ournal of Cosmology and Astroparticle Physics

An IOP and SISSA journal

Generalized uncertainty principle and
black holes in higher dimensional
self-complete gravity

Marco Knipfer,”’ Sven Képpel,*® Jonas Mureika® and
Piero Nicolini®?

“Frankfurt Institute for Advanced Studies (FIAS),
Ruth-Moufang-Str. 1, Frankfurt am Main D-60438, Germany
bInstitut fiir Theoretische Physik, Johann Wolfgang Goethe-Universitit Frankfurt,
Max-von-Laue-Str. 1, Frankfurt am Main D-60438, Germany
“Department of Physics, Loyola Marymount University,
1 LMU Drive, MS-8227, Los Angeles, CA 90045-2659, U.S.A.

E-mail: knipfer@fias.uni-frankfurt.de, koeppel@fias.uni-frankfurt.de,
jmureika@Imu.edu, nicolini@fias.uni-frankfurt.de

Received May 20, 2019
Accepted July 18, 2019
Published August 8, 2019

Abstract. In this paper we consider generalized uncertainty principle (GUP) effects in higher
dimensional black hole spacetimes via a nonlocal gravity approach. We study three possi-
ble modifications of momentum space measure emerging from GUP, including the original
Kempf-Mangano-Mann (KMM) proposal. By following the KMM model we derive a family
of black hole spacetimes. The case of five spacetime dimensions is a special one. We found an
exact black hole solution with a Barriola-Vilenkin monopole at the origin. This object turns
out to be the end point of the black hole evaporation. Interestingly for smaller masses, we
found a “naked monopole” rather than a generic naked singularity. We also show that the
Carr-Lake-Casadio-Scardigli proposal leads to mild modifications of spacetime metrics with
respect to the Schwarzschild-Tangherlini solution. Finally, by demanding the same degree
of convergence in the ultraviolet regime for any spacetime dimension, we derive a family of
black hole solutions that fulfill the gravity self-completeness paradigm. The evaporation of
such black holes is characterized by a fluctuating luminosity, which we dub a lighthouse effect.
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1 Introduction

Black holes are perhaps one of the most intriguing objects in Physics, as they play a major role
in a wide variety of both classical and quantum phenomena. The gravitational wave events
recently observed by LIGO were the product of binary black hole mergers [1], while the
Event Horizon Telescope has produced the first image of the shadow of a supermassive black
hole [2]. Quantum mechanically, black holes show even more surprising features. Much in
the same way as black bodies, they can emit thermal radiation at a temperature proportional
to their surface gravity [3].

More importantly, black holes bring into question our understanding of quantum me-
chanics [4]. The Compton wavelength is conventionally believed to assume arbitrarily small
values, provided one raises particles to high enough energies. This reasoning, however, breaks
down at the Planck scale, where a black hole is expected to form due to the collapse of parti-
cles at such extreme energies [5]. This is equivalent to saying that gravity is ultraviolet self-
complete, i.e., there are no propagating quantum degrees of freedom in the trans-Planckian
regime and length scales below the Planck length are inaccessible [6—22]. Interestingly, such
features are effectively captured by a modification of commutation relations known as gen-
eralized uncertainty principle (GUP) [23-27], namely

[2%,p;] = ih 6% (1 + f(5?)), (L1)

where the function f customarily assumes the form f(p?) ~ Bp? + ... at first order.
From (1.1), one obtains that spatial resolution better than /3 is no longer possible, since
the uncertainty relations reads

ArAp > B(1+B(8p)), (12

where /B ~ Lp) and Lp the Planck length. For Ap > 1/4/3, length scales become propor-
tional to Ap as expected from the presence of a black hole in the trans-Planckian regime.
For reviews see [28-30)].



The GUP has been invoked to improve the scenario of black hole evaporation, that is
customarily affected by a divergent profile of the Hawking temperature 7" in the terminal
phase. If one employs (1.2), with Ap ~ T" and Az ~ GnM, the temperature profile is no
longer divergent and a Planckian black hole remnant forms as an evaporation endpoint [31,
32]. Such a remnant has also been considered as a candidate for cold dark matter [33].
There are, however, potential problems that stem from such results. Planckian remnants
have Planckian temperatures. The surface gravity description of the temperature no longer
holds.

To amend the above limitations, a new approach has been proposed in order to imple-
ment GUP effects in gravitational systems [34]. As a start, one can notice that the GUP
introduces nonlocality by preventing infinitesimal resolution. One might therefore be led to
consider a nonlocal version of Einstein’s equations [35-38]

G (L°0) G = 87T (1.3)

where the gravitational constant, Gy, becomes an invertible differential operator G. The
term [J is the covariant d’Alembertian and L is a length scale. Equation (1.3) can be either
used to described large scale degravitating effects [39-42] or short scale modified gravity
theories [19, 43-46]. In fact, one can select a specific profile of G~! (LZD) to reproduce the
GUP momentum space deformation

d3p

d3p—>7_,
1+ Bp?

(1.4)
for the static potential due to virtual particle exchange by setting L = /8. The resulting
non-rotating black hole metric allows for horizon extremization with consequent formation
of a zero temperature remnant at the end of the evaporation [34]. Such a black hole solution
not only supersedes the aforementioned limitations of the scenario proposed in [31, 32], but
offers additional interesting properties. It removes the scale ambiguity of the Schwarzschild
metric and fulfills the gravity ultraviolet self-completeness by preventing black hole radii
smaller than the Planck length. It also allows for a semiclassical description of the whole
evaporation process for the absence of relevant quantum back reaction during the SCRAM
phase! preceding the remnant formation [48].

Higher dimensional black hole solutions play an important role in theoretical research
for a variety of reasons. On the formal side, they are a key element of proposals aimed
at a unified description of fundamental interactions, e.g., superstring theory and related
paradigms, like the gauge/gravity duality. On the phenomenological side, microscopic higher
dimensional black holes would be the “smoking gun” for quantum gravity well below the
Planck scale [49-51] and a viable resolution of the hierarchy problem [52-57] (for reviews
see [58-T71]).

