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Abstract. We revisit dark matter (DM) capture in celestial objects, including the impact
of multiple scattering, and obtain updated constraints on the DM-proton cross section using
observations of white dwarfs. Considering a general form for the energy loss distribution
in each scattering, we derive an exact formula for the capture probability through multi-
ple scatterings. We estimate the maximum number of scatterings that can take place, in
contrast to the number required to bring a dark matter particle to rest. We employ these
results to compute a “dark” luminosity LDM, arising solely from the thermalized annihilation
products of the captured dark matter. Demanding that LDM not exceed the luminosity of
the white dwarfs in the M4 globular cluster, we set a bound on the DM-proton cross sec-
tion: σp . 10−44cm2, almost independent of the dark matter mass between 100 GeV and
1 PeV and mildly weakening beyond. This is a stronger constraint than those obtained by
direct detection experiments in both large mass (M & 5 TeV) and small mass (M . 10 GeV)
regimes. For dark matter lighter than 350 MeV, which is beyond the sensitivity of present
direct detection experiments, this is the strongest available constraint.
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1 Introduction

A weakly interacting massive particle (WIMP) is a well-motivated candidate for dark matter
— a scenario that can be tested in a variety of different ways [1]. Theories that address
the relative smallness of the electroweak scale can “miraculously” predict a relic WIMP
density that is consistent with the observed cosmological dark matter density [2]. However,
in addition to the so-called WIMP miracle, it is the eminently testable nature of WIMPs
that has driven the experimental search for said particles. They are generically predicted to
have non-negligible interactions with Standard Model (SM) particles: they can be produced
at colliders, can directly collide with SM particles in the lab and elsewhere, and can be
indirectly detected through the anomalous fluxes of SM particles from their annihilations.

The very same vaunted testability of WIMPs has however led to some degree of disap-
pointment at not having seen a positive signal yet. Searches using the Large Hadron Collider
(LHC) haven’t found any trace of new physics up to the TeV scale [3, 4]. As a result, the
parent theories now appear to be less well-motivated. The strongest challenge to WIMPs
has however come from direct detection experiments that have improved the constraints by
many orders of magnitude in the past decade [5–7]. For masses around tens of GeV the
constraints are now strong enough to disfavor large parts of parameter space motivated by
the parent theories. Indirect searches for such dark matter particles have also largely yielded
null results [8].

Making further progress appears challenging. LHC searches will continue, but not
explore significantly higher energies. The more sensitive direct detection experiments will
soon reach a scale that will be difficult to improve upon. In addition, they will have to
contend with the background due to neutrino-nucleon scattering [9], making dark matter
searches more difficult. On the indirect detection front, it appears that uncertainties in
backgrounds and systematics will continue to plague the attempts to extract a signal for
dark matter annihilation.
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Figure 1. A dark matter coming in from infinity with velocity u enters the celestial object, e.g., a
white dwarf, with velocity w. After this, it scatters one or more times, losing energy, and ultimately
its velocity falls below the escape velocity of the white dwarf whence it enters a closed orbit. During its
subsequent passages through the star, it will lose more and more energy before finally being captured.

Nevertheless, it is now being appreciated that the WIMP paradigm is not as constrained
as one might naively think. For one, the allowed range of masses for WIMP-like dark matter
is larger than previously emphasized. While the hope for new physics at the TeV scale has
not yet been met, as far as the WIMP miracle is concerned, the mass range for WIMPs
can be quite wide — larger than ∼ keV, so that the dark matter is cold, but smaller than
∼ 100 TeV, so that its annihilation rate does not violate unitarity. Throughout this mass
range, WIMPs can produce the observed cosmological density with a suitable annihilation
rate [10]. Direct detection experiments are not yet sufficiently sensitive at the lower dark
matter masses (. 1 GeV) and the possibility of such sub-GeV dark matter remains open [11–
13]. Even the upcoming and planned new detectors, will only constrain dark matter heavier
than ∼ 350 MeV [14]. For even lighter dark matter masses, in the MeV range, electron recoil
experiments can be more relevant but their sensitivity is also rather modest [15–19]. Interest-
ingly, for indirect detection even in the canonical tens-of-GeV range, the perceived stringent
constraints are only for annihilations to specific channels and the less model-dependent con-
straints are not very stringent [20]. Obviously, the annihilations to neutrinos are much harder
to probe. At larger WIMP masses, the constraints are significantly weaker. Thus, it is worth-
while to re-evaluate the multipronged search strategy for WIMP-like dark matter, recognizing
the wider putative range of WIMP masses and unexplored territory.

