇2φ1 − φ1,klB

kl
1, +

∑
K

(
δϕ′1K∇2δϕ1K + δϕ′1K,lδϕ

l
1K,

)}
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+
ϕ′0I
H

B1,klB
kl

1, −φ1,kφ
k

1, −
(
∇2B1

)2−(1/2

H

)2
(∑

K

XKδϕ1K

)2

−

(∑
K

ϕ′0Kδϕ
′
1K

)2


−
ϕ′0I
H
∇−2

{∑
K

(
δϕ1K,l∇2δϕ l

1K, +∇2δϕ1K1∇2δϕ1K + δϕ′1K∇2δϕ′1K + δϕ′1K,lδϕ
′ l
1K,

)
+
( 1

H
B i

1, j

∑
K

XKδϕ1K − φ i
1, φ1,j

) j

,i

}

+
1

H

{
ϕ′0Ia

2

[
δU2 +

I2(ϕ0I)

4
(F 2 − γF F̃ )

]
+XI

∑
K

ϕ′0Kδϕ2K

}
= 0.

(A.29)

where we have defined: XI ≡ a2
(

1
HU0ϕ

′
0I + UϕI

)
. Now, we again use the first and zeroth

order equations to reach a final expression:

δϕ′′2I + 2Hδϕ′2I −∇2δϕ2I

+a2
∑
K

[
UϕKϕI +

1

H

(
ϕ′0IUϕK + ϕ′0KUϕI + ϕ′0Kϕ

′
0I

1

H
U0

)]
δϕ2K

+
2

H

[
δϕ′1I

∑
K

XKδϕ1K +
∑
K

ϕ′0Kδϕ1K

∑
K

a2UϕIϕKδϕ1K

]

+

(
1

H

)2∑
K

ϕ′0Kδϕ1K

[
a2UϕI

∑
K

ϕ′0Kδϕ1K + ϕ′0I
∑
K

(
a2UϕK +XK

)
δϕ1K

]

−2

(
1

2H

)2 ϕ′0I
H
∑
K

XKδϕ1K

∑
K

(
XKδϕ1K + ϕ′0Kδϕ

′
1K

)
+

1

2H
ϕ′0I

∑
K

δϕ′1K
2

+a2
∑
K,L

[
UϕIϕKϕL +

1

H
ϕ′0IU,ϕKϕL

]
δϕ1Kδϕ1L + C

(
δϕ′1K , δϕ1K

)
+a2 1

4

{
dI2

dϕ0I
+
ϕ′0I
H
I2

}
(F 2 − γF F̃ ) = 0 (A.30)

where C (δϕ′1K , δϕ1K) contains gradients and inverse gradients quadratic in the field fluctu-
ations and is defined as

C
(
δϕ′1K , δϕ1K

)
=

(
1

H

)2

δϕ′1I,l∇−2
∑
K

(
XKδϕ1K + ϕ′0Kδϕ

′
1K

) l
,
− 2

H
∇2δϕ1I

∑
K

ϕ′0Kδϕ1K

+ 2
XI

H

(
1

2H

)2

∇−2

[∑
K

ϕ′0Kδϕ1K,lm∇−2
∑
K

(
XKδϕ1K + ϕ′0Kδϕ

′
1K

) lm
,

−
∑
K

(
XKδϕ1K + ϕ′0Kδϕ

′
1K

)
∇2
∑
K

ϕ′0Kδϕ1K

]

+
1

2H

[
ϕ′0I

∑
K

δϕ1K,lδϕ
l

1K, + 4XI∇−2
∑
K

(
δϕ′1K∇2δϕ1K + δϕ′1K,lδϕ

l
1K,

)]
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+

(
1

2H

)2 ϕ′0I
H

[
∇−2

∑
K

(
XKδϕ1K + ϕ′0Kδϕ

′
1K

)
,lm
∇−2

∑
K

(
XKδϕ1K + ϕ′0Kδϕ

′
1K

) lm
,

−
∑
K

ϕ′0Kδϕ1K,l

∑
K

ϕ′0Kδϕ
l

1K,

]

−
ϕ′0I
H
∇−2

{∑
K

(
δϕ1K,l∇2δϕ l

1K, +∇2δϕ1K∇2δϕ1K + δϕ′1K∇2δϕ′1K + δϕ′1K,lδϕ
′ l
1K,

)

−
(

1

2H

)2
[

2∇−2
∑
K

(
XKδϕ1K+ϕ′0Kδϕ

′
1K

) i
, j

∑
K

XKδϕ1K+
∑
K

ϕ′0Kδϕ
i

1K,

∑
K

ϕ′0Kδϕ1K,j

] j

,i

}
.