Given the above background, it is natural to consider the case of GUP effects in higher
dimensional black hole metrics. It should be noted that there is no unique prescription for
the GUP in the presence of extra dimensions [72]. As a result, before proceeding with this
study, we will provide an analysis of the existing proposals for the GUP in d-dimensions, with

!The black hole SCRAM is a cooling down phase during the final stages of the evaporation. The term
SCRAM has been introduced in [47] by borrowing it from nuclear reactor technology. SCRAM is a backronym
for “Safety control rod axe man”, introduced by Enrico Fermi in 1942 during the Manhattan Project at Chicago
Pile-1. It still indicates an emergency shutdown of a nuclear reactor.



d = n+1 and n the number of spatial dimensions [15, 73-82]. We will consider hyper-spherical
black hole spacetimes that can fit both in the large extra dimension scenario (ADD [53, 54]
or AADD model [52]) as well as in the universal extra dimension scenario [57]. For the sake
of simplicity, we assume a new fundamental scale M, = Canf{ (nfl)R; (n=3)/(n—1) according
to the large extra dimensional model only, where Mp; is the 4-dimensional Planck mass,
R. is the compactification scale, and the dimensionless prefactor is C,, = O(1). Unless
differently specified, all quantities are expressed in units of the fundamental mass M,, or of
the fundamental length L, = 1/M,. According to this notation, the effective gravitational
coupling constant reads G, = 1/MP~ L. If the compactification radius drops to the Planck
scale R, ~ 1/Mpy, one finds for consistency M, ~ Mp; and G, ~ 1/M{§1_1.

The paper is organized as follows. In section 2 we summarize the existing proposals
for a GUP in higher dimensional spacetimes. In section 3, we consider the general set up to
deform Kinstein’s equations in the presence of nonlocal effects and we implement the GUP
proposed by the Kempf-Mangano-Mann (KMM) proposal [27]. In section 4 we present the
higher dimensional extension of the KMM model. In section 5 we consider the proposal of
Carr and Lake [15, 75-78, 82], and Casadio and Scardigli [73] (CLCS). In section 6 we present
an alternative proposal inspired by the work of Maziashvili [79-81]. Finally in section 7, we
draw our conclusions.

2 Review of GUP in higher dimensional spacetimes

According to the KMM model [27], the GUP manifests itself via a deformation of the inte-
gration measure in momentum space. Following (1.1) the Hilbert space representation of the

identity becomes
ddflp
1= [ & 2 : 2.1
[ o (21)

where p'is a (d — 1)-dimensional spatial vector. While momentum operators preserve their
feature as in quantum mechanics, position operators no longer admit physical eigenstates,
as one should expect in the presence of a minimal resolution length /3. A closer inspection
of (2.1) shows that the measure is suppressed in the ultraviolet regime

dd—lp o .
~ P19t dlp]. (2.2)

dV e —— ~
P71+ Bp? gzt

We note that for d = 4 one recovers (1.4), and the momentum term on the right-hand side
in (2.2) disappears. Conversely for d > 4, the measure diverges in the ultraviolet regime. As
d increases, the effect of the GUP becomes increasingly weaker.

At this point, we remind the reader that the uncertainty relation (1.2) arises from a
revision the standard reasoning of the Heisenberg microscope, a well known experiment in
quantum mechanics. Specifically, one can introduce an additional displacement Az, for
the electron due to the gravitational interaction with the incoming photon. By assuming a
Newtonian description, ones finds that

Mg
r2

2
A, ~ Gy () ~ GnAp ~ (v/BAp (2.3

for d = 4, where Mg = h/()\c) is the effective photon mass and /3 ~ Lp;. The total
uncertainty is obtained by adding Az, to the standard quantum uncertainty, namely Az =



Azc+ Az, with Azc ~ 1/Ap. Following the reasoning of Scardigli and Casadio [73], as well
as Carr and Lake [15, 75-78, 82], the extension of the above calculation to the case d > 4

leads to Iy ) A
eff (T p d—3 d—2

having assumed r ~ Az, < R.. The uncertainty relation then reads

AzAp > g <1 + (ﬂAp)“) , (2.5)

where /B ~ L,. On the other hand, for r ~ Az, > R, the uncertainty relation is assumed
to be that for d = 4 displayed in (1.2). From (2.5) one can show that the momentum space
measure can be expressed as

d—1
e e LT (26)
1+ (Bp2)za—s Bp*>1
for d > 4. This means that in such a scenario the GUP corrections are even milder than
those of the KMM model.

Given the ambiguity in results described above, we proposed another revision to the
Heisenberg microscope. From (2.4) one obtains that Azg > L, only for Ap > M,. As
a result, for any Ap < M, the gravitational uncertainty is negligible, Az, < Azc < R..
In such a regime the typical interaction distance is controlled by the Compton wavelength,
r ~ Azc ~ 1/Ap. This implies that

Mg (12 Ap _ 7

The above relation relaxes the proportionality condition between Az, and the radius of the
Tangherlini-Schwarzschild black hole [72]. As a byproduct, however, one obtains a stronger
correction in momentum space since gravity will begin to probe extra dimensions at scales
r < R.. This can be inferred from the condition

dd—l .
P~ ~ ap, (2.8)

dV - g9
T4 ()T

namely it is uniformly suppressed irrespective of the number of dimension d.

There are three arguments in support of the above reasoning. First, the requirement
that a quantum gravity correction Az, is proportional to a classical quantity like the radius
of the Tangherlini-Schwarzschild black hole is not fully consistent. It makes sense only for
r > R., namely at length scales at which gravity becomes classical and only four dimensions
are visible. Second, investigations of string scattering showed that the position-momentum
uncertainty relation is of the form (1.2) [24, 25]. Such a result has, however, been obtained
in the eikonal limit and higher order corrections for the ultraviolet regime of momentum
space are expected. Third, the above corrections are consistent with the algebra proposed
in [79-81].