In this paper, we revisit one prong of this strategy — the search for signatures of WIMP-
like dark matter captured in celestial objects. This search can probe really weak interactions
between WIMPs and SM particles, while being practically insensitive to the dark matter mass
and annihilation channel. Thus, though the bounds require astrophysical modeling, they are
quite strong at low and high masses and are insensitive to many particle physics details.

A dark matter particle in the galactic halo, while passing through an astrophysical
object, such as the Earth, the Sun, white dwarfs, and neutron stars etc., can lose its kinetic
energy by colliding with the protons, neutrons, nuclei, and electrons in the medium. If, as a
result, the dark matter particle is slowed to below the object’s escape velocity, it gets captured
(see figure 1). The quantitative description of the capture of dark matter by scattering with
nucleons was developed by Press and Spergel [21] and by Gould [22–25].
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These captured dark matter particles have several interesting signatures. Over time,
the number density of captured dark matter particles increases within the celestial object,
and dark matter may begin to appreciably annihilate. As long as these annihilations are into
particles that can thermalize with the medium other details become unimportant and they
essentially only heat up the celestial object. Astrophysical observations can be sensitive to
such anomalous heating and offer a powerful search strategy. As an example, neutrino signals
in terrestrial neutrino detectors from such captured dark matter within the Sun has been
studied in literature earlier [26–33]. Others have calculated the effect of this accumulated
dark matter on cooling of celestial objects [34–37], or have compared the dark luminosity
with the observed luminosity to provide stringent constraints on dark matter interactions
with SM particles [35, 38, 39]. More recently, limits on DM-nucleon cross section have also
been obtained from non-observation of collapse of massive white dwarfs [40] or from neutron
star heating [41–44].

Most of the earlier treatments assume that the dark matter particle is captured either
after a single collision, or not at all. This is a reasonable approximation if the cross section
of interaction σ is small enough, so that the free streaming length λ of the dark matter
particle is as large as the size of the celestial object itself. However, this approximation fails
in two distinct ways, as recently pointed out by Bramante et al. [45]. Firstly, dark matter
that is much heavier than the target particles loses small amounts of energy per collision and
consequently requires multiple collisions to lose enough energy to be captured. For massive
dark matter with mass & 100 TeV, multiple scatterings can therefore play an important role.
Secondly, the smaller the radius of the celestial object, the more pronounced will be the effect
of multiple scatterings in capturing dark matter. This is understandable because the number
of scatterings inside the star is ∼ R/λ = nt σ R ' σ/R2, where nt is the number density of the
target particles inside the object. Obviously larger cross sections lead to higher probability
for multi-scatter capture. However, we should keep in mind that the cross section cannot be
arbitrarily large. The maximum allowed cross section is given by the geometrical cross section
per target particle σsat = πR2/Nt, where Nt is the number of target particles in the object.
In addition, there is yet another way in which the single scattering approximation fails — if
the differential scattering cross section for the dark matter collisions is forward peaked. Here
too, energy loss in a single collision is typically small, and the cumulative effect of multiple
collision may dominate. In this work, we will not dwell too much on this third possibility
but the formalism we will develop here is capable of including this possibility as well.

