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1 Introduction

The first direct detections of gravitational wave radiation by the LIGO and VIRGO collab-
orations [1–6] have opened a new window into our universe. The reach of electromagnetic
radiation is essentially limited to the time of recombination, but the extremely weak in-
teractions of gravitational waves allow them to propagate practically undisturbed since the
early dawn of the Big Bang. Gravitational waves may thus allow us to probe processes that
would remain unreachable otherwise, but for that purpose, it is imperative for quantitatively
accurate predictions of the produced gravitational waves to be available.

A prominent example of such processes is “preheating” [7]. In order for the universe
to transition from inflation to the radiation-dominated epoch of the Big Bang, the inflaton
needs to decay into matter at the end of inflation. Under the appropriate circumstances,
the inflaton to matter couplings responsible for its decay, along with the oscillations of the
inflaton around the minimum of its potential, lead to a stage of parametric amplification of
the matter fields [7–9]. This strong amplification has the potential to source a background
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of gravitational waves that according to previous estimates may be detectable today [10, 11].
The literature on gravitational wave backgrounds is very extensive, and we just refer the
reader to the reviews [12, 13] for further details.

Previous analyses of gravitational wave production during preheating go back to the
seminal article by Khlebnikov and Tkachev [14]. In that reference, the authors interpreted
parametric amplification of the matter fields during preheating as the appearance of classical
inhomogeneities, which were then responsible for sourcing gravitational waves according to
Einstein’s quadrupole formula. Since then, predictions of the expected energy density of
the gravitational waves have relied essentially on lattice codes that simulate the evolution
of these classical inhomogeneities in an expanding universe, and use the equivalent of Ein-
stein’s formula to calculate the gravitational wave spectrum [15–18]. One advantage of such
approaches is that the backreaction of the matter fields on the evolution of the inflaton is
readily taken into account.

Yet the matter fields responsible for the generation of the gravitational waves during
preheating do not begin in a classical state, but are assumed to be instead in the in vacuum.
The justification for a classical analysis rests on the heuristic argument that parametric res-
onance can be interpreted as the production of large number of particles, and that modes
with large occupation numbers essentially behave like classical waves [7, 14]. The author is
unaware of any rigorous proof of such claims, and even if they did apply, we would certainly
expect the classical approximation to fail as one begins to probe parameters for which para-
metric resonance is ineffective. Part of the motivation of our study is to assess the regime in
which the classical approximation is appropriate. In particular, to the extent that a classical
treatment of gravitational production is supposed to be just an approximation, the question
arises as to what it is exactly that one is trying to approximate.

As we shall discuss, the spectral energy density of gravitational waves is proportional
to the square of their amplitudes. Hence, one could argue that previous analyses are just
trying to estimate the power spectrum of the sourced gravitational waves. Our main thesis
is that the “exact” expected power spectrum ought to be computed using the now standard
in-in formalism [19]. In that sense, gravitational wave production during preheating is con-
ceptionally identical to that of gravitational wave production during inflation, or that of the
generation of primordial scalar perturbations. The only difference is that, whereas the latter
just require the evaluation of a tree-level diagram, the former involves a one-loop diagram in
which the matter fields that undergo parametric amplification run inside the loop (see fig-
ure 2.) The two cubic vertices that appear in such a diagram just capture that gravitational
waves are sourced by the energy-momentum tensor, which is quadratic in the matter field
at lowest order. For simplicity we do not take into account the backreaction of the matter
fields on the evolution of the inflaton, although it ought to be possible to include it within
the in-in formalism.

Our analysis not only presents then an alternative and arguably simpler way of comput-
ing the predicted spectral density of gravitational waves when backreaction is unimportant,
but perhaps more importantly, offers a well-defined framework to deal with the ultraviolet
divergences that appear in both kinds of approaches. Without a proper treatment of such
divergencies, it is not possible to extract sensible predictions from the underlying theory, or
to relate its predictions to properly renormalized parameters in the action of the theory.
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2 Framework

We are going to study gravity coupled to an inflaton field φ that decays into a scalar χ at
the end of inflation,

S =

∫
d4x
√
−g
[
M2
P

2
R− 1

2
∂µφ∂

µφ− 1

2
∂µχ∂

µχ− 1

2
m2
φφ

2 − 1

2
M2
χχ

2 − λ

2
φ2χ2

]
. (2.1)

For simplicity we consider a renormalizable quartic coupling between the inflaton and the
scalar χ, although our treatment could be easily extended to a cubic coupling φχ2, or even to
derivative interactions. The inflaton potential does not need to remain quadratic throughout
field space, but only in the vicinity of its minimum at φ = 0. We are framing our analysis in
the context of preheating after inflation, although our results ought to apply as well to any
scenario in which an appropriately coupled massive scalar oscillates at the minimum of its
quadratic potential.

Gravitational waves are represented by transverse and traceless metric perturbations
hij(t, ~x) of the background Friedman-Robertson-Walker metric,

ds2 = a2(t)
[
−dt2 + (δij + hij)dx

idxj
]
. (2.2)

Note that the time coordinate t is conformal time, in spite of the unusual label. It shall
prove useful to decompose these metric perturbations into components that do not mix
under translations and rotations,

hij(t, ~x) =
1√
V

∑
~p,σ

hσ(t, ~p)Qij
σ(~p)ei~p·~x, (2.3)

where the Qij
σ are appropriate polarization tensors (see appendix A). Under spatial trans-

lations by an amount ~T , hσ(t, ~p) changes by a phase factor ei~p·
~T , and under a rotation by

an angle θ about the ~p axis it changes by e−iσθ. We work in a universe of finite volume
V = L3 and impose periodic boundary conditions on all the fields. Hence, the sum in equa-
tion (2.3) runs over modes with ~p = 2π

L ~n, where ~n ∈ Z3, and over the two possible helicities
of a gravitational wave, σ = ±2. The reality of the metric (and hence hij) implies that
hσ(t, ~p) = h∗σ(t,−~p).

2.1 Couplings to matter

In order to compute the spectrum of gravitational waves produced during preheating, we
need to determine how gravitational waves couple to matter. As we shall see, at next to
leading order in an expansion in M−1

P it suffices to consider couplings linear and quadratic
in the graviton. At this order the interaction part of the action is

SI ≡ −
∫
dt (H1

I +H2
I) ≡

∫
dt
∑
~p,σ

[
Sσ1 (t, ~p)hσ(t,−~p) + Sσ2 (t,~0)hσ(t, ~p)hσ(t,−~p)

]
, (2.4)

where we have restricted the couplings quadratic in hσ to those with opposite momenta, which
are the only ones we shall need. The last equation implies that the source term Sσ1 (t, ~p) is

Sσ1 (t, ~p) ≡ δSm
δhσ(t,−~p)

∣∣∣∣
h=0

=
a6

2
√
V

∫
d3xT ijQij

σ(−~p) e−i~p·~x, (2.5)
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where the T ij are the spatial components of the energy-momentum tensor of matter in the
background spacetime. Hence, as expected, the source of linearized gravity is the energy-
momentum tensor. Restricting our attention to that of the matter field χ we find

Sσ1 (t, ~p) = − a2

2
√
V

∑
~k1,~k2

~k1 · ε̂
σ
2 (−~p) ~k2 · ε̂

σ
2 (−~p)χ~k1(t)χ~k2(t) δ~k1+~k2,~p

, (2.6)

where we have also expanded the matter fields in Fourier modes,

χ(t, ~x) ≡ 1√
V

∑
~k

χ(t,~k)ei
~k·~x ≡ 1√

V

∑
~k

χ~k(t)e
i~k·~x, (2.7)

and the polarization vectors ε̂ are those in appendix A. Note that only the gradient terms
in the energy-momentum tensor source gravitational waves and that the Kronecker delta
enforces momentum conservation. The coupling quadratic in gravitational waves is

Sσ2 (t,~0) =
a2

8V

∑
~k

{(
m2

0a
2 + ~k 2 − 4|~k · ε̂

σ
2 (~p)|2

)
χ(t,~k)χ(t,−~k)− χ̇(t,~k)χ̇(t,−~k)

}
, (2.8)

where an overdot denotes a derivative with respect to conformal time t, and we have intro-
duced the effective squared mass

m2
0 ≡M2

χ + λφ̄2. (2.9)

We denote the background value of the inflaton by φ̄.

2.2 Energy density of gravitational waves

Following Isaacson [20] we define the energy density of gravitational waves to be

ρ ≡
M2
P

4a2

∑
ij

ḣij(t, ~x)ḣij(t, ~x)


avg

≈
M2
P

4a2

1

TavgV

∫
dt
∑
σ,~p

ḣσ(t, ~p)ḣσ(t,−~p), (2.10)

where we have neglected derivatives of the scale factor (a good approximation in the short-
wavelength limit), and [ ]avg indicates an average over a sufficiently large spacetime region
of comoving size TavgVavg. To express the energy density in Fourier space, we have used
equation (2.3) and assumed that the spatial volume of the region over which we average
approaches the size of the finite universe, Vavg → V . In that case, the spatial average picks
up Fourier components of opposite momenta.

Our theories do not allow us to directly predict the energy density of gravitational
waves in our particular universe, but, instead, they make statements about the average
energy density across an appropriate ensemble of universes. In the quantum theory, the
latter simplifies if we use that at short wavelengths the time derivative of a gravitational
wave is proportional to ωp = p. Hence, the expected energy density in gravitational waves is

〈ρ〉 ≡
∫
dp

p

d〈ρ〉
d log p

,
d〈ρ〉
d log p

=
M2
P

8π2a2

∑
σ

p5

Tavg

∫
dt 〈hσ(t, ~p)hσ(t,−~p)〉, (2.11)

where 〈 〉 denotes quantum-mechanical expectation, we have introduced the spectral density
dρ/d log p, and approximated the mode sum by an integral. The time interval of the average
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Tavg in equation (2.11) is set to be several times the frequency of the wave in the domain
of interest, p Tavg � 1. Typically, predictions of the energy density of gravitational waves
are cast in terms of the fraction of the critical density, the so-called density parameter ΩGW ,
which in terms of the spectral density becomes

ΩGW (p) ≡ 1

3M2
PH

2

d〈ρ〉
d log p

, (2.12)

where H is Hubble’s constant at the time of interest.