In the remainder of this paper, we present higher dimensional black hole solutions
that emerge from the non-local field equations (1.3) that account for GUP effects following
from (2.2), (2.6) and (2.8) according to the method proposed in [34]. Table 1 offers an
overview about the selected models and their abilities to tame the ultraviolet divergences in
higher dimensional space.



Eq. Short name Momentum space volume element Large p limit
No GUP dd-1p |7]*2d|p]
(@-2771
(2.6) CLCS d'p |1+ (VB [F]) T 7| dlp]
_ ~y21—1 tded 1=
(1.4) KMM d'p [1+ (VB [P])?] 7|4 d|p]
(2.8) Revised GUP  d*'p [1+ (VB |7])42] " d|p|

Table 1. Overview of the different GUP models studied in the present work. The ordering follows
the large momentum limit of the modified momentum space volume element. “No GUP” denotes the
ordinary Heisenberg uncertainty principle.

The Carr-Lake-Casadio-Scardigli model (CLCS) provides a weaker regularization than the
Kempf-Mangano-Mann model (KMM), while our “improved” GUP in section 6 provides a dimension-
independent measure.

3 GUP black holes from the KMM momentum measure

To begin, we review the calculation of the GUP modified Schwarzschild solution [34] in (3+1)-
dimensions. We chose a specific profile of the operator G~'(L?0J) such that effectively the
momentum measure is modified as in the KMM model [27]. Equation (1.3) can be cast in
the form

1
Ry — §gWR = 87G(L*D) T, , (3.1)

that is equivalent to coupling Einstein gravity to a non-standard energy momentum tensor.
In case of a static, spherically symmetric spacetime, one has

T, = —Ms®)(2), (3.2)

corresponding to a vanishing mass distribution, apart from the origin where a curvature
singularity is present [83-85]. The action of the operator G(L?(J) determines a smearing of
the source term that reads

S 1 "
T(F) = an G(L*DT,° = —p(). (3.3)
Since the Dirac delta can be represented as
1 .
3) (7 — 3 1TP 4
1) = g [ A e (3.4)
one obtains i
M Bp i e VP
2\ P _ £ X
w0 = oy | T4 5 LR (35
provided the operator is chosen as
GnN
L0)=——— .
G(I0) = o, (3.6)

with L? = 3. From (3.6) it can be seen that in the low energy regime —J < L2, (3.1)
match Einstein’s equations and G(L?0) — Gx. Conversely for —[J ~ L~2, strong non-local
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Figure 1. The horizon structure of the KMM GUP metric (3.7) in (3 + 1)-dimensions. Here —ggo(r)
is shown in units of the extremal radius ro ~ 1.7931/83 for the three different cases discussed in the
main text, namely for M > M, (two horizons), M = M, (one extremal horizon) and M < Mj (no
horizon), where My = 1.68/8/Gx is the critical (threshold) mass.

corrections enter the game, gravity becomes increasingly weaker (G(L?0) < G\), and the
source can no longer be compressed as in (3.2). We note that the profile in (3.6) modifies
the momentum measure in the same way as in (1.4), namely the KMM model [27].

For a generic static, spherically symmetric metric

-1
ot (1 B0 g (2O oy

T r

the solution of (3.1) corresponds to determining the unknown function

M(r) = / &z p(7) (3.8)

that represents the cumulative mass distribution, where B, is the 3-ball of radius r with
r = |Z]. Given (3.7), the conservation of the energy momentum tensor implies its form,
namely T}, = diag (—p, pr,p1,p1) With p, = —pand p; = —p — %r(dp/dr).

By assuming p(%) given in (3.5) one finds

M(r):M'y<2;\;B> :M[l—e\;l?—\;ge;? . (3.9)

The behaviour of the metric can best be seen when plotting the metric coefficient ggo(r)
as in figure 1. The horizon structure resembles that of the Reissner-Norstréom solution:
there exist an outer event horizon r; and an inner Cauchy horizon r_. The two eventually
merge at the critical mass parameter M = My = 1.68/3/GN, corresponding to an extremal
configuration. The curvature still diverges at the origin, R — 1/4wfr, but less brutally
than in the Schwarzschild case. This can be seen from the fact that, in contrast to the
Schwarzschild case, the metric is no longer divergent at the origin. That is, only the first and
higher derivatives of the metric are singular at this point, which implies a softer singularity.
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Figure 2. Temperature of the GUP black hole in n = 3 spatial dimensions as a function of the outer
horizon radius ry. For comparison, the Hawking temperature of a traditional Schwarzschild black
hole displayed. The blue dot at r¢g &~ 2.59Lp| corresponds to the cold remnant (7' = 0), while the red
dot marks the maximum temperature Thax ~ 9.34 x 1073 Mp; at T4 max ~ 6.09Lpi.

Such a property of the GUP inspired black holes is similar to that of the recently
proposed holographic metric [12, 19]. For other quantum corrected black hole solutions,
however, the metric and all its derivatives are regular at the origin implying a removal of the
curvature singularities [45, 47, 86-88]. Despite the singular behaviour of the spacetime (3.7)
the gravitational field, § = %6900, can be computed in a neighborhood of the origin: it
turns out to be constant and repulsive. Much in the same way as the aforementioned regular
geometries, the quantum fluctuations of the manifold provide an outer pressure that prevents
the energy density to collapse in a Dirac delta profile.

The existence of an extremal configuration has an impact on the thermodynamics. The
Hawking temperature does not diverge as the black hole evaporates, but rather reaches a
maximum before the SCRAM phase, i.e., an asymptotic cooling towards a zero temperature
black hole remnant. The plot in figure 2 shows the temperature of the metric (3.7), namely

K 1 dg()o
T = —_——= —————
(rs) 2r 4w dr

B 1 B ﬁ 677"4—/\/3
T (l 5 3@ VB ) (310)

Such a temperature resembles the behaviour of the Reissner-Nordstrom, Kerr and Kerr-
Newman metrics. One has to note, however, that despite the similar profile, the evaporation
of Reissner-Nordstrom, Kerr and Kerr-Newman metrics is drastically different. Indeed the
SCRAM phase never takes place in such cases. Rather than cooling down, such charged, ro-
tating, charged-rotating metrics reach a Schwarzschild configuration at the end of the balding
and spin-down phases, that fatally occur in the presence of emissions like Hawking evapora-
tion and superradiance. On the other hand, the metric in (3.7) extends the thermodynamics
of the Schwarzschild phase by properly taking into account the quantum backreaction. To
see this one can consider the ratio T/M < Tinax/Mo =~ 8.1 x 1073GN/3, being the maximum
temperature Tjax ~ 1.35 x 1072/4/B and the extremal mass My = 1.68/3/Gx.