In this work, we improve the treatment of the multi-scatter capture of dark matter in
celestial objects and derive constraints using observed white dwarfs. In section 2, we reca-
pitulate the original treatments by Gould [22–25] and the more recent treatment of capture
via multiple scattering by Bramante et al. [45]. We make conceptual and technical improve-
ments in the underlying formalism, treating the energy loss distribution more precisely. We
calculate the rate of capture of dark matter through multiple scatterings and its contribu-
tion to the luminosities of the stars. In section 3, we then follow the treatment of Bertone
and Fairbairn [35], and compare the dark luminosity with the luminosity of white dwarfs
observed in the M4 globular cluster. With the inclusion of multiple scattering, we find that
for very heavy dark matter with masses& 5 TeV where multiple scattering is important, we
are able to place stronger constraints than were previously obtained. We are also able to
place completely new constraints on dark matter lighter than ∼ 350 MeV, and improve the
present limit on σp for sub-GeV dark matter from direct detection experiments by several
orders of magnitude. We finally conclude in section 4.
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2 Analytical calculation of capture rate

2.1 Review of previous treatments

A dark matter particle in the halo can be gravitationally attracted towards an astronomical
object, undergo one or more collisions inside the object, and eventually get captured. A
schematic diagram of such a scenario is shown in figure 1. Far away from the object, the
dark matter particle has a velocity u and when it reaches the surface of the object its velocity
increases to w, given by

w2 = u2 + v2
esc . (2.1)

The dark matter particle may undergo one or many scatterings as it transits through the
object. The velocity of the incoming dark matter particle decreases as a result of these
collisions with the target nucleons or electrons in the medium, and if eventually its velocity
vf becomes less than the escape velocity vesc, it is captured. Here, we are assuming that the
constituent particles of the astronomical object are at rest in the frame of the object. That
is, they have no thermal motions and the dark matter particle can only lose energy. This is
a good approximation when 1

2mDMv
2
esc & kBT , i.e., the dark matter is not too light and the

star is not too hot. For example, in a solar mass white dwarf with temperatures of around
106 K, this lower limit is approximately mDM & 6 MeV.

The rate of dark matter particle getting captured in the object depends not only on the
size of the object and the flux of dark matter particles, but also on the probability of collisions
and the probability of incurring energy loss. Therefore, the capture rate takes the form

Ctot =
∑

N

CN =
∑

N

πR2︸︷︷︸
area of the object

× pN(τ)︸ ︷︷ ︸
probability for N collisions

× nDM

∫
f(u)du

u
(u2 + v2

esc)︸ ︷︷ ︸
DM flux

× gN(u)︸ ︷︷ ︸
probability that vf ≤ vesc after N collisions

.(2.2)

The capture can occur after the N th collision, and the total rate is simply the sum of the
rates corresponding to each N . Here, πR2 is the area of the astrophysical object within which
the dark matter particle is captured. pN (τ) is the probability of a dark matter particle with
optical depth τ to undergo N scatterings. If we take into account all the incidence angles
encoded in the variable y, we have

pN(τ) = 2

∫ 1

0
dy

ye−yτ (yτ)N

N !
, (2.3)

where the optical depth τ = 3σNt/(2πR2), Nt being the total number of targets in the object
and σ is the DM-target interaction cross section.

The flux of the captured dark matter particles is given by the product of the dark matter
number density in the halo, nDM = ρDM/MDM, and their average velocity. The dark matter
energy density near the celestial object is denoted by ρDM and in the Solar vicinity it is taken
to be ∼ 0.3 GeV cm−3. However, in other overdense regions of the Universe it can be much
higher. f(u) is the velocity distribution function of the dark matter particle, that is usually
taken to be a Maxwell Boltzmann (MB) distribution

fMB(v) =

(
3

2πv̄2

) 3
2

4πv2 exp

[
−3v2

2v̄2

]
, (2.4)
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with v̄ ∼ 287.8 km s−1 being the rms velocity of the distribution. To account for the motion
of the Sun with respect to the rest frame of the galaxy, the distribution function in the Sun’s
rest frame is boosted and modeled as

fSun(v) = fMB(v) e−η
2 sinh(2xη)

2xη
, (2.5)

where x2 = 3v2/(2v̄2) and η2 = 3ṽ2/(2v̄2), ṽ ∼ 247 km s−1 being the velocity of the Sun
with respect to the dark matter halo. To derive analytic results, we use the usual Maxwell-
Boltzmann distribution in the next section. However, all the final results have been computed
(numerically) using the boosted distribution, wherever applicable.

