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Abstract. We present N -body simulations which are fully compatible with general relativ-
ity, with dark energy consistently included at both the background and perturbation level.
We test our approach for dark energy parameterised as both a fluid, and using the parame-
terised post-Friedmann (PPF) formalism. In most cases, dark energy is very smooth relative
to dark matter so that its leading effect on structure formation is the change to the back-
ground expansion rate. This can be easily incorporated into Newtonian N -body simulations
by changing the Friedmann equation. However, dark energy perturbations and relativistic
corrections can lead to differences relative to Newtonian N -body simulations at the tens of
percent level for scales k < (10−3–10−2) Mpc−1, and given the accuracy of upcoming large
scale structure surveys such effects must be included. In this paper we will study both effects
in detail and highlight the conditions under which they are important. We also show that
our N -body simulations exactly reproduce the results of the Boltzmann solver class for all
scales which remain linear.
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1 Introduction

In the coming few years, new, large galaxy surveys such as those from LSST [1] and
EUCLID [2] will provide extremely precise measurements of the large scale structure of
our Universe. While such surveys will allow probing of e.g. the dark energy component and
the mass of neutrinos with unprecedented precision they also put stringent requirements
on numerical simulations of large scale structure (see e.g. [3] for a detailed discussion of
this subject).

Among the effects which need to be included are massive neutrinos and photons, as
well as effects from general relativity. In a series of papers we have discussed and developed
a framework for incorporating this into N -body simulations (see [4–8], as well as [9–14] for
other discussions of GR effects and their relation to N -body simulations). This involves
treating massive (but light) neutrinos, as well as photons and effects on the metric in linear
perturbation theory using the class [15] code and subsequently add them as source terms
in the dark matter equations of motion in the simulation.

Given that most models of dark energy predict that it is at most moderately inhomoge-
neous on scales below the horizon we can utilize the same approach for this component, and
the purpose of this paper is indeed to demonstrate that our approach works extremely well
for two standard parameterisations of dark energy; dark energy as a fluid and dark energy
in the parameterised post-Friedmann approach1 [16, 17].

In models where dark energy only has gravitational coupling to the matter fields, its
effect on structure formation can basically be separated into two components: 1) The presence
of dark energy changes the expansion of the background, leading to different growth rates of

1The approach should generalize to other types of dark energy which obey the conditions that: 1) Dark
energy couples only gravitationally to other species, 2) dark energy perturbations remain linear at all times
so that they can be adequately treated using linear perturbation theory.
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fluctuations in other species. 2) Unless dark energy is in the form of a cosmological constant,
Λ, it contains perturbations, and these act as a source term for gravitational clustering.

Given that dark energy is very smooth relative to dark matter, in most cases the leading
effect is the change to the background expansion rate. This can be easily incorporated into
Newtonian N -body simulations by simply changing the Friedmann equation. However, for
simulations with percent-level accuracy the second effect must also be taken into account, in
particular in models where the effective dark energy sound speed is small. In this paper we
will study both effects in detail and highlight the conditions under which they are important
using the numerical framework presented in [4].

The paper is structured as follows: in section 2 we discuss the theoretical set-up needed
to include dark energy in both the fluid and PPF approaches. In section 3 we present our
numerical results, and finally section 4 contains a discussion and our conclusions.

2 Method and implementation

Our treatment closely follows that of [4] (see also [5–8]), but for clarity we briefly reiterate
the needed steps here.

For pure matter (i.e. a pressureless component) the continuity and Euler equations for
the density contrast δm and peculiar velocity vm can be written as

δ̇Nb
m +∇ · vNb

m = 0 , (2.1)
(∂τ +H)vNb

m = −∇φ+∇γNb , (2.2)

where a dot denotes differentiation with respect to conformal time τ and H = ȧ/a is the
conformal Hubble parameter with a being the cosmic scale factor. The superscript ‘Nb’
denotes quantities in the N -body gauge. The quantity γNb is a correction to the Euler
equation that originates in perturbed non-dust components such as relativistic species and
dark energy. The gauge-invariant potential φ satisfies a Newtonian Poisson equation in the
N -body gauge, but with contributions from all species, i.e.