3 Gravitational wave production in the in-in formalism

Equation (2.11) implies that in order to determine the energy density of gravitational waves
all we need to compute is the gravitational wave power spectrum

Pσ(t, ~p) ≡ 〈hσ(t, ~p)hσ(t,−~p)〉, (3.1)

where the operators hσ(t, ~p) are in the Heisenberg picture. In the in-in formalism [19], the
expectation value (3.1) can be expanded in different powers of the interaction. At zeroth
order the power spectrum is of order M−2

P , because the properly normalized mode functions
of the graviton are proportional to M−1

P (see below.) The leading correction is then of order
M−4
P , and arises from terms with at most two interaction vertices,

Pσ(t, ~p) = 〈hσ(t, ~p)h∗σ(t, ~p)〉+

∫ t

dt̄1

∫ t

dt1〈H(1)
I (t̄1)hσ(t, ~p)h∗σ(t, ~p)H(1)

I (t1)〉

−
∫ t

dt1

∫ t1

dt2 〈hσ(t, ~p)h∗σ(t, ~p)H(1)
I (t1)H(1)

I (t2)〉−
∫ t

dt̄1

∫ t̄1

dt̄2 〈H(1)
I (t̄2)H(1)

I (t̄1)hσ(t, ~p)h∗σ(t, ~p)〉

− i
∫ t

dt1〈hσ(t, ~p)h∗σ(t, ~p)H(2)
I (t1)〉+ i

∫ t

dt̄1〈H(2)
I (t̄1)hσ(t, ~p)h∗σ(t, ~p)〉. (3.2)

In this equation, all operators are in the interaction picture, that is, evolve like free fields.
The time contours need to be chosen to project the vacuum of the free theory into that of
the interacting theory in the asymptotic past. This is why we label the integration variables
for in the expansions of 〈0|UI(t)† and UI(t)|0〉 differently [21].

The first term on the right hand side of equation (3.2) captures the vacuum fluctuations
of the free gravitational field. It does not contain any information on the evolution of matter
during preheating, so it does not reflect their production after inflation. We shall thus
ignore this term during most of our analysis, although measurements may be actually able to
distinguish this tree-level contribution from the rest because of their different dependence on
the momentum ~p. The remaining terms give rise to the Feynman diagrams shown in figures 1
and 2, and do depend on the evolution of the matter fields. These are the contributions that
capture the production of gravitational waves by the amplified matter fields. Although we
have derived equation (3.2) within the Hamiltonian formalism, the same expression would
follow from the path integral. We will implicitly resort to the latter when renormalization
forces us to introduce counterterms with derivatives of the metric fields.

3.1 Disconnected component

We shall begin our analysis by studying the disconnected component of the power spectrum,
which is represented by the Feynman diagram in figure 1. From equation (3.2), or by direct

– 5 –



J
C
A
P
0
8
(
2
0
1
9
)
0
1
2

Figure 1. Disconnected corrections to the power spectrum of gravitational waves in the in-in
formalism. Wavy and solid lines respectively represent gravitons and matter fields. Recall that each
vertex is of the two possible types “L” or “R”.

calculation of the expectation of hσ we find

〈hσ1(t, ~p1)〉〈hσ2(t, ~p2)〉 =

∫ t

dt1

∫ t

dt2D
R
σ1p1(t; t1)DR

σ2p2(t; t2)〈Sσ11 (t1, ~p1)〉〈Sσ21 (t2, ~p2)〉, (3.3)

where DR
σp is the retarded Green’s function of the gravitational waves,

DR
σp(t1, t2) ≡ i θ(t1 − t2) 〈[hσ(t1, ~p), hσ(t2,−~p)]〉 . (3.4)

The right hand side of equation (3.3) is precisely the expression we would use to calculate
energy density of gravitational waves in linearized semiclassical gravity, in which the energy-
momentum tensor is replaced by its expectation value. Since S1 is quadratic in the matter
fields, its expectation 〈Sσ1 〉 does not necessarily vanish, even in the vacuum. But translational
invariance does demand that 〈Sσ1 (t1, ~p)〉 ∝ δ~p, which implies that the right hand side of
equation (3.3) is proportional to two Kronecker deltas, δ~p1δ~p2 . In that case one cannot
properly speak of gravitational waves, because the corresponding metric perturbations are
spatially constant. A spatially constant expectation of the metric perturbations effectively
amounts instead to a shift in the scale factor.

A non-vanishing disconnected component in the spectrum of gravitational waves at non-
zero momenta can only appear if translational invariance is somehow broken, say, if the state
of matter describes a non-zero number of quanta of definite momenta. Although translational
invariance is broken in our realization of our universe (or so it seems), it is certainly not broken
in the ensemble, because the vacuum state of the perturbations is invariant under translations,
and so is the Hamiltonian (this follows from the invariance of the background under the same
transformations.) Translational invariance can be broken only if a measurement causes the
vacuum state of the fields to be projected onto a non-invariant state. In the absence of such a
measurement, it is worthwhile emphasizing that no matter how effective parametric resonance
is, it cannot change the fact that both the vacuum state and the interaction Hamiltonian are
invariant under translations. For this reason, we do not expect the disconnected component
to contribute to the spectrum of gravitational waves produced during preheating.

3.2 Connected component

Just as translational invariance implies that the correlation 〈hσ1(t, ~p1)hσ2(t, ~p2)〉 is propor-
tional to δ~p1,−~p2 , rotational invariance implies that the latter has to be proportional to δσ1,σ2 .
Moreover, invariance under parity implies that

〈h+2(t, ~p1)h+2(t, ~p2)〉 = 〈h−2(t, ~p1)h−2(t, ~p2)〉 , (3.5)
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Figure 2. Connected corrections to the power spectrum of gravitational waves in the in-in formalism
at order M−4P . Wavy and solid lines respectively represent gravitons and matter fields. Recall that
each vertex is of two possible types, “L” or “R”.

Therefore, the energy density of gravitational waves is the sum of the two equal energy
densities in each helicity state. In the following, we hence choose σ = +2 and drop the explicit
reference to the helicity in all our formulas, h~p(t) ≡ h+2(t, ~p). This choice is inconsequential,
as the σ = −2 helicity behaves exactly the same way.

In order to calculate the connected component of the power spectrum (3.1) it shall prove
useful to split it into different contributions, according to the combination of vertex types
they contain,

P+2(t, ~p) ≡ PLL + PLR + PRR. (3.6a)

The factor PLL captures the contributions from the two diagrams in figure 2 that only involve
“L” vertices, that is, those terms in equation (3.2) in which the interaction HI appears to
the left of the product of free fields h(t, ~p)h(t,−~p). The factor PRR captures the ones that
only involve “R” vertices, that is, those terms in which the interaction appears to the right
of h(t, ~p)h(t,−~p). And finally, PLR contains those in which one interaction vertex appears to
the left, and one to the right of the product. Substituting equations (2.6) and (2.8) into (3.2)
we hence obtain

PRR =
1

4(2π)3

[
−
∫ t

dt1

∫ t1

dt2

∫
d3k a2

1a
2
2 k

4 sin4 θDp(t; t1)Dp(t; t2)Gk(t1; t2)Gq(t1; t2)

+ i

∫ t

dt1a
2
1D

2
p(t; t1)

∫
d3k

×
{(
m2
χa

2
1 + (1− sin2 θ)k2

)
Gk(t1; t1)− 〈χ̇(t1,~k)χ̇(t1,−~k)〉

}]
, (3.6b)

PLR =
1

4(2π)3

∫ t̄f

dt̄1

∫ t

dt1

×
∫
d3k a2(t̄1)a2(t1)k4 sin4 θD∗p(t; t̄1)Dp(t; t1)Gk(t̄1; t1)Gq(t̄1; t1), (3.6c)

PLL = P ∗RR, (3.6d)

where ~q ≡ ~p − ~k, θ is the angle between ~k and ~p, and we have introduced the correlation
functions

Dp(t1; t2) ≡ 〈h(t1, ~p)h(t2,−~p)〉 , Gk(t1; t2) ≡ 〈χ(t1,~k)χ(t2,−~k)〉. (3.7)
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Because of rotational invariance, the latter only depend on the magnitude of the vectors ~p
and ~k.

3.3 Mode functions

In order to quantize the theory and determine the correlators (3.7) we expand the fields into
creation and annihilation operators as usual,

χ~k(t) = a~k wk(t) + a†
−~k
w∗k(t), h~p(t) = a~p up(t) + a†−~p u

∗
p(t). (3.8)

It is then convenient to introduce the rescaled mode functions

w̃k ≡ awk, ũp ≡ aup, (3.9)

which obey the mode equations

¨̃wk +

(
k2 +m2

0a
2 − ä

a

)
w̃k = 0, ¨̃up +

(
p2 − ä

a

)
ũp = 0, (3.10)

subject to the normalization conditions w̃k ˙̃w∗k − ˙̃wkw̃
∗
k = (M2

P /4)(ũp ˙̃u∗p − ˙̃upũ
∗
p) = i. In the

regime in which the squared frequencies inside the parenthesis of equation (3.10) are slowly
varying, the mode functions wk and up can be expressed in WKB form, with time-dependent
frequencies that at leading order in the adiabatic expansion are

u~p(t) =
2

aMP

√
2Hp

exp

(
−i
∫ t

t0

Hp dt1

)
, Hp = p+ · · · (3.11a)

w~k(t) =
1

a
√

2Wk
exp

(
−i
∫ t

t0

Wk dt1

)
, Wk =

√
k2 +m2

0a
2 + · · · . (3.11b)

We expect these approximate solutions to hold when the modes of interest are well within
the horizon. The appearance of the normalization factor M−1

P in the graviton mode func-
tions implies that their propagator is of order M−2

P , which is why all the contributions in
equation (3.6) are of order M−4

P .
Note that the effective mass of the matter field χ in equation (2.9) depends on the back-

ground value of the inflaton. We assume that the background inflaton and the background
metric obey the equations of motion

¨̄φ+ 2H ˙̄φ+m2
φa

2φ̄ = 0, H2 =
1

6M2
P

(
˙̄φ2 −m2

φa
2φ̄2
)
, (3.12)

where H = ȧ/a. Hence, our current approach does not take into account the backreaction of
the matter fields on the evolution of the inflaton, nor the backreaction on the evolution of
the metric.

4 Regularization and renormalization

It is quite obvious that the diagrams whose contribution are given by PLL, PRR and PRR in
equations (3.6) are divergent and thus require regularization and renormalization. Say, if we
impose a sharp cutoff at spatial momenta k = Λ , the leading contribution to PRR in the
ultraviolet is

PRR ∼
∫ t

dt1D
2
p(t; t1)

∫
d3k

k4 sin4 θ

k3
, (4.1)

– 8 –



J
C
A
P
0
8
(
2
0
1
9
)
0
1
2

which grows with the fourth power of the cutoff. In arriving at this expression we have made
the short-wavelength approximation Wk ≈ k, integrated by parts over t2, and assumed that
the time variable has a small imaginary component, t→ (1−iε)t. This slight clockwise tilt of
the integration contour eliminates the contribution of the asymptotic past to the time integral
(a detailed calculation follows below.) It is clear from the structure of equation (4.1) that
the origin of the ultraviolet divergence lies in the k4 factor in the integrand, which originates
from the derivative interaction between gravitons and matter fields in equation (2.6).