(A.31)

B Example of the momentum integral calculation

In this appendix we give an example of how we evaluated the momentum integral exactly.
The integral to be solved is

fS =

∫
d3p

(2π)3 |εiεi|
2
(
p
∣∣∣~k − ~p∣∣∣)2n+1

(B.1)

where ∣∣∣ε (p̂) ε
(
~k − ~p

)∣∣∣2 =
1

4

(
1− p̂

(
~k − ~p

))2
. (B.2)

First we rewrite equation (B.2) in a more tractable form.

1− 2
~p · ~k − p2

p(~k − ~p)
+

(
~p · ~k − p2

)2

p2(~k − ~p)2
(B.3)

where ~p · ~k = (p2 + k2 − (~k − ~p)2/2. So equation (B.1) is

1

4

∫
d3p

(2π)3

∣∣∣~k − ~p∣∣∣2n+1
p2n+1

1− 2
~p · ~k − p2

p(~k − ~p)
+

(
~p · ~k − p2

)
p2(~k − ~p)2

 . (B.4)

The integrand expands into nine terms as follows. We write K ≡
∣∣∣~k − ~p∣∣∣ and obtain

− k2K2np2n +K2+2np2n +K2np2+2n +
1

4
K2n−1p2n+3 − 1

2
k2K2n−1p2n+1+

+
3

2
K2n+1p2n+1 +

1

4
k4K2n−1p2n−1 − 1

2
k2K2n+1p2n−1 +

1

4
K3+2np2n−1. (B.5)

In order to solve the integral we use the Schwinger parameter representation:

1

(k2 −m2)n
= (−i)n 1

Γ (n)

∞∫
0

dααn−1eiα(k2−m2). (B.6)
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As an example we calculate the first term of the momentum integral,−k2
∣∣∣~k − ~p∣∣∣2n p2n which

is a product of two expressions like (B.6). We write −n = n1 = n2 where we keep n1, n2

distinct to clarify how the other eight terms are worked out:∫
d3p

1

p2n1 (p− k)2n2
=

(−i)n1+n2

Γ [n1] Γ [n2]

∫
d3p

∞∫
0

dα1α
n1−1
1 e−iα1p2

∞∫
0

dα2α
n2−1
2 eiα2(p−k)2 . (B.7)

The integral over p can be converted into a Gaussian integral for p, after some algebra:∫
d3p

1

p2n1 (p− k)2n2
=

(−i)n1+n2

Γ [n1] Γ [n2]

∞∫
0

dα1dα2α
n1−1
1 αn2−1

2

×
∫

d3p

(2π)3 e
i(α1+α2)

(
p+

α2
α1+α2

k
)2

e
−i α22

α1+α2
k2
eiα2k2 (B.8)

and solving this gives

(−i)n1+n2−3/2 π3/2

Γ [n1] Γ [n2]

∞∫
0

dα1dα2α
n1−1
1 αn2−1

2 (α1 + α2)−3/2 e
i
α1α2
α1+α2

k2
. (B.9)

The next step is to substitute α1 = βt, α2 = β(1− t) and α1 + α2 = β, so that we have

(−i)n1+n2−3/2 π3/2

Γ [n1] Γ [n2]

1∫
0

dttn1−1 (1− t)n2−1

∞∫
0

dββn1+n2−3/2−1eiβt(1−t)k
2
. (B.10)

Substituting x = βt(1− t)k2, the integral over β is seen to be a Gamma function, for which
the solution is known, and we obtain

π3/2Γ
[
n1 + n2 − 3

2

]
Γ [n1] Γ [n2]

(k2)3/2−n1−n2

1∫
0

dtt3/2−n2−1 (1− t)3/2−n1−1 . (B.11)

The integral over t is a Beta function, so finally we obtain∫
d3p

1

p2n1 (p− k)2n2
=
π3/2Γ

[
n1 + n2 − 3

2

]
Γ
[

3
2 − n1

]
Γ
[

3
2 − n2

]
Γ [n1] Γ [n2] Γ [3− n1 − n2]

(k2)3/2−n1−n2 . (B.12)

We now insert n1 = n2 = −n and put back the prefactors −k2/ (2π)3 , so this term becomes

− k5+4nΓ
[
−2n− 3

2

]
Γ
[

3
2 + n

]2
π3/2Γ [−n]2 Γ [3 + 2n]

. (B.13)

The other eight terms have an identical structure to the first, and are solved in exactly the
same way, so we finally obtain

fS =
k5+4n

(128π3(2n+ 1))

(
√
π2−4n cos2(πn)Γ(−2n− 1/2)Γ(2n+ 1)

− 32 sin(2πn) (n(8n+ 19) + (n+ 2)(4n+ 3)(4n+ 5) cos(2πn) + 12) Γ(−4n− 6)Γ(2n+ 2)2

)
.

(B.14)

The same method is used to obtain the result for fT written in (4.21).
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