∇2φ = 4πGa2∑
α

δρNb
α , (2.3)

with α ∈ {b, cdm, γ, ν,DE} running over all species.
From [18], the Fourier space equation for γNb can be written as

k2γNb = −(∂τ +H)ḢNb
T + 8πGa2Σ , (2.4)

where Σ is the total anisotropic stress of all species and HNb
T is the trace-free component of

the spatial part of the metric in N -body gauge (see e.g. [8]). For species other than dark
energy the calculation of γNb can be found outlined in e.g. the appendix of [4]. For the dark
energy component (as for the other components) the quantities we shall need are δρ, δp and
σ. In the next subsection we will discuss how to extract these quantities in two different
formulations of dark energy; dark energy as a fluid and dark energy in the parameterised
post-Friedmann (PPF) approach.

Following the same steps as in [4] we split the total “force-potential” φ−γNb experienced
by matter particles in the actual simulation into a contribution coming from the matter itself
(calculable using standard techniques in the N -body simulation), φsim, and contributions
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coming from other species (neutrinos, photons and dark energy) and the GR correction γNb,
φGR:

φ− γNb ≡ φsim + φGR , (2.5)

with φGR given by

∇2φGR ≡ ∇2(φγ + φν + φDE − γNb)
≡ 4πGa2(δρNb

γ + δρNb
ν + δρNb

DE + δρmetric
)

(2.6)
≡ 4πGa2δρNb

GR .

Here δρmetric is a fictitious density perturbation which amounts to the GR potential
correction γNb;

∇2γNb = −4πGa2δρmetric . (2.7)

Following the same prescription as in [7], at each time step in the simulation we realise2 δρNb
GR

in Fourier space, solve its Poisson equation (2.6), transform to real space and apply the force
from φGR to the matter particles, in addition to the usual force from the matter particles
themselves (corresponding to φsim).

As described in [4], to compute δρGR in linear perturbation theory, a class computation
has been run in advance, providing us with δργ , δρν and δρDE in either synchronous or
conformal Newtonian gauge, as well as ḢNb

T and Σ, all as functions of a and k. From these
we can calculate δρ for all species (including the metric) in N -body gauge. All of these are
subsequently realised on a grid in real space using the formalism outlined in [19].

In conclusion, all that is needed in order to run simulations with dark energy per-
turbations consistent with GR is to calculate δρNb

DE(a, k), δpNb
DE(a, k), and σNb

DE(a, k). These
depend crucially on the way in which the dark energy component is parameterised, as we
will now discuss.

2.1 Dark energy parameterisation

While the true nature of the dark energy component responsible for the current acceleration
of the expansion is unknown, a vast number of models for it exist. Possible realisations of dark
energy can be in the form of scalar fields evolving in very flat potentials, i.e. quintessence-like
models.

From an “effective theory” point of view, two parameterisations are particularly popular,
and have been implemented in both class [15] and camb [20]: dark energy as a fluid,
and dark energy in the parameterised post-Friedmann approach. These two models are
representative of a wide range of different physical models, including quintessence and many
modified gravity models. We therefore restrict our treatment to these two models. However,
as noted before, any dark energy model in which the dark energy couples only gravitationally
to other fields, and where the dark energy remains linear at all times and on all scales should
be treatable using our prescription.

2.1.1 Dark energy as a fluid
A simple and often used parameterisation of dark energy is to describe it as a fluid with
equation of state w(a) and constant rest-frame sound speed cs (see e.g. [21] for a detailed

2Note that we assume adiabatic initial conditions so that the set of random numbers used for the realisation
is the same for all species, including the metric term γ.
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description). In this paper we make use of the parameterisation w(a) = w0 + wa(1 − a),
though none of the equations presented rely on this choice.

In synchronous gauge (superscript ‘s’) the continuity and Euler equations of a dark
energy fluid take the form

δ̇s
DE = −(1 + w)

(
θs

DE + ḣ

2

)
− 3(c2

s − w)Hδs
DE − 9(1 + w)(c2

s − c2
a)H2 θ

s
DE
k2 , (2.8)

θ̇s
DE = −(1− 3c2

s )Hθs
DE + c2

sk
2

1 + w
δs

DE − k2σDE , (2.9)

where c2
a ≡ ṗDE/ρ̇DE is the adiabatic sound speed squared. The standard assumption is to

take σDE = 0, i.e. to have no anisotropic stress for the dark energy. These equations are
implemented in standard versions of codes like camb and class, and adequately describe a
range of dark energy models.