Yet a cutoff is not the appropriate way to regularize the integral. Since our starting point
is a generally covariant theory, it is important that the regularization preserve diffeomorphism
invariance. As emphasized in [22], in the context of cosmological perturbation theory dimen-
sional regularization is not particularly convenient either, specially when the mode functions
of the matter fields are not explicitly known. We shall follow instead a generally covariant
implementation of Pauli-Villars [23]. A similar method was also proposed in a cosmological
context in [22]. The idea is to introduce a set of N minimally coupled scalar matter regulator
fields χr (r = 1, . . . , N) of mass mr and Grassmann parity σr. Fields of even parity, σr = 1,
are bosonic, and fields of odd parity, σr = −1, are fermionic. Strictly speaking, the non-
triviality of the action for the Grassmann-odd fields demands that the latter appear in pairs,
χr and χ̄r, although for notational simplicity we shall not make this explicit. What matters
is that loop contributions from the Grassmann-odd fields have the opposite sign as their
bosonic counterparts. In that sense, the latter resemble the Faddeev-Popov ghosts of gauge
theories though their purpose here is to cancel the divergences that appear in the ultraviolet.
After this has been accomplished, we shall decouple the regulators by taking their masses to
infinity. The removal of the regulators renormalizes the coefficients of the appropriate terms
in the action. The reader may want to skip what remains of this slightly technical section and
jump directly to subsection 4.3, which quickly summarizes the relevant results of what follows.

4.1 Renormalization of PRR

We begin our discussion with the regularization of PRR, equation (3.6b). It turns out that
only PLR contributes to the effective energy density of the gravitational waves, but the
renormalization of PRR will help us to set the stage for the renormalization of the former.

Because, by construction, the regulator fields couple to gravity like the original matter
field χ ≡ χ0, they can also run in the matter loop of figure 2. Their contribution to the
two-point function of gravitational waves parallels that of χ0, the only difference being that
fermionic loops are proportional to an additional minus sign,

PRR =
N∑
i=0

σi

{
−1

4(2π)3

∫
d3k k4 sin4 θ

∫ t

dt1

∫ t1

dt2 a
2
1a

2
2Dp(t; t1)Dp(t; t2)Gik(t1; t2)Giq(t1; t2)

+
i

4(2π)3

∫ t

dt1a
2
1D

2
p(t; t1)

×
∫
d3k
[ (
m2
i a

2
1 + k2−2k2 sin2 θ

)
Gik(t1; t1)−〈χ̇i(t1,~k)χ̇i(t1,−~k)〉

]}
. (4.2)

The correlator of the i-th regulator field is denoted by Gik(t1; t2) ≡ 〈χi(t1, ~p)χi(t2,−~p)〉, and
we have switched the order of integration.

The values of the masses mi are dictated by the requirement that the sum in (4.2) be
finite. We shall introduce a cutoff at spatial momenta k = Λ first, and then determine under
what conditions the mode integral converges as Λ→∞. To estimate how a given integrand
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depends on the momentum cutoff we shall consider an adiabatic expansion in the number of
time derivatives. We begin by noting that the frequency Wk in the mode functions (3.11b)
has the adiabatic expansion

Wk = ωk +
3

8

ω̇2
k

ω3
k

− 1

2ωk

ä

a
− ω̈k

4ω2
k

+ · · · , ωk =
√
k2 + a2m2

i , (4.3)

where we have omitted terms with four or more derivatives. In the limit of large k the time
integral over t2 in equation (4.2) itself can be expanded adiabatically by repeated integration
by parts,∫ t1

−∞
dt2 e

−i
∫ t2
t0
Wk(t3)dt3f(t2) = e−i

∫ t1
t0
Wk(t3)dt3

N∑
n=0

(
1

iWk(t1)

d

dt1

)n( f(t1)

−iWk(t1)

)
(4.4)

−
∫ t1

−∞
dt2 e

−
∫ t2
t0
Wk(t3)dt3 d

dt2

(
1

iWk(t2)

d

dt2

)N ( f(t2)

−iWk(t2)

)
,

where we have used that the boundary terms in the asymptotic past vanish (because of the iε
prescription.) Since each time derivative is accompanied by a factor of W−1

k ∼ k, each one re-
duces the degree of divergence of the mode integral by one, so we just need to consider a finite
number of derivatives to find the divergent pieces of the integral. The dependence of the mode
integral on the cutoff can be determined now by expanding the frequencies ωq in powers of p,

1

ωiq
≈ 1

ωik

(
1 +

k p cos θ

(ωik)
2
− p2(k2 − 3k2 cos2 θ + a2m2

i )

2(ωik)
4

+ · · ·
)
. (4.5)

Again, each additional power of p is accompanied by a factor 1/ωk, which lowers the degree
of divergence of the mode integral by one. Since

∫
dθ sin5 θ cosn θ vanishes for odd n, only

quadratic terms in p effectively appear in the expansion. The ensuing integrals then contain
linear combinations of integrands of the generic form kn/(ωk)

2m, which in the limit Λ→∞
approach

∫ Λ

0
dk

kn

(k2 + a2m2
i )
m
→


Λ1+n−2m

1 + n− 2m
− ma2m2

i Λn−2m−1

n− 2m− 1
+ · · · , 1 + n− 2m 6= 0,

log
Λ

ami
+O(Λ0), 1 + n− 2m = 0.

(4.6)
At zeroth order in time derivatives we thus find

P
(0)
RR = −

i u2
p(t)

40(2π)2

∑
i

σi

∫ t

dt1 u
∗
p

2

[
3Λ4 +

11p2 − 98a2m2
i

42
Λ2 (4.7)

− p4 + 10 p2m2
i a

2 − 30 a4m4
i

12
log

2Λ

ami
+

192p4 + 1570p2a2m2
i − 2415a4m4

i

2520
+O

(
1

Λ

)]
,

where all time-dependent functions in the integrand (including m2
i ) are evaluated at time

t1. Cancellation of the quartic, quadratic and logarithmic cutoff-dependent terms in equa-
tion (4.7) hence requires that∑

i

σi = 0,
∑
i

σiM
2
i = 0,

∑
i

σiM
4
i = 0, (4.8)
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Figure 3. Insertion of a quadratic counterterm needed to renormalize the power spectrum of gravi-
tational waves. Here the vertex can also be of two types: “L′′ and “R′′.

where we have assumed that the regulator fields couple to the inflaton just like the original
field, m2

i = M2
i + λφ̄2. We shall decouple the regulator fields by sending their masses Mr to

infinity. The cancellation of the ultraviolet divergences survives in this limit, but the presence
of the logarithmic factors implies that the dependence on the masses Mr persists and does
not remain finite as the regulators are removed. These new divergences need to be renormal-
ized by introducing appropriate counterterms, as we shall discuss below. This is a reflection
of the conventional lore of low-energy effective field theory, namely, that the physics at high
scales (the regulators) only affects low-energy observables through the renormalization of the
appropriate operators in the low-energy theory [24].

We proceed next to higher orders in the expansion in time derivatives. At one time
derivative, the leading divergences are cubic and linear in the cutoff, with no logarithmic
divergence,

P
(1)
RR =

u2
p(t)

12(2π)2

∑
i

σi

∫ t

dt1

[
−
u∗pu̇

∗
p

15
Λ3+

56a2(Hm2
i +miṁi)u

∗
p

2+(13p2 +56a2m2
i )u
∗
pu̇
∗
p

140
Λ

−
96a3(Hm3

i +m2
i ṁi)u

∗
p

2+9p2a(Hmi+ṁi)u
∗
p

2+(18p2ami+64a3m3
i )u
∗
pu̇
∗
p

256π−1

]
t1

+O
(

1

Λ

)
. (4.9)

Note the presence of a time derivative ofmi in the linearly divergent term; it can be eliminated
upon integration by parts, which renders the integral convergent as Λ → ∞, provided that
conditions (4.8) are satisfied. But inspection of the O(Λ0) term in the integrand also reveals
pieces that would diverge as the regulator masses Mr are sent to infinity. Because none of
these terms is proportional to a power of the cutoff Λ, the only condition on their sum is that
it remain finite in the limit Mr →∞. To determine the finite remainder we would presumably
need to impose additional renormalization conditions, but since there is no counterterm with
a single time derivative acting on the metric, its value remains ambiguous in this approach.
On the other hand, if we had used dimensional regularization to render integrals of the
form (4.6) finite, we would have set∫ ∞

0
dk

kn

(k2 + a2m2
0)m
→ (am0)1+n−2mΓ

(
1+n

2

)
2Γ(m)

Γ

(
−1 + n− 2m

2

)
. (4.10)

Because the gamma function has poles only at negative integer values of its argument, odd
positive powers of am0 would be proportional to the same finite coefficient in Pauli-Villars
regularization if we impose the additional conditions∑

r

σrMr = 0,
∑
r

σrM
3
r = 0. (4.11)

Even powers of am0 would be multiplied with divergent coefficients as the limit of spatial
dimensions approaches three, and would require renormalization as before.
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The terms in the adiabatic expansion of equation (4.2) that contain two time derivatives
are

P
(2)
RR = − i

240

u2
p(t)

(2π)2

∑
i

σi

∫ t

dt1

[{
14H2u∗p

2 − 16Ḣu∗p2 + u∗pü
∗
p

}
Λ2 (4.12)

+
{

5
(
p2(H2 + Ḣ)− 2a2m2

i (H2 + 2Ḣ)− 4a2(Hmiṁi + ṁ2
i +mim̈i)

)
u∗p

2

− 10a2
(
Hm2

i +miṁi

)
u̇∗pu

∗
p −

(
p2 + 5a2m2

i

)
u∗pü

∗
p

}
log

2Λ

ami

]
t1

+O
(

1

Λ

)
,

where, for simplicity, we have omitted the terms of order Λ0, which vanish because of condi-
tions (4.8), (4.11), or because the regulator masses approach infinity. Again, the first equation
in (4.8) guarantees a finite limit as Λ→∞, but a logarithmic dependence on the regulator
masses Mr survives the cancellation as the regulators are removed. Along the same lines
we would find that there are no logarithmic divergences within the terms in PRR containing
three time derivatives, and that those with four derivatives diverge logarithmically with the
cutoff (and the regulator masses.)

The logarithmic dependence on Mr that signals the impact at low momenta of the
physics at much higher scales can be reabsorbed into appropriate low-energy renormalized
parameters. Inspection of the logarithmic divergences in equations (4.7) and (4.12) reveals
that the counterterms need to be operators with up to four derivatives of the metric. Since
our regularization respects diffeomorphism invariance, the former have to be of the form

Sc =

∫
d4x
√
−g
[
c0 + c2R+ c4aR

2 + c4bRµνR
µν
]
, (4.13)

where we have used that in four spacetime dimensions the most general dimension four
curvature invariant is a linear combination of R2 and RµνR

µν . Noting that the expansion of
the counterterm proportional to c0 to quadratic order in the tensor modes is∫

d4x
√
−g = −1

4

∫
dt a4

∑
~p

h~ph−~p +O(h3), (4.14)

and comparing the latter with equation (4.7) we realize that the term proportional to
a4
∑

i σim
4
i logmi can be canceled by a single insertion of an “R” vertex proportional to

c0, as in figure 3. In order to cancel the dependence on the regulator masses, the countert-
erm coefficient has to be

c0 =
1

8(2π)2

∑
r

σr
(
M2
r + λφ2

)2
logMr + finite, (4.15)

which amounts to a renormalization of the cosmological constant and the inflaton potential.
It is certainly not a coincidence that the φ-dependent piece of this counterterm is precisely
the one needed to cancel the divergences in the effective potential of the inflaton field due to
its couplings to χ. As usual, the value of c0 is determined only up to a finite field-dependent
constant, which needs to be fixed by appropriate renormalization conditions. In appendix C
we discuss an example.