At this point, one can use the argument of the gravity self-completeness to set the value
of the parameter 8. By requiring that the evaporation remnant fulfills the particle-black hole
condition,

SIS (3.11)

one obtains /B = 1.45Lp;. This value allows for a further estimate of the back reaction.
During the evaporation process the ratio 7'/M is always small, namely

T/M < Tax/My ~ 4.0 x 1073, (3.12)

being now Tinax =~ 9.31 x 1073 Mpy, My ~ 2.42Mp; and ro ~ 2.59Lp).

The self-completeness condition plays an important role to protect the curvature sin-
gularity. For M < My one finds a horizonless geometry with a gravitational field g = %ﬁgoo
that is constant and repulsive in a neighborhood of the origin and vanishing at infinity. Being
the spacetime still singular one should speak of a naked singularity. The self-completeness
is, however, an argument to rule out this case. Either by matter compression or Hawking
decay, there is no possibility to land on such a horizonless spacetime. In other words, in
such a regime, the typical length scale associated to the mass M is its Compton wavelength,
~ 1/M. The naked singularity can never be probed.

On similar grounds, the self-completeness allows to circumvent the problem of the
Cauchy instability of the inner horizon [89, 90]. Since ry actually acts as a genuine quantum
gravity ultraviolet cutoff, it is no longer meaningful to consider classical perturbations at
length scales r_ < ryg.

4 Higher dimensional KMM black holes

In this section we consider the extension of the KMM model to the higher dimensional
scenario along the lines of section 3. This corresponds to having an integration measure of
the kind in (2.2). Following the previous exposition, one has to start by determining the
energy momentum tensor T,,. Apart from the higher dimensional gravitational constant
G, in place of Gy, the profile of the operator G (LQD) remains the same as in the (3 + 1)-
dimensional case, (3.6). As a result, one has
TP
TH(&) = ~ol@) =~y | 4P (4.1)

The integration includes d — 4 additional spatial dimensions and leads to the following re-

sult [91]: )

where n = d—1 is the number of spatial dimensions and K, is the modified Bessel function of
the second kind. Integrating equation (4.2) over an n-ball B, of radius r yields the cumulative
mass distribution

M) = [ e ot = 0

/ a1z 17" p(17)

5) Jo

-2 () ()]




The metric can be written as

ds? = —f,(r) dt* + £, (r) dr? +r2dQ2_, (4.4)
where dQ2_; is the (n — 1)-dimensional spherical surface element and the metric function
fn(r) is given by
8G.I'(5) M(r)

(n— 1)7r%_1 rn—2

falr)y=1-—

(4.5)

The Ansatz for the metric (4.4) requires a conserved energy momentum tensor of the form
T}, = diag (—p, prypL,pLs--.) With p, = —p and py = —p — 5 (dp/dr).
The metric coefficient can be cast in a more compact form as

G

fulr) =12 TT_’;(” , (4.6)

where .
(r)=1- 215 <7’>2 K (7’) (4.7)

T e TR
and AT(m)
_ 3
m= M(n - 1)7r%_1 (4.8)
By considering the following system:

fu(r)=0
dfalr) _, (49)

dr

one can look for a solution r = 7y representing the vanishing minimum of f,(r). If the
solution exists for a specific value m = myg, one has determined what is physically known
as an extremal black hole configuration. For n = 3 one finds mg = My = 1.68y/3/Gn and
ro = 1.794/B, as was shown in the previous section. For n > 4, the system has no positive
defined solution. This can easily be seen by considering the expansion of the function u(r)
for small arguments:

2
-1 T
wu(r) w (2n —4) <\/B> . (4.10)
For small radii, one finds p ~ 72 and the function f, diverges negatively at the origin for
n > 4. Conversely, it asymptotes to the Minkowski space at large distances where p ~ 1.
This behaviour suggests that f, is a monotonic increasing function having a single zero, i.e.,
the event horizon.

For n = 4, one finds a surprising case. The solution of the system is mo = 28/G, and
ro = 0. Evidently this does not represent an extremal configuration, but instead reveals the
presence of a gravitational object of a different nature (see figure 3). By using (4.10), one
can write the metric in a region near the origin for n =4 as

2G, M 2G, M\
d32%—<1— ;5 ) dt* + (1— ;5 > dr? + r2d03 . (4.11)
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Figure 3. The GUP metric component goy according to the KMM measure in 4 + 1 dimensional
spacetime, shown in units of v/B. At the origin the spacetime has a gravitational monopole. Depending
on the value of the mass one has one or no horizon. The blue curve represents the final configuration
of the horizon evaporation for a mass M = My = 378/2G. corresponding to a deficit angle 2.
This configuration is represented as a blue dot in figure 4 where temperatures as a function of the
horizon radius for different spacetime dimensions are displayed. The red and green lines represent
configurations with deficit angle smaller than 27, and one and no horizon respectively. The purple
line represents a configuration with an excess angle.

We note the Newtonian potential is constant at short scales. This implies that the mass does
not produce any gravitational field near the origin. One can see this by rescaling the r and
t variables and by expressing the above metric in the form

2G M
373

ds® = —dt* + dr? + (1 - ) r? (63 + sin® 6, (d63 + sin® 6,de?)) (4.12)
which introduces a deficit angle. Indeed by considering the surface t = const., §; = 0y = 7/2,
one finds the geometry of a cone, whose conical singularity is a curvature singularity. The
behaviour of the energy density for n = 4 at short scales, p(¥) ~ |#|~2, confirms this pathology
of the manifold. The above scenario reveals that for n = 4, the gravitational object at the
origin is a Barriola-Vilenkin global monopole [92], i.e., a spacetime object that resembles a
cosmic string [93].