We shall need the pressure perturbation from the dark energy fluid in order to calculate
its contribution to γNb. This is given by

δpDE
ρDE

= c2
sδDE + 3H(1 + w)(c2

s − c2
a)θDE
k2 . (2.10)

As seen from (2.9), models in which there are phantom crossings (i.e. 1+w crosses 0) become
pathological in this description. In that case a simple extension of the fluid concept is to use
what is commonly referred to as the parameterised post-Friedmann approach.

2.1.2 Parameterised post-Friedmann dark energy
The Parameterised Post-Friedmann (PPF) description of dark energy [17, 22] is the standard
implementation of phantom crossing dark energy models in both class and camb. We will
now sketch the derivation of the PPF formalism, but we refer the reader to the references
above for a more complete derivation. We start by defining the dark energy (DE) perturbation
in the DE rest frame,

k2Γ ≡ −4πGa2δρrest
DE , (2.11)

where we have assumed spatial flatness for simplicity (the generalisation to non-flat space is
straightforward, however). We now consider the Poisson equation in conformal Newtonian
gauge (superscript ‘N’),

k2φ = −4πGa2
(
δρN

tot − 3H(ρtot + ptot)
θN

tot
k2

)
(2.12)

= −4πGa2
(
δρN

t − 3H(ρt + pt)
θN

t
k2 + δρN

DE − 3H(ρDE + pDE)θ
N
DE
k2

)
(2.13)

= k2Γ− 4πGa2
(
δρN

t − 3H(ρt + pt)
θN

t
k2

)
, (2.14)

where we have separated the DE contribution from all other species (subscript ‘t’). The
requirement that we recover the usual Newtonian Poisson equation in the small-scale limit
forces Γ to vanish in this limit. More precisely, we define an effective “sound speed” cΓ that
specifies the scale below which the dark energy fluid is smooth. On super-horizon scales,
energy conservation requires Γ to satisfy the equation

Γ̇ = H (S − Γ) cΓk

H
� 1 , (2.15)
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where S is defined as
S ≡ 4πGa2

H
(ρDE + pDE) θ

N
t
k2 . (2.16)

In the opposite limit, the differential equation must drive Γ to zero, i.e. we should have
Γ̇ ∝ −Γ. Interpolating between these two limits provides the differential equation for Γ,

Γ̇ = ȧ

a

[
S

(
1 + c2

Γk
2

H2

)−1
− Γ

(
1 + c2

Γk
2

H2

)]
. (2.17)

We can now control the transition scale by choosing cΓ, and in practice the value cΓ ∼ 0.4cs
has been found to mimic quintessence dark energy quite well [17]. This is the standard
setting used in class and camb, and we shall use the same value in the present work.
Details regarding the computation of Γ can be found in e.g. [23]. For the implementation
in N -body simulations we shall again also need the pressure perturbation for the PPF dark
energy component. However, this is somewhat more cumbersome to derive than in the fluid
model, and therefore we provide a detailed description in appendix A and B.

Numerical considerations. Note that in the limit where c2
Γk

2/H2 � 1, (2.17) becomes
extremely stiff and therefore numerically challenging for any explicit integrator to solve. How-
ever, we also note that in this limit Γ is driven to zero and therefore we can simply enforce the
condition Γ̇ = Γ = 0 for values of c2

Γk
2/H2 above some threshold. In camb this threshold is

set to 30. However, we have found that this threshold may be safely increased well beyond this
value, allowing for slightly increased accuracy of the solution without affecting the numerical
stability or the computation time in any noticeable way. In particular, we set Γ̇ = Γ = 0 for
c2

Γk
2/H2 > 104, while additionally scaling Γ̇ and Γ with a smoothly varying factor between

1 and 0 for 103 ≤ c2
Γk

2/H2 ≤ 104, as to not introduce discontinuities into the system.
In order to obtain precise values for δργ and δρν as needed for (2.6) from class, lmax

for the photons and neutrinos has to be increased well beyond their standard values. This
increases the number of simultaneous differential equations to solve, and so class has to be
run using the explicit Runge-Kutta integrator. Thus, introducing the Γ̇ = Γ = 0 cut-off is
vital to keeping the number of time steps required by the code at an acceptable level.