In conjunction with the term proportional to 10 p2m2
i a

2 in equation (4.7), comparison
of equation (4.12) with the expansion of the Einstein-Hilbert action to second order in the
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tensor modes of, say, positive helicity,∫
d4x
√
gR ⊃

∫
dt
a2

4

∑
~p

[
−3ḣ~pḣ−~p − 4h~pḧ−~p − 12Hh~pḣ−~p − (6H2 + 6Ḣ+ p2)h~ph−~p

]
,

(4.16)
allows us to find the regulator-dependent piece of the counterterm proportional to the Ricci
scalar R,

c2 = − 1

24(2π)2

∑
r

σr
(
M2
r + λφ2

)
logMr + finite. (4.17)

Thus, radiative corrections force us to introduce not only an Einstein-Hilbert term into the
action, but also a non-minimal coupling of the inflaton to gravity. Note that the radiative
corrections we have considered arise only from the couplings of matter to gravity, and do not
depend on the dynamics of gravity itself; the only assumption that does enter our analysis
is that gravitational waves can be expanded in a set of creation/annihilation operators.

To arrive at the identification of the counterterm (4.17) we have discarded a total time

derivative in P
(2)
RR of the form

P
(B)
RR =

iup(t)
2

48(2π)2

∑
i

σi log
Λ

ami

∫ t

−∞
dt1

d

dt1

{
−2a2Hm2

iu
∗
p

2 − 3a2m2
iu
∗
pu̇
∗
p + 2a2ṁ2

iu
∗
p

2
}
.

(4.18)
In other words, the log divergent pieces of PRR can be expanded as the sum of bulk and bound-
ary terms, with the bulk contribution to PRR being canceled by the counterterm proportional
to c2. The remaining piece is the boundary term above. Because there is an analogous con-
tribution from the LL diagram, which is just the complex conjugate of PRR, most of these

boundary terms cancel. There are however two terms that survive, namely, P
(B)
LL + P

(B)
RR ∝

3ia2m2
i |up|2(upu̇

∗
p−u∗pu̇p), which happens to involve terms with time derivatives of the gravi-

ton mode functions.1 Although it may appear strange at first that boundary terms contribute
to the expectation of an observable O, this has been previously noted in the literature [25]. In
fact, it is relatively easy to see that boundary terms matter if they do not commute with O, as
we discuss in appendix B. Below we shall argue that the corresponding logarithmic divergence
can be canceled by a counterterm proportional to the York-Hawking-Gibbons action.

We could proceed to determine the values of c4a and c4b, by looking at the terms with
four time derivatives in equation (4.2). But at this point the algebra becomes increasingly
involved, and we shall not need these counterterms anyway. In fact, the structure of the
counterterm Lagrangian (4.13) has been actually known for a long time, at least since ’t
Hooft and Veltman’s work on the one-loop divergences in gravity [26]. Within Pauli-Villars
regularization, in the absence of spacetime boundaries, the required counterterms were dis-
cussed in reference [27]. In the presence of spacetime boundaries, all the analyses known to
the author involve the heat kernel, which also demands the introduction of boundary terms
to fully renormalize the effective action; see reference [28] for a practical review. The point
of our analysis has been to illustrate that we can carry out the regularization and renormal-
ization program in a cosmological background, while preserving diffeomorphism invariance,
using Pauli-Villars regularization. The bulk divergences in the diagram with two RR vertices
are those that would be encountered in the standard in-out calculations, such as those in [26].

1This contribution is proportional to the Wroskian of the graviton mode functions, but since we prefer not
to make any assumptions about the dynamics of gravity at this point, we shall leave it unevaluated.
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These divergences are only sensitive to the short-distance structure of the theory, and thus
do not depend on the actual limits of integration. Although we have restricted our analysis
to the diagrams with R vertices, the same conclusion (and counterterms) would follow from
PLL, which is simply the complex conjugate of PRR.

4.2 Renormalization of PLR

The only remaining contribution to the power spectrum is that of PLR, which is the only one
we shall actually need. From equation (3.6c), by including the regulator fields running in the
loop, and inserting an ultraviolet cutoff for latter convenience, the latter reads

PLR =
|up(t)|2

4(2π)3

N∑
i=0

σi

∫
k≤Λ

d3k

∣∣∣∣k2 sin2 θ

∫ t

dt̄1a
2(t̄1)up(t̄1)wik(t̄1)wiq(t̄1)

∣∣∣∣2 . (4.19)

We shall analyze PLR using a double expansion in the number of time derivatives and powers
of the external momentum p. Up to three time derivatives the results are

P
(0)
LR≈

∑
i

|up(t)|4

2(2π)2

∑
σi

[
Λ3

90
−
(

13p2

840
+
m2
i a

2

15

)
Λ+

3πp2ami

256
+
πa3m3

i

24

]
, (4.20a)

P
(1)
LR≈

i|up|2
(
upu̇

∗
p− u̇pu∗p

)
48(2π)2

∑
i

σi

[
Λ2

5
+

277p2

1050
+

31a2m2
i

30
−
(
p2

5
+a2m2

i

)
log

2Λ

ami

]
, (4.20b)

P
(2)
LR≈

|up(t)|2

16(2π)2

∑
i

σi

[
π(upu̇

∗
p+ u̇pu

∗
p)
Hami

32
−πu̇pu̇∗p

ami

16
+π(upü

∗
p+ üpu

∗
p)
ami

16

+

(
8|up|2

ä

a
+ |u̇p|2− üpu∗p−upü∗p

)
Λ

15
+π|up|2ami

(
19H2

384
− 5ä

12a

)]
, (4.20c)

P
(3)
LR≈

i|up|2

12(2π)2

∑
i

σi

[(
upu̇

∗
p− u̇pu∗p

4

ä

a
+
u̇pü

∗
p− üpu̇∗p−up

...
u ∗p+

...
u pu

∗
p

40

)
log

2Λ

ami

−
upu̇

∗
p− u̇pu∗p

3

ä

a
+
upü

∗
p− üpu∗p
40

H−
23
(
u̇pü

∗
p− üpu̇∗p−up

...
u ∗p+

...
u pu

∗
p

)
600

]
, (4.20d)

where we have omitted the pieces of order Λ−1, and we list only those terms that do not
vanish as mi →∞. As in the case of PRR and PLL, PLR remains finite in the limit Λ→∞ if
conditions (4.8) are satisfied. Since each subsequent derivative lowers the degree of divergence
of PLR by one power of the cutoff, we do not need to go beyond three derivatives.

But we still need to discuss how to remove the dependence on the regulator masses that
remains in equations (4.20) even when the cutoff is removed. As we attempt to decouple the
regulators, new divergences arise as the regulator masses approach infinity. These are of two
types: i) Polynomial divergences, proportional to an even number of time derivatives and no
factor of i, and ii) logarithmic divergences, proportional to an odd number of time derivatives
and a factor of i. Divergences of the first type cancel because of conditions (4.11). To elimi-
nate the divergences of the second type it does not suffice to add generally covariant countert-
erms to the action, as in equation (4.13), because the latter introduce “bulk” corrections that
involve integrals over the whole spacetime, from −∞ to t, rather than corrections at a single
time t. Therefore, in order to remove the divergences of the second type we shall include
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an appropriate boundary action in the theory. Diffeomorphism invariance at the boundary
suggests that the required counterterms should be constructed as a spatial integral over the
boundary at t of local invariants on that hypersurface. At one time derivative it suffices to
consider a counterterm proportional to the York-Gibbons-Hawking boundary action [29, 30]

c1

∫
d3x
√
γ K, (4.21)

where γij = gij is the three metric on the hypersurface at constant t, K is the trace of the
extrinsic curvature Kµν = ∇µnν and nµ = −a δµ0 is the outward normal to the hypersurface.
Expanding the previous equation to second order in gravitons of positive helicity we find∫

d3x
√
γ K ⊃ −a

2

2

(
ḣ~ph−~p +

3

2
H h~ph−~p

)
. (4.22)

Therefore in the in-in formalism, a counterterm of the form (4.21) would contribute two mu-
tually conjugate corrections to the power spectrum: one in which the vertex in figure 3 is an L
vertex, and one in which it is an R vertex. Comparing the latter with the sum of the logarith-
mically divergent contributions in PLL, PRR and PLR with one derivative at the boundary,

− i|up|2

12(2π)2

∑
i

σi a
2m2

i (upu̇
∗
p − u∗pu̇p) log

Λ

ami
, (4.23)

we can immediately read off the divergent piece of the corresponding coefficient,

c1 = −2c2. (4.24)

Remarkably, this relation between the two coefficients c1 and c2 is the same as the one origi-
nally proposed by York, Hawking and Gibbons in their boundary action [29, 30]. It is also the
relation that emerges from heat kernel calculations of the effective action for both Dirichlet
and Neumann boundary conditions on the fields [28]. Note by the way that our analysis
does not yield all necessary counterterms: if we had calculated the expectation of ḣ~pḣ~p we
would have had to consider additional boundary counterterms constructed out of the effective
(inflaton-dependent) masses of the matter fields. Returning to the case at hand, we could
proceed again to determine the boundary counterterms needed to eliminate the terms with
three time derivatives proportional to

∑
i σi logmi in equation (4.20d) along the same lines,

although we shall not do it here.
We are finally ready to compute the finite, renormalized value of PLR. To do so we

begin with the identity

P ren
LR ≡

n∑
i=0

PLR|i + P ct
LR = PLR

∣∣
i=0
− P (∞)

LR

∣∣
i=0

+ P
(∞)
LR |i=0 +

n∑
r=1

PLR|r + P ct
LR, (4.25)

where PLR|i denotes the contribution of the i-th field to PLR, P
(∞)
LR

∣∣
i

the piece of that
contribution that diverges with the cutoff, and P ct

LR the contribution of the counterterms.
Note that as both Λ and the regulator masses tend to infinity PLR|r approaches the values

that we collect in (4.20). Now, as we remove the cutoff , PLR|i=0 − P (∞)
LR |i=0 remains finite

by construction, and the cutoff dependence of P
(∞)
LR |i=0 +

∑n
r=1 PLR|r cancels out because

of equations (4.8). This renders P ren
LR finite and cutoff-independent, but such a regularized
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expression still depends on the mass of the regulators. As we decouple the latter, even powers

of all the field masses in P
(∞)
LR |i=0 +

∑n
r=1 PLR|r cancel again because of (4.8), but only odd

powers of the regulator masses disappear, because of equation (4.11). Factors that depend on
the logarithm of the regulator masses are rendered finite by the counterterms P ct