This is just a first glimpse of the interesting properties of the manifold. The topology
of the spacetime changes by varying the parameter M. For M > 373/2G., the coefficient
goo is positive and larger than 1. The aforementioned surface then reads

ds? = —dr? + r2d¢?, (4.13)

1_ 2G.M

with 0 < ¢ < 27 373 ‘ The above line element describes the short scale spacetime

inside the event horizon, in the presence of an excess angle.
For % <M < %, the line element also describes the short scale spacetime inside the
event horizon, but in this case with a deficit angle. By decreasing M, e.g., during the horizon

~10 -



evaporation, the mass parameter tends to % This limit implies a deficit angle def(¢) = 27,

corresponding to the closure of the cone and to a complete evaporation of the horizon. Indeed
in such a limit the event horizon tends to zero, i.e., 74 — 0. The evaporation end point is a
degenerate monopole whose geometry is no longer a cone but a straight line (see discussion
below). It is interesting to note that our metric is an exact solution that interpolates the
geometry of the monopole at the origin with that of the Schwarzschild black hole at large
scales. Contrary to Barriola and Vilenkin we do not employ any perturbation theory.

For lighter objects, M < % no horizon forms and ggg is negative and larger than —1.
By the usual coordinate rescaling the aforementioned surface at the origin can be written as

ds? = dr? 4 r2d¢?, (4.14)

with 0 < ¢ < 2m4/1 — 2?;% When M = 0 there is no deficit angle, and the spacetime is the

regular Minkoswki spacetime. For any mass in the interval 0 < M < %, the deficit angle

is non vanishing and the conical singularity develops. As a result one finds the geometry of
a “naked monopole”. The left limit M — % implies def(¢) — 27, namely the degenerate

. +
cone. Note that the right and the left limits M — (%) are characterized by a different

sign of the g,, coefficient in (4.13) and (4.14). This corresponds to the peculiar situation in
which the naked monopole and the monopole inside the black hole coalesce to form a straight
line geometry while the event horizon dissolves.

A study of the related thermodynamics can be done by considering the Hawking tem-
perature:

= 4.1
4mry n—2 p(ry) (4.15)

Before displaying the exact expression for T, we consider its asymptotic nature. Since the
function u — 1 for » > /B, T approaches the standard semiclassical result at large distances.
Conversely at short scales, (4.10) leads to
n—2 2
~ [1 - 2] , forr < /8. (4.16)

n —

T_n—z[ o u’(m)}

For n > 4 the temperature has a divergent behaviour as in the semiclassical case. On the other
hand, for n = 4 the temperature vanishes in the limit 7, — 0. This means the temperature
admits a maximum and undergoes a SCRAM phase. Following what is discussed above,
the horizon structure prevents the formation of an extremal configuration. As a result, this
analysis confirms our previous predictions: the final state of the evaporation is nothing but
a global monopole with mass M = My = 373/2G,, corresponding to a degenerate cone with
deficit angle 2.
The full expression of the temperature for any number of spatial dimensions n is [91]

N 2 B rﬁ/QH B3 (Knjo—1+ Kpjo1) — Ko
dmry (n—2)T (%)2243% _alon/zn/?
['(n/2)8"/% n/2

with K; = K;(ry+/+/B). From figure 4 it is clear that for n > 4 the back reaction cannot
be neglected in the final stages of the evaporation. On the other hand, for n = 4 there is a
maximum temperature, Tyax &~ 1.93 x 1072/4/B. From the same figure one learns that the
ratio T(ry)/M(ry) < 2 x 1073 always. This means that the geometry describing a monopole
inside a black hole is not only an exact solution but back reaction free.

. (47
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Figure 4. Hawking temperatures as a function of the horizon radius for different spacetime dimensions
according to the GUP with the KMM measure. For n = 3 there is a SCRAM phase ending in an
extremal configuration. For n = 4 there is a SCRAM phase ending in a gravitational monopole. For
n > 4, the GUP corrections are clearly negligible and the temperature diverges in a similar way to
the Schwarzschild-Tangherlini case (dashed lines).

By applying the argument of gravity self-completeness to the above monopole parame-
ters for n = 4 one would be tempted to fix the value of the parameter 8. This is problematic,
since the monopole at the end of the evaporation is not an extremal black hole configuration,
since 7y — 0. As a result, one cannot invoke (3.11) to determine 5. There is, however, a
possible way out. The black hole undergoes a SCRAM phase. This means that, in contrast
to the Schwarzschild-Tangherlini case, the final stages of the evaporation are characterized
by thermodynamic stability. The heat capacity of the system is actually positive defined,
namely

oM (0T
ctri) =g (
This means that the black hole can reach the thermal equilibrium if immersed in a background
at temperature T, with 0 < T}, < Tiax. As a result such an equilibrium point, (ryyp, M),
can represent the transition between the particle and black hole phases. Accordingly the
self-complete scenario is safe and one can invoke the condition

2mh

—_— = . 4.19

M, T+b ( )
The parameter 5 can be fixed and turns out to be a function of the background temperature,
B = B(1}). On the other hand, for n > 4, the self-completeness scenario is lost much in the

same way as in the Schwarzschild-Tangherlini case.

-1
67’+) >0 for 0< ry < T+ max - (418)

5 Higher dimensional black holes from the CLCS momentum measure

In this section we consider a modification of the momentum measure according to the proposal
by Carr-Lake-Casadio-Scardigli (CLCS) in equation (2.6). From the large momentum limit,
one expects a minimal deviation with respect to the Schwarzschild black hole (see table 1).
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Figure 5. Comparison of the metric component —ggo(r) in the different GUP models, in n = 4
spatial dimensions. Shown are the Schwarzschild-Tangherlini solution, the Kempf-Mangano Mann
model (1.4) and the Carr-Lake-Casadio-Scardigli model (2.6). Here, all metric components are shown

for M = 10v/B/G,.