2.1.3 Dark energy pressure perturbations
In figure 1 we show the dark energy pressure perturbation, δpDE, for a model with w0 = −0.7,
wa = 0, c2

s = 1 for both the fluid and the PPF parameterisations. The thin vertical lines show
where the term c2

Γk
2/H2 = 1, i.e. about where the solution starts to become damped for both

the fluid and the PPF solutions. At late times these damped fluid and PPF solutions are
very close to identical, though for the largest scales shown this is not the case yet at a = 1.

As a third option, figure 1 also shows the case where the PPF equations are solved
to find Γ and thus δρDE, but the pressure perturbation δpDE is calculated using the fluid
prescription from (2.10). As can be seen, using this prescription successfully yields good
approximate values for the fluid δpDE (at least at early times) even though the dark energy
differential equations solved are those of PPF. At later times, the computed δpDE is typically
off by a factor of ∼ 2 compared to the real fluid solution.

On scales beyond the effective sound horizon of the dark energy component, differ-
ences between the fluid and PPF pressure perturbation are much larger. For the cases
k = 10−5 Mpc−1 and k = 10−4 Mpc−1 the fluid and PPF prescriptions can yield pressure
perturbations which are different by orders of magnitude. Though (2.10) can then somewhat

– 5 –
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Figure 1. class transfer functions for the dark energy pressure perturbation δpDE (in units of the
dark energy background density ρDE) as function of a for different k, for the model w0 = −0.7,
wa = 0, c2s = 1. Both dark energy as a fluid (solid lines) and using the PPF formalism (dashed lines)
are shown. Additionally, the approximate pressure perturbations obtained by plugging the PPF δDE
and θDE into the fluid equation (2.10) (dotted lines) are shown as well. The thin vertical lines show
where c2Γk2/H2 = 1 for each k mode. The transfer functions are given in synchronous gauge.

successfully be used to obtain the fluid pressure perturbation from the solved PPF system,
this is very far from the actual (PPF) pressure perturbation needed. We note that swapping
out the much more involved PPF calculations of δpDE presented in appendices A and B for
the fluid δpDE (2.10) is inconsistent with the Einstein equations and that this inconsistency
will show up prominently in the general relativistic correction potential γNb, which in turn
leads to large errors in the matter power spectrum on large scales.

In figure 2 we again show the time evolution of the dark energy pressure perturbation.
However, in this case we also include a model with phantom crossing (lower panel). As
can be seen, the full PPF expression for δpDE shows no divergence at the phantom crossing
point at a = 0.4, while δpDE from (2.10) shows the expected pathology. One might consider
regularizing the phantom crossing in the fluid case by introducing a small dimensionless
parameter, λ, such that (see (59) of [24])

c2
a = w − ẇ(1 + w)

3H [(1 + w)2 + λ] , (2.18)

where λ = 0 reduces (2.18) to the usual c2
a = ṗDE/ρ̇DE. As seen from figure 2, taking λ > 0

does indeed regularize the fluid δpDE of (2.10). Though the regularization (2.18) leads to a
well behaved fluid δpDE even during phantom crossing, this should not be used instead of
the properly calculated PPF δpDE, as already noted.3

3We note that the regularization (2.18) of [24] was not proposed in connection with the PPF parameteri-
sation.
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Figure 2. class transfer functions for the dark energy pressure perturbation δpDE (in units of
the dark energy background density ρDE) as function of a at k = 10−3 Mpc−1 for two models; one
without phantom crossing (top) and one with phantom crossing (bottom). Both panels show the
PPF δpDE (dashed lines), while only the top panel shows the fluid δpDE (solid line), as the fluid dark
energy equations cannot be integrated across the phantom crossing. Additionally, the approximate
pressure perturbations obtained by plugging the PPF δDE and θDE into the fluid equation (2.10)
with c2a regularised using (2.18) (dotted lines) are shown as well. The transfer functions are given in
synchronous gauge.