LR. Therefore,
the final, finite, renormalized value of PLR becomes

P ren
LR = lim

Λ→∞

|up(t)|2

(2π)2

{
1

4

∫ π

0
dθ sin5 θ

∫ Λ

0
dkk6

∣∣∣∣∣∣∣
tf∫
−∞

dt̄1a
2(t̄1)up(t̄1)wk(t̄1)wq(t̄1)

∣∣∣∣∣∣∣
2

(4.26)

− 1

30

[
|up|2

(
1

6
Λ3− 13p2

56
Λ−a2m2

0 Λ

)]
tf

− i

240

(
upu̇

∗
p− u̇pu∗p

)[
Λ2 +

277p2

210
+

31a2m2
0

6
−p2 log

Λ

aµ1
−5a2m2

0 log
Λ

aµ2

]
tf

− 1

240

[(
8|up|2

ä

a
+ |u̇p|2− üpu∗p−upü∗p

)
Λ

]
tf

+
i

12

[
upu̇

∗
p− u̇pu∗p

3

ä

a
−
upü

∗
p− üpu∗p
40

H+
23(u̇pü

∗
p− üpu̇∗p−up

...
u ∗p+

...
u pu

∗
p)

600

]
tf

− i

480

[
10
ä

a
(upu̇

∗
p−u̇pu∗p) log

Λ

aµ3
+(u̇pü

∗
p−üpu̇∗p) log

Λ

aµ4
−(up

...
u ∗p−

...
u pu

∗
p) log

Λ

aµ5

]
tf

}
.

This is one of the main results of this article. P ren
LR converges because the cutoff depen-

dence of the integral is subtracted out, thus rendering the limit finite at the same time. What
does remain is the dependence on the arbitrary parameters µi, which capture the ambiguities
in the finite part of the counterterms. Since we have not explicitly determined all of the latter,
it is possible for some of the µi to be related to each other. Their specific values can be fixed
by imposing appropriate renormalization conditions. Say, in the renormalization scheme we
discuss in appendix C, one would naively expect µ1 = · · · = µ5 = m0. The mode integral
returns a manifestly positive result, but the subsequent subtractions may render the net value
of P ren

LR negative. Because some of the subtraction terms explicitly contain time derivatives of
the scale factor, renormalization does not simply involve removing the cutoff-dependent terms
one would find in flat spacetime. Note that we have separated the finite contributions of the
matter fields from those that depend on the counterterms, although in some cases they are of
the same form. The subtraction term proportional to (upü

∗
p − üpu∗p)H is unique in that way,

since it does not depend on the cutoff, yet it is not renormalized by any of the counterterms.
In order to derive equation (4.26) we have not made any assumptions about the dynamics

of gravity; the form of PLR essentially depends only on its couplings of matter. If the mode
functions up of the graviton obey the equations of motion of general relativity, some of the
expressions simplify. Say, in that case

upu̇
∗
p − u∗pu̇p =

4i

a2M2
P

. (4.27)

More generally, for modes inside the horizon up is given by equation (3.11a).

4.3 Section summary

In order to make sense of the divergent integrals that determine the power spectrum, we have
introduced a set of Pauli-Villars massive regulator fields with Grassmann parity σr, whose
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masses need to satisfy equation (4.8) and (4.11). The introduction of these fields preserves
diffeomorphism invariance and renders all our mode integrals finite in the ultraviolet.

At momenta much smaller than the mass of the regulator fields, we would expect the
latter to have no impact on the physical predictions of the theory, other than through the
renormalization of the parameters of the low-energy theory. Indeed, when we attempt to
decouple the regulators fields by sending their masses to infinity, we find that we need to
include divergent corrections to the action of the form (4.13). The latter are constrained
by diffeomorphism invariance and can be sorted according to their mass dimension. The
presence of an effective spacelike boundary in the spacetime at time t, where fields are not
constrained to vanish, also forces us to include boundary counterterms like (4.21). This
construction then guarantees that the power spectrum remains finite both in the limit in
which the cutoff is removed and the regulator masses are sent to infinity.

When the dust settles, the finite, renormalized value of the contributions to the power
spectrum we shall need takes a relatively simple form, namely, that of equation (4.26). Up to
renormalization-dependent corrections, it is almost what one would get simply by imposing
an ultraviolet cutoff on the divergent mode integral, and then subtracting the divergent
cutoff-dependent pieces to render the integral finite [22].

5 Evaluation of the energy density

A significant simplification in the evaluation of the different diagrams occurs because we are
not directly interested in the power spectrum of the gravitational waves (3.1), but only in
their effective energy density (2.11) today. Suppose that preheating has concluded by some
time tf in the early universe, and that we are interested in the density of the produced
gravitational waves at a much later time t. Since the relevant interactions only occur before
tf , the power spectrum of gravitational waves at time t � tf follows from equations (3.6)
simply by replacing t by tf in the upper limit of the time integrals. In order to evaluate the
energy density of the produced gravitational waves at time t, we need to calculate a time
average of the power spectrum over several oscillations of the gravitational wave. Because
PRR is proportional to u2

p(t) ∝ e−2ipt/a2, and PLL is proportional to u∗p
2(t) ∝ e2ipt/a2, these

oscillatory contributions average out. In contrast, the contribution of PLR is proportional to
|up|2 ∝ 1/a2 and hence survives the average. In particular, equation (2.11) implies then that
the spectral density indeed scales like radiation. Hence, all we really need to determine the
spectral density is the (renormalized) value of PLR in equation (4.26).

5.1 The preheating stage

At the end of inflation the inflaton oscillates around the minimum of its potential while, on
average, the universe expands as if it were matter-dominated. The evolution of the inflaton
during that time is particularly simple in cosmic time τ [7],

a = a0

(
τ

τ0

)2/3

, φ̄ ≈
√

8

3
MP

sin(mφτ)

mφτ
. (5.1)

In what follows we shall set Mχ = 0 for simplicity. Since in that case the effective mass of
the matter field χ is m2

χ = λφ̄2 , it is more convenient to solve for the time evolution of the

mode functions wk in cosmic time too. Introducing the rescaled variable vk ≡ wk/a3/2 and
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the dimensionless variables

x ≡ mφτ, K ≡ k

mφ
, P ≡ p

mφ
, (5.2)

the former obeys

d2vK
dx2

+

(
4q0 sin2 x

x2
+
K2

a2

)
vK = 0, q0 ≡

2

3

λM2
P

m2
φ

, (5.3)

where we have used that in a matter dominated universe d2a/dτ2 + aH2/2 = 0. The mode
equation can be cast as the Mathieu equation with a time-dependent coefficient q = q0/x

2.
As the inflaton oscillates around the minimum of its potential, some of the matter modes

experience parametric amplification. This regime was analyzed in detail in reference [7].
According to this reference, parametric resonance ends when q ≈ 1/4, that is, around

xf ≡ 2
√
q0, (5.4)

and particle production during preheating is efficient as long as the physical momenta obey
the relation

K2

a2
≤ 2

π

√
q. (5.5)

Modes that undergo parametric resonance grow (on average) exponentially with cosmic time.
The growth rate is very sensitive to the value of q0 and the wave number [7], with a behav-
ior that is hard to predict analytically. Therefore, gravitational wave production during
preheating is typically studied using numerical methods.

5.2 Numerical implementation

To determine the amount of gravitational waves produced by the modes that undergo para-
metric resonance we shall solve for the matter mode functions and perform the required
integrals numerically. The mode equations for up and wk, along with the Einstein equations
for the background, are solved numerically using the CVODE routine in the Sundials suite [31].
The mode integrals are computed with the help of the Cuhre routine in the CUBA integration
library [32].

Our numerical implementation naturally follows from our previous discussion, and was
also outlined in reference [22]. It involves the evaluation of equation (4.26) not in the limit
Λ→∞, but for a large arbitrary cutoff Λ. The error we commit by setting a cutoff at a finite
value of Λ can be estimated by looking up the terms in the integral that decay as Λ → ∞.
For modes well inside the horizon, we expect the dominant error to scale as 1/Λ and contain
no time derivatives of the background. On dimensional grounds alone, we thus expect the
relative error to be of order ∆P ren

LR /P
ren
LR ∼ p/Λ.

Following the discussion in subsection 5.1, we carry out the time integrals in cosmic
time τ. To evaluate P ren

LR in equation (4.26) we thus need to compute integrals of the form∫ τf

−∞
dτ1a(τ1)up(τ1)wk(τ1)wq(τ1) eε τ1 , (5.6)

where the factor eε τ1 amounts to the iε prescription that we have kept implicit in previous
formulas, and we assume that τ = −∞ denotes the asymptotic past. As it stands, numerical
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evaluation of this integral is not feasible because it is only practical to set initial conditions
at a finite time τi, and because taking the limit ε → 0 numerically is too cumbersome. We
split instead the integral as∫ τf

−∞
dτ1f(τ1) eετ1 =

∫ τi

−∞
dτ1f(τ1) eετ1 +

∫ τf

τi

dτ1f(τ1). (5.7)

As long as the evolution of the mode functions between −∞ and τi remains adiabatic, we can
approximate the mode functions by their adiabatic expansions (3.11) and thus evaluate the
first integral on the right analytically using integration by parts, as in equation (4.4). The
iε prescription implies that the contribution of the boundary at τ = −∞ vanishes, while the
contribution of the boundary at τi can be readily evaluated to the desired adiabatic order.
We choose the initial scale factor and time xi ≡ mφτi to satisfy

ai ≡ 1, xi ≡
π

2
, (5.8)

which roughly corresponds to the time at which the inflaton begins to oscillate around its
minimum. For large values of the q0 parameter, the matter fields remain heavy throughout
inflation, and the adiabatic approximation remains valid all the way past τi (deviations from
adiabaticity occur when the matter fields effectively become massless [7].) The second inte-
gral on the right of equation (5.7) thus encompasses the reheating stage, and can be readily
computed using numerical quadrature. In order to make sure that our results capture all of
the preheating stage, we set the final time in equation (5.6) to that in equation (5.4), which
we shall deem the “end of preheating.” Since we do not include backreaction, reheating does
not actually result in a radiation-dominated universe in our analysis, because the oscillating
inflaton behaves as non-relativistic matter. Backreaction does play an important during pre-
heating at resonance parameters q0 & 103 [7], which is why we mostly restrict our attention to

q0 . 103. (5.9)

The modes that undergo parametric resonance satisfy equation (5.5). Since these are
the only modes for which we expect significant departures from adiabaticity, we shall thus
choose a momentum cutoff Λ at

Λ

mφ
= 2κ× ·

(
2

π

√
q0

xf

)1/2

a(xf ), (5.10)

where κ is a parameter that controls the size of the cutoff. Our default choice is κ = 1. Note
that a2(x)/x is an increasing function of x during preheating, so such a cutoff ensures that
modes with K > Λ never satisfy the condition for effective resonance. By changing the value
of κ we can estimate the size of the errors associated with the finite cutoff. Some of the
oscillatory integrands lead to slow convergence, and to improve the speed of the calculations
we prescribe a relative precision of 10−3. This ought to be sufficient at large values of q0, but
may yield large relative errors in the final spectral density when integrals and subtraction
terms cancel to one part in a thousand. Figure 4 shows for example how the predicted
spectral density depends on the value of κ at q0 = 100, and how the latter is affected by
the cutoff-dependent subtraction terms in equation (4.26). Because the ratio of the leading
subtraction terms in equation (3.6c) to those that depend on the renormalization conditions
is of order (p/Λ)3, we do not expect the latter to have much of an impact on the predictions
of the spectral density when parametric resonance is effective.
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Figure 4. (a) Spectral density in the in-in formalism for different momentum cutoffs (5.10), with
no subtraction terms included. In this case the spectral density strongly depends on the cutoff. (b)
Predicted spectral density in the in-in formalism with subtraction terms included. This time the
prediction is clearly cutoff-independent. In both panels (a) and (b), q0 = 100.