As a start, one has to determine the corresponding operator G (LQD), namely

1

co)-— % —q, i [(LQD)%:?]N , (5.1)

n—1

1 - (L20)25=2 N=0

n=-1_3 57
n—2  22727" X
tation can be used to express powers of an arbitrary operator, O:

where, in case of non-integer exponents, .., the following Schwinger represen-

. 1 o ;
0% = / ds s 1 e*9 qeR\N. 5.2
T(—a) /, \ (5:2)

The resulting energy momentum tensor has the same form of that presented in the previous
section. The energy density and the other components, however, have a different profile.
In order to determine T, one has to evaluate the integral

07) = —p(z) = M d"p &5

where L = /3. Although the above integral cannot be solved analytically, it is possible to
do so numerically via the approach described in appendix A. In a similar fashion, the mass
distribution is obtained by solving (4.3).

The strongest corrections with respect the Schwarzschild geometry occur for n = 4.
As a result we focus our analysis on this case only. The metric component ggp is shown
in figure 5, in comparison with the KMM model presented in section 4. As expected, the
KMM model is the only one with a non-singular metric component, while the CLCS model
is qualitatively indistinguishable from the Schwarzschild black hole.

For n > 4, the CLCS measure offers even milder corrections and negligible deviations
with respect to the Schwarzschild black hole. One can see this by performing an analytic
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approximation. Being p(Z) &~ 0 for || > /[, one finds that the short distance behaviour of
the geometry is controlled by the ultraviolet limit of the above integral, namely

M / dnp o M B}
— elx ~ n—1 n—1 fOI' ‘x’ << \/B (54)
@m)" J (VB n=2) (VB)n2 |z v

As a result the degree of divergence is less brutal than in the Schwarzschild case, but more
severe than in the KMM model for which one finds p(z) ~ |7~ (=2 for |7] < f

Another drawback of the CLCS model is that, for n > 3, it is never ultraviolet self-
complete. The black hole can decay to sizes smaller than L, and expose the curvature singu-
larity. These results are a motivation to consider a further model to improve the Schwarzschild
geometry according to the GUP tenets.

p(Z) ~

6 Revised GUP in higher dimensions

The discussion in section 2 suggests that the KMM model might be ineffective to tame the
ultraviolet divergences in higher dimensional space. This fact is translated in mild modifi-
cations of the metric and the thermodynamics of black hole geometries for n > 4. Only for
n = 3 and n = 4 does the KMM model provide a significant departure from Einstein gravity.
In the former case the KMM model predicts an extremal configuration as an end point of the
black hole evaporation. In the latter case, the end point is a gravitational monopole resulting
from a full evaporation of the event horizon. Furthermore, the discussion in section 5 shows
that the GUP as proposed in (2.6) is not suitable for improving the thermodynamics of the
Schwarzschild-Tangherlini solution in n > 3 spatial dimensions.

In this section, we consider the GUP model whose integration measure is of the form
denoted in (2.8). As a start, we present the corresponding operator G (LZD), namely

N
G (L’0) = Hlig)EG Z[LQD 2] : (6.1)

To determine Tg, one has to consider the integral

M d™p .
@) = —0l0) =~ | T (6:2)
@m)m ) 1+ (VBIp) !
Due to the complex structure of the integral measure in (6.2), an analytic solution is not
viable. However, analytic approximations are still possible. At large distances one finds
p(Z) = 0. By expanding the integrand function for high momenta, one can estimate the
behaviour of the energy density at short scales, namely

L M "
p() ~ T for |7 < /8. (6.3)
The spacetime is still singular but the degree of divergence no longer increases with the
number of dimensions. It is actually independent of n and turns to be softer than any
previous higher dimensional GUP models under consideration. This result descends from
having a GUP model with a uniform ultraviolet behaviour of integrals in momentum space,
as shown in table 1.
A numerical approach allows one to obtain an energy density at any length scale, and
subsequently a mass distribution, by solving (4.3). To do so, the n-dimensional Fourier
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Figure 6. Cumulative mass distributions induced by the revised GUP model in n spatial dimensions.
The dashed line corresponds to the classical matter distribution (Schwarzschild).

transformation in (6.2) is rewritten as a Hankel transformation, and technical details are
given in appendix A. Figure 6 displays the resulting mass distribution M(r) for n = 3-7
spatial dimensions. Note that the case n = 3 is the only one having M(r) described by a
monotonic increasing function.

For n > 3 there is a surprising new behaviour: the function oscillates with an amplitude
that increases with n and decreases with r. A naive interpretation of these oscillations is the
presence of negative contributions in the energy density for some regions close to the spatial
origin. We recall that such negative density regions are not a remote possibility, at least
during the early stages of the Universe, for the presence of strong quantum fluctuations of
the spacetime manifold [94, 95].

One can also propose another interpretation based on the presence of n — 1 tachyon
states of mass, i/y/B ~ iM,, emerging from the poles of the integrand function in (6.2). As
a consequence the energy density p(Z), despite being positive defined at the origin, oscillates
around zero for larger values of r. A possible explanation can be found in the fact that the
GUP captures only part of the non-perturbative corrections of quantum gravity. As a result,
this interpretation is consistent with the fact that GUP corrections emerge from the eikonal
limit of string collisions at the Planck scale [24, 25, 96-100]. Interestingly, such oscillations of
the Newtonian potential have been found in a variety of other formulations aiming to amend
Einstein gravity. These include f(R)-gravity [101-109], string induced, ghost free, non-local
gravity [110, 111] and other non-local formulations [112]. On the other hand, in the low
energy limit for which only the three spatial dimensions are visible, the oscillations disappear
as expected in similar quantum gravity contexts [113, 114].