Parameter Value
As 2.1× 10−9

ns 0.96
τreio 0.0925
Ωb 0.049
Ωcdm 0.27
h 0.67

Table 1. Non-dark energy cosmological parameters for the class runs used.

3 Numerical setup and results

In order to test the formalism outlined above we perform a range of N -body simulations using
the publicly available concept N -body solver [19]. All concept simulations in this work
use cosmological parameters as listed in table 1. We use a neutrino sector of three massless
neutrinos. The concept simulations all begin at a = 0.01, use 10243 matter particles and
the potential grids (both φsim and φGR) are of size 10243. All concept simulations are
carried out in box sizes of (65536 Mpc/h)3, (8192 Mpc/h)3 and (1024 Mpc/h)3, the power
spectra from which are patched together to give the ones presented.

– 7 –



J
C
A
P
0
8
(
2
0
1
9
)
0
1
3Figure 3. Individual contributions to the potential φGR ≡ φγ + φν + φDE − γNb at different scale

factors, all in N -body gauge. The leftmost plots show the case of a cosmological constant, whereas
all other plots show the case of w0 = −0.7 and different wa and c2s . Solid lines result from having
DE as a fluid, whereas dashed lines results from the PPF formalism. The grey bands indicate regions
where the vertical axes scale linearly.

3.1 Main results

In figure 3 we show the various individual contributions to φGR. As expected, we see that the
relativistic species (neutrinos and photons) provide the largest contribution to the potential
at early times. Later, when dark energy becomes important, the DE perturbations and the
DE contribution to the metric potential γ dominate completely. This behaviour is seen in
all models, regardless of the specific values of w0, wa and c2

s . Though at late times |φDE| �
|φγ |, |φν |, what really dominates is the dark energy contribution to γ. Worth noting here is
also that dark energy in the fluid and PPF descriptions, while almost identical for moderate
and large k, can exhibit very different behaviour for small values of k. In particular, the
potential contribution φDE for the PPF dark energy tend to switch sign at a given k, as seen
around k = 10−3 h/Mpc in the two middle columns of figure 3. This sign change in the PPF
φDE is accompanied by a simultaneous change of −γ in the opposite direction. I.e. if the PPF
φDE goes from being positive to being negative at some k, we see a simultaneous increase in
−γ, so that the total potential contribution from dark energy becomes larger (more positive).

– 8 –
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Figure 4. Relative matter (cold dark matter and baryons) power spectra between models with
dynamical dark energy and a model with a cosmological constant. Coloured lines show results from
concept simulations, whereas black lines indicate the corresponding linear results from class. All
plots show dark energy modelled using PPF (dashed lines). Most plots also show dark energy modelled
as a fluid (solid lines), the exceptions being those with phantom crossing in the past. All dynamical
dark energy models have c2s = 1 and all power spectra are in N -body gauge. Finally, the horizontal
dotted lines show the relative power as predicted by the linear growth factor D(a).

In figure 4 we show relative matter power spectra between models with time-varying
DE and a ΛCDM reference model, corresponding to simulation B–G and A in table 2, re-
spectively. For reference we have also included the prediction calculated from the difference
in the Newtonian growth factor D(a), which comes solely from the change in the background
expansion rate. As can be seen from the figure, essentially all models follow the Newtonian
linear theory prediction for k & 10−2 h/Mpc until the point where structures become non-
linear at higher k-values (around k ∼ 0.1h/Mpc at a = 1).4 However, surveys with a volume
sufficient to probe the region k ∼ 10−3 Mpc−1 will be able to probe differences due to the

4At this point the relative power spectra exhibit the well known “suppression dip” caused by the non-linear
processing of models with different amounts of linear power, an effect also seen in e.g. models with non-zero
neutrino mass (see e.g. [25]).
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Figure 5. Relative matter (cold dark matter and baryons) power spectra between models with
{w0 = −0.7, wa = 0} and a model with a cosmological constant, in N -body gauge. All legends
from figure 4 apply. The left plot shows the case of c2s = 10−2. The right plot shows the standard
case of c2s = 1, but with the dark energy perturbations left out of the concept simulations, leading
to clear disagreement with linear theory on large scales. Both plots should be compared to the
{w0 = −0.7, wa = 0} panel of figure 4.