Finally, one should bear in mind that the net density of gravitational waves also contains
the contribution from the free-field fluctuations in equation (3.2),

Ωtree
GW ≈

3
(
π2/2

)1/3
128

1

q
1/3
0

(
p

aimφ

)4 m2
φ

M2
P

. (5.11)

Because this contribution is proportional to (mφ/MP )2, as opposed to the (mφ/MP )4 pro-
portionality of the one-loop corrections, it typically dominates at sufficiently small values of
q0, unless mφ is close to Planckian. Note that the tree-level density (5.11) depends on q0

because the former is evaluated at the end of reheating, equation (5.4), which does depend
on that parameter.

5.3 Results

Our main numerical results are summarized in figure 5, which shows the predicted spec-
tral densities in the in-in formalism for different resonance parameters q0. As seen on the
figure, the gravitational wave signal strongly depends on q0. In fact, the behavior of the
mode functions during parametric resonance suggests that this dependence is exponential.
Such an exponential growth, however, cannot continue at arbitrary large values of q0. As
parametric resonance becomes increasingly effective, backreaction on the inflaton oscillations
quenches the effects of parametric resonance [7, 33]. The spectral density is quoted in units
of (mφ/MP )4 and is thus quite sensitive to the mass of the scalar φ. Note, in particular, that
the strength of the gravitational waves essentially depends on just dimensionless parameters,
q0 and mφ/MP (recall that we have set Mχ ≡M0 = 0 for simplicity.)

In order to compute the density parameter and the physical frequency of the waves
today, f0, we need to follow the evolution of the scale factor and the energy density. Using
standard results we find

f0 ≡
1

2π

p

a0
≈ 6.8 · 1010

(
g0
∗S
grh
∗S

)1/3(
grh
∗
g0
∗

)1/4(
ai

arh

)1/4(mφ

MP

)1/2 p

aimφ
Hz, (5.12)

– 20 –



J
C
A
P
0
8
(
2
0
1
9
)
0
1
2

where the index “i” refers to the beginning of reheating, “rh” to its end, “0” to today, and
the different factors g are those in reference [34]. The density parameter today differs from
that at the time of reheating by about four orders of magnitude,

Ω0
GW =

grh
∗
g0
∗

(
g0
∗S
grh
∗S

)4/3

Ω0
rad ΩGW , with Ω0

rad ≈ 9.2 · 10−5. (5.13)

It is important to note that, in the absence of backreaction, the inflaton energy density
redshifts as 1/a3 during reheating, while the energy density of the gravitational waves scales
as 1/a4. Hence, the value of ΩGW is somewhat sensitive to the time we designate as the end
of reheating.

Unfortunately an inflationary model with a purely quadratic potential is strongly dis-
favored by a combination of BICEP2/Keck Array and Planck collaboration data [35]. For
illustration, we shall frame these results, instead, with the example of an inflationary model
with scalar potential

V (φ) =
3

4
M2
Pm

2
φ

[
1− exp

(
−
√

2/3φ/MP

)]2
, (5.14)

which happens to be among those that best fit current observations [35]. The potential (5.14)
is that of the Starobinsky and Higgs inflationary models [36], although the couplings to
matter that we assume are not necessarily the ones in those models. There is a wide variety
of scenarios with a potential that can be approximated by (5.14) during inflation, at φ�MP ,
although they may not agree with it globally [36].

The potential (5.14) is quadratic around φ = 0, with relative deviations from pure
quadratic behavior that remain smaller than about 50% at |φ| . MP /2. Therefore, a
quadratic potential ought to be a good approximation after the first few oscillations of the
inflaton. In the model (5.14) the value of mφ is determined by the observed amplitude of the
primordial scalar perturbations, mφ/MP ≈ 1.2 · 10−5 [36]. Therefore, in this case the signal
would peak at present frequencies of about 2 × 108 Hz, which is three orders of magnitude
above the highest frequencies probed by current and near-future detectors [37, 38].

The value of the coupling λ, and hence q0, is poorly constrained. We shall only demand
that the induced radiative corrections to the potential (in flat spacetime) remain subdominant
both during inflation and the oscillation phase thereafter,

λ2

32π2
φ4 log

φ

µ
� 3

4
M2
Pm

2
φ and

λ2

32π2
φ4 log

φ

µ
� 1

2
m2
φφ

2. (5.15)

Assuming that the log is of order one, and using that φ . 6MP during inflation, we find q0

cannot be higher than about 105 if we are to trust the tree-level potential. Yet we cannot
explore this full parameter range because backreaction is only negligible when q0 . 1000. In
that interval, the curves in figure 5 indicate that the gravitational wave density would be too
weak to be detectable by near future detectors [37, 38] even if the signal happened to fall
in the appropriate frequency range. In order to explore the parameter space of detectable
signals, we would need to add backreaction to our calculations.

5.4 Comparison with previous approaches

As we have emphasized in the introduction, previous estimates of gravitational wave pro-
duction during reheating [39] do not proceed from equation (3.2). Numerical estimates rely

– 21 –



J
C
A
P
0
8
(
2
0
1
9
)
0
1
2

q0 = 100

q0 = 500

q0 = 1000

0.5 1 5 10

1

1000

106

p (mϕ )

Ω
G
W

(m
ϕ
/M
P
)4

Figure 5. Spectral density of the produced gravitational waves for different values of the resonance
parameter q0. All density parameters are evaluated at the end of preheating, equation (5.4). We set
ai = 1.

instead on an ensemble of classical universes in which the relation between matter fields and
the sourced gravitational waves is the same as that in equation (3.3),

h̄(t, ~p)h̄(t,−~p) =

∫ t

dt1

∫ t

ti

dt2D
R
p (t; t1)DR

p (t; t2)S̄1(t1, ~p)S̄1(t2,−~p). (5.16)

In this equation the bars denote classical fields, and the S̄1 are obtained from equation (2.6)
simply by replacing the matter fields χ~k by numerically evaluated solutions χ̄~k of the classical
field equations. The necessary initial conditions are chosen from a random distribution that
mimics the statistical properties of the matter fields in the vacuum, be it after the end of
inflation, or well within inflation. Let χ̄~k be such a solution. Because the mode functions wk
and their complex conjugates w∗k are linearly independent solutions of the field equations, we
can expand the χ̄~k as

χ̄~k(t) = α~k wk(t) + α∗−~k w
∗
k(t), (5.17)

where we have enforced the reality of the fields, and the α~k are constant random coefficients
drawn from an appropriate Gaussian distribution. The latter is determined by the require-
ment that it reproduce the statistical properties of the fields in the quantum vacuum, namely,

[χ̄~k] = 〈χ~k〉 = 0, [χ̄~kχ̄~q] = 〈χ~kχ~q〉 = |wk|2δ~k+~q
, (5.18)

where 〈· · · 〉 denotes vacuum expectation value, and [· · · ] expectation in the random distri-
bution used in the numerical simulations. If we regard the α~k and their complex conjugates
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α∗~k
as independent variables, equations (5.18) imply

[α~k] = [α∗~k] = 0, [α~k α~q] = [α∗~k α
∗
~q ] = 0, and [α~k α

∗
~q ] ≡ [α∗~q α~k] =

δ~k,~q
2
, (5.19)

which, in a way, mimics the behavior of creation/annihilation operators.

An estimate of the power spectrum of gravitational waves may be obtained by decom-
posing the momentum vector ~p into its magnitude p and direction p̂, and averaging over the
angular variables p̂ [39]. For our purposes it is more convenient to invoke ergodicity and
replace the angular average by its expectation in an ensemble of simulations,

[h̄(t, ~p)h̄(t,−~p)] =

∫ t

ti

dt1

∫ t

ti

dt2D
R
p (t; t1)DR

p (t; t2)[S̄1(t1, ~p)S̄1(t2,−~p)], (5.20)

where the correlation of the classical sources in the simulation obeys

[S̄(t1, ~p)S̄(t2,−~p)]conn =
a2(t1)a2(t2)

8(2π)3

∫
d3kRe[Gk(t1; t2)]Re[Gq(t1; t2)]k4 sin4 θ. (5.21)

We have restricted our attention to the connected piece of the correlation, because transla-
tional invariance of the random distribution again implies, on average, that the disconnected
piece only sources “gravitational waves” of zero momentum.

In order to compare previous numerical estimates with the predictions of the in-in
formalism, we shall cast equation (5.21) also as a sum of squares. Dropping terms that
oscillate at time t we find

[h̄(t, ~p)h̄(t,−~p)]conn
rdm =

|up(t)|2

32(2π)3

∫
d3k k4 sin4 θ

{∣∣∣∣∫ tf

ti

dt1a
2(t1)up(t1)wk(t1)wq(t1)

∣∣∣∣2
+

∣∣∣∣∫ t

ti

dt1a
2(t1)u∗p(t1)wk(t1)wq(t1)

∣∣∣∣2 + · · ·

}
,

(5.22)

where the dots stand for the integrals that arise from the six remaining ways of conjugating
or not conjugating each mode function individually (since there are three mode functions
in the integrand, there is a total of 23 different combinations.) Numerical estimates do not
actually calculate the expression (5.22) directly. Instead, they solve for the matter fields by
evolving a discretized universe and use these classical fields as the sources of gravitational
waves [15–18]. In any case, equation (5.22) is constructed to reproduce what these codes are
aiming to compute. At this point it is inconsequential whether the backreaction is taken into
account. The latter affects the actual values of the mode functions wk and the scale factor,
but not the actual form of equation (5.22).