Even if the above effects are just a short-scale quantum mechanical property of the
solution, they have important repercussions for the thermodynamics of the system. The
profile of the temperature is presented in figure 7. One can see that the oscillations of M (r)
produce temperature oscillations corresponding to phase transitions from negative to positive
heat capacity phases. The resulting variable luminosity of the black hole can be termed as
a lighthouse effect. Again such an effect increases with n. For lower n one obtains small
amplitude oscillations of the temperature.
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Figure 7. Temperatures of the n-dimensional revised GUP model for n = 3-6, each compared
with the Schwarzschild equivalent (dashed lines). The blue dot corresponds to the cold evaporation
endpoint (note that all outer horizons r, are rescaled by the individual evaporation endpoint radius
r0), while the red dots correspond to local temperature maxima.

More importantly, further scenarios are possible. In figure 8, the case of d = 9 space
time dimensions is depicted. For this number of dimensions, two regimes emerge that depend
on the black hole mass. For large mass black holes, M > M; = 3.73 x 10%/B/G., the tem-
perature oscillation determines an anticipated shut-down of the Hawking emission with the
formation of a zero temperature remnant. We refer to the mass of this zero temperature con-
figuration as M (blue curve, right panel, figure 8). Such a large mass regime is characterized
by a rich horizon structure. For M > 2.14M;, there are just two horizons, an event horizon,
r4 and an inner Cauchy horizon, r_ (violet curve in figure 8 — the inner horizon is very close
to the origin and not visible in the aforementioned figure.). For M = 2.14M7, the function
goo admits a double zero between the aforementioned two horizons (yellow curve in figure 8).
For smaller masses M; < M < 2.14M, the function ggp admits 4 simple (positive) zeros,
ie, r_ < ry <r3 <ry (red curve in figure 8). Finally for M = M; = 3.73 x 10°\/3/G.,
there is the merge between r3 and r that form a double zero, corresponding to the extremal
configuration, i.e., the end stage of the evaporation (blue curve in figure 8).

In terms of horizon radii, there is a regime that is not realized, i.e. 7; < r < rq, where
r1 = 5.93rq is the size of black hole with mass M, and an intermediate radius r; = 5.0rg.
For even smaller masses, M < M; however, there are horizons again, r1, that eventually
merge in a new extremal configuration ro = r_ = ry for M = My = 5.15 x 103\/B/G, (see
left panel in figure 8).

In conclusion we have a small mass and a large mass regime for black holes. The former
can be thought to form due the high density fluctuation of the early Universe [115] or by
de Sitter space decay, as predicted in terms of the instanton formalism [116-118].

We also note that the presence of two remnant masses posits an ambiguity of the scale
at which gravity may be self-complete [7, 9, 10, 13, 21]. In other words, gravity is able to
mask singularities by covering them with an extremal configuration but the latter has no
unique mass scale. In contrast to larger ones, however, small remnants can be the result of
the particle compression phase during a scattering at energy ~ M,. This fact promotes them
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Figure 8. Gravitational potentials and temperature for the revised GUP black hole (section 6) in
n = 8 spatial dimensions. The left and right panels show the metric coefficient ggg for different masses
while the center panel shows the temperature. The colouring of the metric function follows figure 1.

as the transition point between the particle and black hole phases and realizes univocally the
self-complete scenario for this model, irrespective of the number of extra dimensions.

The self-complete nature of the geometry has an important repercussion. For M < Mj,
one finds a singular horizonless geometry for all n. Such a naked singularity can, however,
never be probed. The self-complete characters guarantees that singularities are masked in
any actual physical process. Finally, figures 7 and 8 show that the back reaction is negligible.
The ratio T'(ry)/M(r4+) < 1 for any n.

7 Conclusions

In this paper we have studied GUP effects via a nonlocal gravity approach with black holes in
four- and higher-dimensions. Specifically, we discussed three possible deformation of Einstein
gravity inspired by the GUP.

As a first step, we derived black hole spacetimes by adopting the KMM formulation
in d > 4 dimensions. In particular, the case of one extra dimension (d = 5) yields a black
hole solution possessing a number of interesting characteristics. The temperature profile for
the d = 5 case shows a SCRAM behaviour similar to that of the d = 4 black hole, although
instead of ending its evaporation as a remnant, the former reaches a configuration known as
a Barriola-Vilenkin monopole. Interestingly no perturbation theory has been employed to
obtain such an exact result. Furthermore, the SCRAM guarantees the absence of relevant
back reaction during the whole evaporation. The topology of the spacetime is found to be
dependent on the ADM mass, such that the monopole is enveloped by either a single horizon
for large masses, or no coordinate singularity for small masses (i.e. a naked monopole). For
d > 5, the KMM solution shows limited to no influence from the GUP, and behaves in a
similar fashion to higher-dimensional Einstein gravity.

As a second step, we have derived black hole spacetimes following the CLCS proposal.
We showed that they exhibit minor deviations from the ordinary Schwarzschild -Tangherlini
metric. As a result, they suffer from relevant back reaction and do not fulfill the requirement
of gravitational self-completeness.

Lastly, we have derived a black hole spacetime based on a new GUP measure in momen-
tum space that guarantees uniform ultraviolet convergence for any number of dimensions.
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Such a property allows us to overcome the limitations of the KMM model. The most novel
feature of this new measure is that the mass distribution M(r) shows an oscillatory behaviour
as r decreases. This is possibly due to negative energy density contributions introduced by
quantum fluctuations, or alternatively the presence of tachyonic states. A subsequent os-
cillation of the Hawking temperature also results, revealing a new feature we appropriately
call a “lighthouse effect”. The effect becomes enhanced as the number of extra dimensions
increases. In all cases the endpoint of evaporation is an extremal black hole remnant, though
for n = 8 the oscillations determine two mass regimes admitting a zero temperature config-
uration. Contrary to the previous two cases, these spacetimes are back reaction free and are
thus gravitationally self-complete.

Before concluding we would like to comment about the observational consequences of
our findings. The possibility of observing the effects presented in this paper and other
quantum gravity phenomenology is related to the energy scale at which quantum gravity
itself is expected to show up. The energy scale M, can be Planckian or at an intermediate
value between the electroweak scale and the Planck scale. It is interesting to note that the
value of M, does not affect the results of our paper since they are valid for a generic value
of the fundamental scale. The presented phenomenology will show up at an energy scale M,
whatever it is. Only the possibility of detecting such a phenomenology depends on the value
of M,.