Simulation w0 wa c2
s note

A −1.0 0.0 (cosmological constant)
B −1.3 0.0 1
C −1.3 0.5 1
D −1.05 −0.5 1
E −0.95 0.5 1
F −0.7 0.0 1
G −0.7 −0.5 1
H −0.7 0.0 10−2

I −0.7 0.0 1 (smooth dark energy)
J −1.1 0.1 1
K −0.9 −0.1 1

Table 2. Dark energy cosmological parameters for the simulations.

GR corrections, which can be very large (tens of percent). This will be of particular interest
to surveys such as EUCLID and possible future 21-cm surveys with even larger effective
volumes [26–29].

In the left panel of figure 5 we show a case where the sound speed is smaller than 1,
corresponding to simulation H in table 2. In this case a difference relative to the Newtonian
prediction arises around the sound horizon of the dark energy component which is now well
inside the current horizon. In the particular case we show, the difference between the New-
tonian prediction and the correct result is a few percent already close to k ∼ 10−2 h/Mpc,
within the range which can be probed by e.g. EUCLID. For completeness, the right panel of
figure 5 shows a simulation which has all components other than DE correctly implemented,
but DE perturbations (including their contributions to γ) ignored, corresponding to simu-
lation I in table 2. In that case, we can clearly see that the simulation fails to match the

– 10 –
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Figure 6. Relative matter (cold dark matter and baryons) power spectra for models with dark energy
deviating only slightly from a cosmological constant, compared to a model with an exact cosmological
constant, in N -body gauge. Specifically, the left panel shows the case of {w0 = −1.1, wa = 0.1},
while the right panel shows the case of {w0 = −0.9, wa = −0.1}. All legends from figure 4 apply.

correct linear theory prediction on large scales, but instead continues to follow the prediction
of the linear Newtonian growth factor D(a) for all linear scales.

Finally, in order to better gauge the effects to be expected in models which differ from
ΛCDM by an amount compatible with the expected precision from EUCLID (see e.g. [2, 30])
we show the cases {w0 = −1.1, wa = 0.1} and {w0 = −0.9, wa = −0.1} in figure 6. Again,
we see a pronounced difference between the Newtonian predictions and the full power spectra
below k ∼ 10−2 h/Mpc. However, in the case of EUCLID the effect is likely only merginally
visible for these models given that the power spectrum can be measured at ∼ 1.5% precision
at k ∼ 10−2 h/Mpc, but only at ∼ 50% precision at k ∼ 10−3 h/Mpc from EUCLID data
(see e.g. [8]).

3.2 Comparison to PKDGRAV3

As demonstrated in [4], the full framework for adding general relativistic linear theory cor-
rections ∇φGR to the N -body particles of otherwise Newtonian simulations has been suc-
cessfully implemented into the pkdgrav3 code [31–33] as well. Figure 7 shows the same
PPF concept relative matter power spectra as the middle row of figure 4, now with the
corresponding spectra computed using pkdgrav3 added. The agreement is striking for both
models, especially considering that concept and pkdgrav3 are very different codes, the
first relying on particle-mesh methods and the latter on tree techniques, for computing the
Newtonian matter gravity.

At non-linear scales (k & 0.1h/Mpc), figure 7 do show a difference between concept
and pkdgrav3. This has nothing to do with dark energy or the linear corrections in general,
as these are completely irrelevant on these scales, as demonstrated by e.g. the right panel of
figure 5. Instead, the difference is produced by the lack of proper small-scale resolution of
gravity in concept.