There are also some analytical estimates of gravitational wave production [33], in addi-
tion to the original estimate of reference [14]. The former begin with equation (5.20), with
the expectation in the ensemble of simulations replaced by the vacuum expectation value.
Such a substitution does not quite return our unrenormalized expression for PLR, because
the Green’s functions for the gravitational waves differ. It is also worth pointing out that
these analytical estimates and their numerical simulation counterparts are not calculating
the same quantity. The sources are quadratic in the matter fields, so even if equations (5.18)
hold, 〈S1(t1, ~p)S1(t2,−~p)〉 differs in general from [S̄1(t, 1, ~p)S̄2(t2,−~p)]. In any case, such
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analytical estimates do seem to agree with the numerical simulations, which are the ones we
shall focus on.

The first difference between equations (5.22) and (4.26) lies in the lower limits of inte-
gration. In the in-in formalism the initial time is set in the asymptotic past, at τi = −∞,
where the iε prescription eliminates the dependence of the integral on the fields at the past
boundary. If we insist in carrying out the integral from a finite lower boundary ti, we should
add the missing portion of the integral, as in equation (5.7). This missing piece can be esti-
mated analytically as long as the evolution of the modes is adiabatic, and only involves the
values of the mode functions at ti. For sufficiently small values of the resonance parameter q0,
the magnitude of the boundary term at ti can be comparable to that of the integral between
ti to tf . If these boundary terms are not taken into account, the correlation function ends
up depending on the mode functions at the initial time ti, and contains additional oscillatory
terms that would not be present otherwise. In particular, because the dependence on the
past boundary persists in the ultraviolet, the divergent piece of the mode integral (5.22) ends
up also depending on the initial time ti and not just on a local expression defined at time tf .

Leaving the previous differences aside, and focusing just on the integrals in both (5.22)
and (4.26), one may observe that both expressions would agree if the integrals were insensitive
to the phase of the mode functions. This is to some extent what happens when there is strong
particle production, as during preheating. In general, we can cast the matter mode functions
in the form

wk =
1

a
√

2ωk

[
αk(t) exp

(
−i
∫ t

ωk dt1

)
+ βk(t) exp

(
i

∫ t

ωk dt1

)]
, (5.23)

with Bogolubov coefficients αk and βk that are constrained to satisfy |αk|2 − |β2
k| = 1. The

matter mode functions are those of the in vacuum, that is αk → 1, βk → 0 in the asymptotic
past, but during preheating |βk|2 grows to large values for those modes that experience
parametric resonance. In this limit, up to a phase, αk ∼ βk, and, therefore wk ∼ w∗k. In that
sense, the expectation that a classical analysis is justified in the presence of strong particle
production bears out. Note, however, that the same argument does not apply to the tensor
mode functions up, since the evolution of the latter remains adiabatic throughout.

The difference between the two approaches is apparent in figure 4 (b), which shows how
the predictions from the in-in formalism and the numerical simulations significantly diverge
at large values of p. To gain a quantitative understanding, we also compare the numerically
computed momentum integrands (per logarithmic k) in equations (4.26) and equation (5.22)
for sin θ = 1 and various values of q0 in figure 6. At momenta k around the main peaks of
the integrand, the difference between the integrands is small at large q0, but significant at
small values of q0, in agreement with the expectation that the difference ought to be small
when particle production is effective.

Yet perhaps the most important difference between equations (4.26) and (5.22) concerns
the subtraction terms that the former contains and the latter lacks. Because the mode
integral (5.22) diverges in the ultraviolet, no matter how effective parametric resonance is,
the dominant contribution to the integral (5.22) stems from the modes around the cutoff Λ,
provided the latter is sufficiently large. This has been noted before, say, in reference [33],
which also discusses in passing how numerical simulations deal with this problem. Our
results can be used in fact to justify the approach followed by the simulations. Within the
in-in formalism, at large q0, the subtraction of the cutoff-dependent terms in (4.26) does not
have much of an impact on the final answer, as long as the integration range in momenta is
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(a) q0 = 1000, p = 2mφ.
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(b) q0 = 100, p = 2mφ.

Figure 6. Comparison of momentum integrands (per logarithmic interval dk/k) in the in-in formal-
ism and as expected from numerical simulations. No backreaction is included in either case.

restricted only to the modes that experience parametric resonance. If, on the other hand, the
range of momenta is extended far beyond the latter, the subtraction of these terms simply
cancels the contribution of such “ultraviolet” modes, which do not experience parametric
resonance by definition. In that sense, it is numerically more efficient to restrict the mode
integral to those modes that experience significant deviations from adiabaticity.

Unfortunately, the existing analyses that rely on actual numerical simulations, such
as [10, 33], have concentrated in large values of the resonance parameter q0, for which the
backreaction of the matter fields on the evolution of the inflaton is expected to be significant.
Therefore, it is not possible to compare their predictions directly with ours. Nevertheless, the
shapes of the corresponding spectral densities appear to be in rough qualitative agreement.

6 Summary and conclusions

In this manuscript we have developed a framework to predict the energy density of the
gravitational waves produced during reheating from first principles. Our estimate is grounded
on the in-in formalism, which we employ to directly compute the expected energy density
of the gravitational waves produced during that stage. It involves the leading terms in an
expansion of the expected density to lowest order in inverse powers of the Planck mass, which
happens to arise from a Feynman diagram in which the scalar field the inflaton decays into
runs in a loop. The actual prediction essentially requires the calculation of a mode integral
over the mode functions of the matter fields and the gravitational waves, which is arguably
simpler than the traditional approaches that rely on evolving a discretized universe.

In order to obtain a well-defined prediction out of the divergent mode integrals, we had
to pay particular attention to the regularization and renormalization of general relativity
coupled to a scalar. Because the mode functions of the different fields during preheating are
not analytically known, and diffeomorphism invariance is crucial to the renormalizability of
the theory, we have opted for an implementation of Pauli-Villars regularization that involves
the introduction of Grassmann-odd scalar fields similar to the Faddeev-Popov ghosts of gauge
theories. New divergences appear as we attempt to decouple these ghosts, but the latter can
be absorbed into appropriate counterterms in the action. The required counterterms are those
encountered in the classic in-out analyses, but, in addition, they need to be supplemented
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with counterterms in a boundary action defined on the spacelike surface at the final time
t. At lowest order in derivatives, the latter is proportional to the York-Hawking-Gibbons
boundary action.

At large values of the resonance parameter, q0 � 100, in the absence of backreaction,
our predictions seem to agree with those expected from numerical simulations that evolve
a classical universe from appropriate initial conditions. At q0 � 100, however, these simu-
lations cease to be applicable, and our approach becomes the only way to obtain accurate
estimates. In that sense, some of our results can be taken to be the first accurate predictions
of gravitational wave production during preheating at small values of the resonance param-
eter q0. Since we can expect a sufficiently strong signal of gravitational waves after inflation
when parametric resonance is very effective, the question may appear academic. But since
our analysis is quite model-independent, it ought to apply to scenarios in which the resonance
parameter remains moderate, and the traditional numerical computations are not justified.

The main drawback of our study thus far is the absence of backreaction on the evolution
of the background inflaton and metric. One should be able to include the latter using exactly
the same formalism we have presented here, along the lines discussed in appendix C. Leaving
renormalization aside, it is plausible that the agreement between numerical simulations and
the in-in formalism will also persist once backreaction is included, although in our opinion the
issue deserves a more rigorous justification that the conventional argument invoking particle
production and large occupation numbers.

More generally, we believe that our analysis has shed further light into renormalization
in the in-in formalism, a topic that has not received much attention in the literature, and
appears to have a richer structure than its in-out counterpart, particularly when one is
interested in expectation values at finite times. In that sense, some of our method should be
applicable to the calculation of correlation functions in a wide array of cosmological scenarios.
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A Polarization tensors

As mentioned in the main text, it is useful to decompose the transverse and traceless part of
the metric perturbations into a set of decoupled modes of definite helicity, as in equation (2.3).
For σ = ±2, the tensors Qij

σ are defined by

Qij
(+2)(~p) = ε̂+i (~p)ε̂+j (~p), Qij

(−2)(~p) = ε̂−i (~p)ε̂−j (~p), (A.1)

where the vectors ε± are two complex orthonormal transverse vectors satisfying

ε̂σ1(~p)∗ · ε̂σ2(~p) = δσ1σ2 , ~p · ε̂±(~p) = 0 and ~p× ε̂±(~p) = ∓ipε̂±(~p). (A.2)

When ~p points along the z direction, these vectors can be taken to be

ε̂±(ẑ) =
1√
2

(êx ± iêy) , ε̂±(−ẑ) = −ε̂∓(ẑ), (A.3)

where êx and êy respectively are unit vectors along the x and y directions. If ~p does not point
along the z direction, ε±(~p) is obtained by a standard proper rotation of the latter. In partic-
ular, note that ε̂σ(~p)∗ = ε̂−σ(~p), which implies that Qij

σ is traceless, and ε̂σ(−~p) = −ε̂−σ(~p),
which implies that Qij

σ1(~p)Qijσ2(−~p) = δσ1σ2 .
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B Boundary terms in the interaction

To see under what conditions boundary terms contribute to the expectation of an observable,
consider an interaction Hamiltonian that contains a total derivative,

HI(t) =
dBI
dt

+ H̄I . (B.1)

In that case, the time evolution operator in the interaction picture is

UI = e−iBI(t)T exp

(
−i
∫ t

H̄I(t1)dt1

)
, (B.2)

where T denotes time ordering, which indeed satisfies idUI/dt = HI(t)UI(t). The expectation
value of an observable O in the in-in formalism is then

〈O(t)〉 =

〈
T̄ exp

(
i

∫ t

H̄I(t1)dt1

)
eiBI(t)OI(t)e−iBI(t)T exp

(
−i
∫ t

H̄I(t1)dt1

)〉
. (B.3)

Therefore, if [OI(t), BI(T )] 6= 0 the boundary term does contribute to the expectation. This
is typically what happens when either the interaction or the operator OI depend on the
canonical momenta. In the main text we had to calculate the expectation of a function of
h, with an interaction that contained its time derivatives (which are proportional to the
canonical momenta.) This is why we should expect the expectation to depend on some of
the boundary terms in the action.

C Effective equations of motion

Our estimate of the energy density of gravitational waves can be circumscribed in a framework
that aims to derive quantum corrections to the classical gravitational equations. To arrive at
these quantum-corrected equations we shall begin with the quantum effective action in the
in-in formalism, Γ, which is a functional of a set of field expectations ḡLµν , ḡRµν , φ̄L, φ̄R, χ̄L,

χ̄R [40]. It is quite useful to regard the latter as fields defined on the two different branches
of the Schwinger-Keldysh contour: the R branch runs from −∞ to tB, and the L branch
from tB back to −∞ [41]. In this picture, the action of the theory is a functional of a single
set of fields, and we can borrow all the results on the quantum effective action from the
conventional in-out formalism essentially without modification.