If the fundamental scale is Planckian, M, ~ Mp; ~ 10 TeV, quantum gravity phe-
nomenology is expected to be quite hard to expose. Direct observations of microscopic black
hole formation in particle detectors would be virtually impossible with current and near fu-
ture technology. Indirect effects in cosmic messengers might offer a more promising testbed
(see for instance [119]). Being a more promising arena does not mean, however, that the
observation of such new effects is easy. The detection of multi messengers has required big
technological efforts (e.g. gravitational waves). Deviations from Einstein gravity encoded
into them are even harder to detect since they affect the signal profile at a subleading order
and might be covered by the background noise.?

On the other hand, if the scale M, is lower than the Planck scale, the scenario might
be drastically different. As of today we know that for M, < 13 TeV, there is no evidence of
black hole formation in particle detectors, at least according to Einstein gravity [122]. This
would suggest that the value of M, is somewhere between 13 TeV and 10'® TeV. Our results
are compatible with such a conclusion but they offer also an alternative possibility. The scale
M, might still be around the terascale, M, < 13TeV, but the formation of gravitational
objects would be prevented by a threshold mass Mg, set by the end stage of the evaporation.
In other words, as long as the accelerator working energy is ' < My there is no black hole
production despite the fundamental scale has been reached, £ ~ M, < 13TeV. This is a new
feature since Einstein gravity does not set any threshold mass [123].

Finally the light house effect might offer an alternative phenomenology. Provided we are
able to observe an evaporating black hole we expect two main features. First, the spectrum
of the emitted particle should greatly differ from that of a Tangherlini-Schwarzschild black
hole with the same mass. In particular we expect emission of particles at varying energy.
For photons this corresponds to an alternating frequency. Second, an oscillating temperature
might lead to the formation of cold stable black hole remnants with mass M ~ M; where
M, < My < Mi. The latter might be an alternative candidate of dark matter component

2For sake of completeness we mention recent proposals claiming the possibility of observing extremely small
Planckian effects at future gravitational wave experiments [120, 121].
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with masses not exceeding 10~2 kg for M, ~ 10'® TeV, or 1077 kg for M, ~ 13 TeV (see for
instance the case d = 9 in section 6). In both cases such mass regimes would escape current
constraints on primordial black holes that tend to exclude the interval M > 10 kg. [124].

We believe the current results open the door towards many future investigations. It
would be crucial to understand, for example, why temperature oscillations show up only in
the presence of extra dimensions. We note that a similar behaviour arises in a GUP-modified
Reissner-Nordstrom metric [125]. A deeper understanding of ghosts in quantum gravity
would be pertinent in this respect.
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A Numerical integration of energy densities

Within this work, n-dimensional Fourier transforms of radially symmetric kernels f(Z) = f(|Z]),
F@) = [ f@e e (A1)

appear several times. For algebraically complex f(Z), it might be hard or impossible to
find an analytic solution to the integral (A.1), as it appears in sections 5 and 6. In order to
compute (A.1) numerically, it is useful to rewrite the Fourier transform as a Hankel transform.
The relationship is well known in literature and given by

IR = @2 [ )T (i) rar (A2)

if the function f(Z) is spherically symmetric and r = |Z|. Here J,(z) is the Bessel function
of first kind. This Bessel function is oscillatory, and there is a rich literature to perform
accurate numerical Hankel transformations which can be adopted in order to solve (A.2),
such as [126, 127].

In the following, a simple and robust scheme is proposed to integrate (A.2) for sufficiently
convergent integrands. The intention is to solve the energy density T) in equation (6.2), given
by

. . M d"p i#7
@) = 0@ =~ | A

Accordingly to (A.1) and (A.2), the energy density can be written as
M 1

o0 n 1
o e dlp| |72 —
<2w>n/2rf/o PP T B

plr) = P aza (r[f]). (A.3)
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For arbitrary values of n, the above integral cannot be solved analytically. It is, however,
possible to perform a numerical integration. By introducing the dimensionless variables
z=r/y/B and q¢ = v/B|p], the above integral reads:

MB™2 1 [ . 1
_ d — T ) A4
p(2) @n) 7 2n22/0 qq21+qn_1JT2(zq) (A.4)
For small arguments the Bessel function behaves as
1 zZ\ @
7 ~ Z) A5
2% 1 (5) (A5)

This means the integral is well defined at the lower bound. For large arguments the Bessel
function can be written as

Ja(2) = —. (A.6)

This guarantees the expected convergence of the integral for ¢ — co. On these grounds, the
numerical evaluation is possible by integrating from zero-crossing (i.e. the z where J,(z) = 0)
to zero-crossing in order to stabilize the integration and to ensure convergence. For numerical
purposes, the density can be approximated as

K IAq

MpB—™?% 1
p(z) ~ Wzn 2 kzoz; qqlk1+ 7 n- 2(2%k) (A7)

Here, K € N are the number of zero crossings taken into account, and I € N are the
total number of integration support points, each given by ¢;r = ji + iAg, with j; the
coordinate of the kth root of J,_2)/2(2q). Clearly, with I, K — oo and Ag — 0, the
continous integral (A.4) is recovered. We checked converge with different grid sizes I, K €
{102,103, 10%}. For the actual numerical integration, a standard Gaussian quadrature rule
is applied. The function values pg,(z) are then available on a discrete sample set {z;} C R
with arbitrary resolution and coverage. With this numerical approach, one can also integrate
the mass distribution as in (4.3),

,
M(r) = / d"z p(%) = MAn_l/ drr™"p(r), (A.8)
v 0
where A,_; = 21™/2/T'(n/2) is the surface of the r-ball B, in n dimensions. Again, this
integral is carried out numerically as a cumulative sum in a straightforward manner. From
the matter distribution, one obtains the metric coefficients (4.5) and can derive the related
Hawking temperature. Once again, all final results (metric coefficient, matter distribution,
temperature) obtained with this method are (only) fully discrete.
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