Now looking to the other end of the spectrum, at the very largest scales (k.10−3 h/Mpc),
the pkdgrav3 results start to deviate from their concept (and class, see figure 4) coun-
terparts. Here the pkdgrav3 simulations fail to obtain convergence of the matter gravity,

– 11 –
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Figure 7. Relative matter (cold dark matter and baryons) power spectra between models with PPF
dark energy and a model with a cosmological constant. Coloured lines are concept results and are
identical to those shown in the middle row of figure 4 (consult this figure for the mapping between
line colours and values of a). Black lines are corresponding relative power spectra produced with
pkdgrav3.

which is to be expected for a pure tree code.5 As demonstrated by the right panel of figure 5,
the interesting region regarding dark energy perturbations is k . 10−2 h/Mpc, and so the
pkdgrav3 lines cover about one decade within this region of interest, before convergence is
no longer obtainable. During this decade however, exactly the correct behavior is observed.
As an aside then, figure 7 in addition demonstrates clearly how pure mesh and pure tree
codes have opposite strength/weakness regarding scale resolution.6

4 Discussion

We have, for the first time, included non-cosmological constant dark energy into N -body
simulations, not just at the background level, but including perturbations, and fully consistent
with GR.

It was shown that these simulations match the solution provided by class exactly in
the linear regime, when the potentially highly non-trivial dark energy pressure perturbations
are consistently included as a metric source term.

As expected we find that the dark energy perturbations and their contribution to the
metric terms are important on very large scales, and that they become very sub-dominant on
smaller scales. We highlight that dark energy in the fluid and PPF descriptions, while almost
identical on scales below the dark energy sound horizon, are in general very different on larger
scales. In most cases the difference is at scales beyond the reach of currently planned surveys
such as EUCLID. However, future 21-cm surveys might be able to reach an effective survey
volume large enough to make it detectable (see e.g. [26–29]).

5Due to the very low absolute power at very large scales, the tree has to be crawled extremely deep in
order to get these scales correct, essentially converting the O(N logN) tree operation into an O(N2) direct
summation operation.

6Optimal resolution of matter gravity at both large and small scales can be achieved by explicitly splitting
the gravitational force into a long- and a short-range component and solving each using an appropriate method.
This is the strategy used by e.g. gadget [35] where a TreePM method is implemented. Similarly, the soon-to-
come concept version 1.0 will feature a P3M method, allowing for proper resolution of small-scale structures
as well.
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We find that for models with c2
s = 1 and scales smaller than k ∼ 10−2 h/Mpc the effect

of dark energy is well described solely by its contribution to the background expansion rate.
However, for models with smaller dark energy sound speed the dark energy perturbations
themselves become important at the percent level already at k ∼ 10−2 h/Mpc, and therefore
it might be possible to detect the effect in future surveys (see e.g. [30, 34] for a more detailed
discussion).

It is worth noting that even though the effects studied here are mainly relevant on large
scales, statistics which correlate short and long wavelengths are susceptible to errors even
in the linear regime at small k. Examples of this include weak lensing statistics where full
lightcones must be properly constructed, as well as statistics used to probe non-Gaussianity
in the squeezed limit.

Finally, we note that even though our current implementation has been done for the
fluid and PPF dark energy descriptions, it should work equally well for any dark energy
model which couples only gravitationally to other sectors and which contains no non-linear
inhomogeneities (e.g. quintessence).
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A Computing δpDE in the PPF formalism using numerical differentiation

In order to calculate the contribution of the dark energy component to the quantity γNb

it is necessary to compute the pressure perturbation, δpDE. For dark energy in the fluid
parameterization this is given by (2.10). However, in the PPF parameterization no such
expression exists.

Instead, the dark energy pressure perturbation in the PPF formalism can be computed
from the dark energy continuity equation. Following class notation convention [15], we
define ms

cont. ≡ ḣ/2 and mN
cont. ≡ −3φ̇. The continuity equation can then be written in both

Newtonian and synchronous gauge as

∂τδρDE = −(ρDE + pDE) (θDE +mcont.)− 3H (δρDE + δpDE) , (A.1)

from where it follows that

δpDE = −δρDE −
1

3H
[
∂τδρDE + (ρDE + pDE) (θDE +mcont.)