In this context, then, just as in the in-out formalism, the quantum corrected Einstein
equations of motion follow from the condition δΓ/δḡµν(t, ~x) = 0, which translates into the
path integral equation〈

δS

δgµν

〉
1PI

≡
∫

1PI

DδgµνDδφDδχ
δS

δgµν(t, ~x)
exp

(
iS[ḡ + δg, φ̄+ δφ, χ̄+ δχ]

)
= 0. (C.1)

Here we have used that the effective action can be written as the sum of all connected one-
particle-irreducible diagrams in a theory in which the fields are the sum of a background value
plus quantum fluctuations one integrates over [42]. Because the path integral runs over fields
defined on the Schwinger-Keldysh contour, the insertion of δS/δgµν in the integrand delivers
the expectation value of the action variation, as suggested by our notation. Expanding the
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previous variation of the action to zeroth order in the fluctuations we just obtain the Einstein
equations for the background,

M2
P Ḡ

µν = T̄µν . (C.2)

Because a vertex linear in the fluctuations cannot be part of a 1PI diagram, quantum correc-
tions to the previous equation result from terms that are at least quadratic in the fluctuations.
One of these corrections arises from the expectation of the energy-momentum tensor of the
fields in the given spacetime background,

M2
P Ḡ

µν = T̄µν + 〈∂µχ∂νχ− 1

2
ḡµν

(
∂σχ∂

σχ+m2
0χ

2
)
〉1PI , (C.3)

where indices are raised with the background metric. At this stage, the quantum corrected
equations of motion resemble those of semiclassical gravity, in which the energy momentum
tensor is replaced by its expectation (in our treatment, though, the expectation would include
radiative corrections with metric fluctuations running inside loops.) In our specific setting,
this correction would account for the backreaction on cosmic expansion caused by the decay
of the inflaton field, which we have ignored in this article.

Expanding the Einstein tensor to second order in the metric fluctuations we would
obtain the effective energy tensor of the metric fluctuations. We shall not write down the
resulting expansion here, though it is clear that the latter will consist of quadratic terms
in the fluctuations containing up to two derivatives of the metric. At short wavelengths,
we expect the dominant terms to be captured by Isaacson’s energy-momentum-tensor [20],
whose expectation value has been the central focus of this work.

This framework offers a natural way to fix the counterterms needed to renormalize the
divergences that appear in the different expectations, and thus fix the finite pieces of the
counterterms that remained undetermined otherwise. Say, following the same methods of
section 4, we can expand the spatial components of equation (C.3) in the number of time
derivatives acting on the background fields. At zeroth order in derivatives, leaving out terms
that vanish because of conditions (4.8), we find

〈T ij〉(0)
1PI =

ḡij

8(2π)2

∑
i

σim
4
i log

2Λ

ami
, (C.4)

where the effective masses of the regulator fields are given by m2
i = M2

i + λφ̄2. Clearly,
the terms that diverge as the regulators are decoupled again renormalize the cosmological
constant and the inflaton potential. If we include the observed value of the cosmological
constant in the background energy-momentum tensor of equation (C.2), it is thus natural
to choose a counterterm that completely eliminates the contribution from (C.4). Such a
counterterm is precisely that of equations (4.13) and (4.15), with the arbitrary finite piece
in the latter set to zero. Similarly, equation (C.4) modifies the effective energy density of
the inflaton field by renormalizing its mass and quartic self-couplings. Demanding that the
inflaton potential that appears in equation (C.2) is the renormalized one, we are again led
to the counterterm (4.15) with the finite constant set to zero.

There are no contributions with a single time derivative in equation (C.3), and those
with two derivatives are

〈T ij〉(2) = − 1

a4

δij

12(2π)2

(
H2 + 2H′

)∑
i

σim
2
i log

2Λ

ami
(C.5)
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This correction is proportional to Ḡij = −a−4(H2 + 2H′)δij and thus renormalizes the value
of the Planck mass by an inflaton-dependent factor. If the constant MP that appears in
equation (C.2) corresponds to the actually measured quantity, we thus need to subtract
the whole quantum correction with an Einstein-Hilbert counterterm (4.13), with c2 given
by (4.17) and its finite piece set to zero.

At this point it becomes clear that, in this context, a convenient renormalization scheme
involves the subtraction of the log divergent terms that appear in the different quantum
corrections. Such a prescription is somewhat analogous to minimal subtraction scheme often
employed in field theories in flat spacetime.

References

[1] LIGO Scientific and Virgo collaboration, Observation of gravitational waves from a binary
black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

[2] LIGO Scientific and Virgo collaboration, GW151226: observation of gravitational waves
from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett. 116 (2016) 241103
[arXiv:1606.04855] [INSPIRE].

[3] LIGO Scientific and Virgo collaboration, GW170104: observation of a 50-solar-mass
binary black hole coalescence at redshift 0.2, Phys. Rev. Lett. 118 (2017) 221101 [Erratum ibid.
121 (2018) 129901] [arXiv:1706.01812] [INSPIRE].

[4] LIGO Scientific and Virgo collaboration, GW170608: observation of a 19-solar-mass
binary black hole coalescence, Astrophys. J. 851 (2017) L35 [arXiv:1711.05578] [INSPIRE].

[5] LIGO Scientific and Virgo collaboration, GW170814: a three-detector observation of
gravitational waves from a binary black hole coalescence, Phys. Rev. Lett. 119 (2017) 141101
[arXiv:1709.09660] [INSPIRE].

[6] LIGO Scientific and Virgo collaboration, GW170817: observation of gravitational waves
from a binary neutron star inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832]
[INSPIRE].

[7] L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation,
Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].

[8] R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine and A. Mazumdar, Reheating in
inflationary cosmology: theory and applications, Ann. Rev. Nucl. Part. Sci. 60 (2010) 27
[arXiv:1001.2600] [INSPIRE].

[9] M.A. Amin, M.P. Hertzberg, D.I. Kaiser and J. Karouby, Nonperturbative dynamics of
reheating after inflation: a review, Int. J. Mod. Phys. D 24 (2014) 1530003 [arXiv:1410.3808]
[INSPIRE].

[10] R. Easther and E.A. Lim, Stochastic gravitational wave production after inflation, JCAP 04
(2006) 010 [astro-ph/0601617] [INSPIRE].

[11] R. Easther, J.T. Giblin, Jr. and E.A. Lim, Gravitational wave production at the end of
inflation, Phys. Rev. Lett. 99 (2007) 221301 [astro-ph/0612294] [INSPIRE].

[12] M.C. Guzzetti, N. Bartolo, M. Liguori and S. Matarrese, Gravitational waves from inflation,
Riv. Nuovo Cim. 39 (2016) 399 [arXiv:1605.01615] [INSPIRE].

[13] C. Caprini and D.G. Figueroa, Cosmological backgrounds of gravitational waves, Class. Quant.
Grav. 35 (2018) 163001 [arXiv:1801.04268] [INSPIRE].

[14] S.Y. Khlebnikov and I.I. Tkachev, Relic gravitational waves produced after preheating, Phys.
Rev. D 56 (1997) 653 [hep-ph/9701423] [INSPIRE].

– 29 –

https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.03837
https://doi.org/10.1103/PhysRevLett.116.241103
https://arxiv.org/abs/1606.04855
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.04855
https://doi.org/10.1103/PhysRevLett.118.221101
https://arxiv.org/abs/1706.01812
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.01812
https://doi.org/10.3847/2041-8213/aa9f0c
https://arxiv.org/abs/1711.05578
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.05578
https://doi.org/10.1103/PhysRevLett.119.141101
https://arxiv.org/abs/1709.09660
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.09660
https://doi.org/10.1103/PhysRevLett.119.161101
https://arxiv.org/abs/1710.05832
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.05832
https://doi.org/10.1103/PhysRevD.56.3258
https://arxiv.org/abs/hep-ph/9704452
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9704452
https://doi.org/10.1146/annurev.nucl.012809.104511
https://arxiv.org/abs/1001.2600
https://inspirehep.net/search?p=find+EPRINT+arXiv:1001.2600
https://doi.org/10.1142/S0218271815300037
https://arxiv.org/abs/1410.3808
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.3808
https://doi.org/10.1088/1475-7516/2006/04/010
https://doi.org/10.1088/1475-7516/2006/04/010
https://arxiv.org/abs/astro-ph/0601617
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0601617
https://doi.org/10.1103/PhysRevLett.99.221301
https://arxiv.org/abs/astro-ph/0612294
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0612294
https://doi.org/10.1393/ncr/i2016-10127-1
https://arxiv.org/abs/1605.01615
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.01615
https://doi.org/10.1088/1361-6382/aac608
https://doi.org/10.1088/1361-6382/aac608
https://arxiv.org/abs/1801.04268
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.04268
https://doi.org/10.1103/PhysRevD.56.653
https://doi.org/10.1103/PhysRevD.56.653
https://arxiv.org/abs/hep-ph/9701423
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9701423


J
C
A
P
0
8
(
2
0
1
9
)
0
1
2

[15] G.N. Felder and I. Tkachev, LATTICEEASY: a program for lattice simulations of scalar fields
in an expanding universe, Comput. Phys. Commun. 178 (2008) 929 [hep-ph/0011159]
[INSPIRE].

[16] A.V. Frolov, DEFROST: a new code for simulating preheating after inflation, JCAP 11 (2008)
009 [arXiv:0809.4904] [INSPIRE].

[17] R. Easther, H. Finkel and N. Roth, PSpectRe: a pseudo-spectral code for (p)reheating, JCAP
10 (2010) 025 [arXiv:1005.1921] [INSPIRE].

[18] Z. Huang, The art of lattice and gravity waves from preheating, Phys. Rev. D 83 (2011) 123509
[arXiv:1102.0227] [INSPIRE].

[19] S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72 (2005)
043514 [hep-th/0506236] [INSPIRE].

[20] R.A. Isaacson, Gravitational radiation in the limit of high frequency. II. Nonlinear terms and
the effective stress tensor, Phys. Rev. 166 (1968) 1272 [INSPIRE].

[21] P. Adshead, R. Easther and E.A. Lim, The ‘in-in’ formalism and cosmological perturbations,
Phys. Rev. D 80 (2009) 083521 [arXiv:0904.4207] [INSPIRE].

[22] S. Weinberg, Ultraviolet divergences in cosmological correlations, Phys. Rev. D 83 (2011)
063508 [arXiv:1011.1630] [INSPIRE].

[23] W. Pauli and F. Villars, On the invariant regularization in relativistic quantum theory, Rev.
Mod. Phys. 21 (1949) 434 [INSPIRE].

[24] T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11
(1975) 2856 [INSPIRE].

[25] F. Arroja and T. Tanaka, A note on the role of the boundary terms for the non-Gaussianity in
general k-inflation, JCAP 05 (2011) 005 [arXiv:1103.1102] [INSPIRE].

[26] G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst.
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