]
. (A.2)

As ∂τδρDE is not solved for by class, this has to be found through numerical differentiation.
Though doable, superior accuracy can be obtained by writing δpDE as a purely algebraic
expression in terms of known quantities. This calculation is presented in appendix B.
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B Computing δpDE in the PPF formalism algebraically

Without relying on numerical differentiation as in appendix A, the dark energy pressure
perturbation in the PPF formalism is highly non-trivial to compute. To ease the notation,
we start by defining some quantities:

x ≡ c2
Γk

2

a2H2 , y ≡ 9
2
a2

k2 (ρt + pt) , z ≡ 2
3
k2H

a
, (B.1)

ẋ ≡ −2x
[
ȧ

a
+ Ḣ

H

]
, ẏ ≡ y

[
2 ȧ
a

+ ρ̇t + ṗt
ρt + pt

]
, ż ≡ z

[
Ḣ

H
− ȧ

a

]
, (B.2)

where H ≡ ȧ/a2 is the Hubble parameter.
In terms of x, y and z we can write the PPF formulae as

S ≡ z−1 (ρDE + pDE) θN
t , (B.3)

Γ̇ = ȧ

a

[
S

1 + x
− Γ(1 + x)

]
, (B.4)

(ρDE + pDE)θDE = (ρDE + pDE)θt −
z

1 + y

[
S

1 + x−1 + Γx
]

= (ρDE + pDE)
(
θN

t − k2α
)
− z

1 + y

[
S

1 + x−1 + Γx
]

= z

(
S − (1 + y)−1

[
S

1 + x−1 + Γx
])
− k2α (ρDE + pDE) , (B.5)

where α = (ḣ+ 6η̇)/2k2 in synchronous gauge and α = 0 in Newtonian gauge. We can write
the Euler equation in both gauges as

∂τ (ρDE + pDE)θDE = −4H(ρDE + pDE)θDE + k2 [δpDE − (ρDE + pDE)σDE]
+ (ρDE + pDE)mEuler , (B.6)

where, as in class, mN
Euler = k2ψ and ms

Euler = 0. Since σDE ≡ 0, the PPF pressure
perturbation can be written as

δpDE = 1
k2

(
∂τ (ρDE + pDE)θDE + 4H(ρDE + pDE)θDE − (ρDE + pDE)mEuler

)
. (B.7)

All quantities in (B.7) are readily available in class, except for the time derivative
∂τ (ρDE + pDE)θDE which we shall now construct by taking the derivative of (B.5):

∂τ (ρDE + pDE)θDE = ż

(
S − (1 + y)−1

[
S

1 + x−1 + Γx
])

+ z

(
Ṡ + ẏ

(1 + y)2

[
S

1 + x−1 + Γx
]

−(1 + y)−1
[

Ṡ

1 + x−1 + Sẋ

(1 + x)2 + Γ̇x+ Γẋ
])

− k2α̇(ρDE + pDE)− k2α(ρ̇DE + ṗDE) . (B.8)

To evaluate (B.8) we must compute Ṡ:

Ṡ = ∂τ
[
z−1(ρDE + pDE)(θt + k2α)

]
= − ż

z
S + z−1(ρ̇DE + ṗDE)(θt + k2α) + z−1(ρDE + pDE)(θ̇t + k2α̇) . (B.9)
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All that remains is to evaluate θ̇t through the Euler equation:

θ̇t = −
(
ȧ

a
(1− 3wt) + ẇt

1 + wt

)
θt + k2δpt

ρt + pt
− k2σt +mEuler

= − ȧ
a
θt −

ṗt
ρt + pt

θt + k2δpt
ρt + pt

− k2σt +mEuler

= − ȧ
a
θt −

(
ṗtθt − k2δpt + k2(ρt + pt)σt

) 1
ρt + pt

+mEuler . (B.10)

Note that σt is the total anisotropic stress σtot, since anisotropic stress is absent for the PPF
fluid. In synchronous gauge we also need α̇ which we can evaluate from the Einstein equation
involving σ as

α̇ = −2 ȧ
a
α+ η − 9

2
a2

k2 (ρtot + ptot)σtot . (B.11)

In Newtonian gauge we can construct ψ from the evolution variable φ and the total anisotropic
stress as

ψ = φ− 9
2
a2

k2 (ρtot + ptot)σtot . (B.12)
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