The capture probability gN, i.e., the probability that the final velocity of dark matter
after N scatterings becomes less than vesc, i.e., vf ≤ vesc, is given by

gN(u) =

∫ 1

0
dz1

∫ 1

0
dz2 . . .

∫ 1

0
dzN s1(z1)× s2(z1, z2) . . . sN(z1, z2 . . . zN )

×Θ

(
vesc −

(
u2 + v2

esc

)1/2 N∏
i=1

(1− ziβ)1/2

)
. (2.6)

Here, zi is a random variate which takes values between 0 and 1 and encodes the energy lost
by the dark matter particle in the ith scattering. The kinetic energy that can be lost in a
scattering is given by ∆Emax = ziβE, where β = (4MDMMt)/(MDM +Mt)

2 is the maximum
fraction, with mt being the mass of the target particles. This variable zi is in fact closely
related to the scattering angle in the center of mass frame, i.e., z = sin2(θCM/2), as explained
in appendix A. Naturally, gN depends on the probability distributions for the scattering angle
encoded in si(z1, z2, . . . zi). Here we confine our discussion to the regime where the differential
cross section is independent of the scattering angle and hence all si(z1, z2, . . . zi) = 1. More
general choices of si can be considered without much more difficulty.

2.2 Exact formula for capture probability

In order to get captured, the final velocity of dark matter particle must become less than the
escape velocity. The probability that the dark matter particle with velocity w scatters to a
final velocity vf which is less than or equal to vesc after N number of scatterings is given by

gN(u) =

∫ 1

0
dz1

∫ 1

0
dz2 . . .

∫ 1

0
dzN Θ

(
vesc −

(
u2 + v2

esc

)1/2 N∏
i=1

(1− ziβ)1/2

)
, (2.7)

where the dzi integrals correspond to sum over all possible scattering trajectories. We com-
pute this integral analytically to find

gN(u) =
1

β

v2
esc

u2 + v2
esc

[
1

β
log

1

1− β

]N−1

−
(

1

β
− 1

)
. (2.8)

We interpret gN(u) as the probability that a dark matter particle with speed u at
infinity will get captured at its N th collision. See appendix A for a brief motivation behind
this interpretation. To ensure that gN is positive, we write it as

gN(u) =

[
1

β

v2
esc

u2 + v2
esc

[
1

β
log

1

1− β

]N−1

−
(

1

β
− 1

)]

×Θ

([
1

β

v2
esc

u2 + v2
esc

[
1

β
log

1

1− β

]N−1

−
(

1

β
− 1

)])
. (2.9)
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Figure 2. Typical number of scatterings required for a dark matter particle with velocity u to be
captured by a solar mass white dwarf with vesc ∼ 103 km s−1. The dashed lines are the approximate
results where each of the energy loss fractions, zi, was replaced by an “average” value of 1/2. The
thick solid curves are the maximum number of collisions required for a given u obtained using the
exact analytical result. Similarly, the thin lines represent the minimum. The dotted curves represent
the absolute minimum number of collisions required for capture, corresponding to the maximum loss
in kinetic energy, i.e., zi = 1.

This differs from the analogous expression in the previous work, where zi was replaced by its
average value of 1/2 [45], which instead gave

gapprox
N (u) = Θ

(
vesc

N∏
i=1

(
1− 1

2
β

)−1/2

− (u2 + v2
esc)

1/2

)
. (2.10)

The Θ function in eq. (2.9) sets an upper limit to the halo velocity u given by

u2
max ≤ v2

esc

[
1

1− β

(
1

β
log

1

1− β

)N−1

− 1

]
. (2.11)

This upper limit on u indicates that dark matter particles with arbitrarily large velocity
cannot typically be trapped by the celestial object after N scatterings. Furthermore, as gN(u)
is a probability, it should also satisfy the condition gN(u) ≤ 1. This imposes a lower limit
on u that was not apparent in the single scattering case where it is trivially satisfied. Here,
gN(u) ≤ 1 gives rise to the condition

u2
min ≥ v2

esc

[(
1

β
log

1

1− β

)N−1

− 1

]
. (2.12)
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This lower limit encodes that if the velocity of the incoming dark matter particle is be-
low this threshold then it is more likely to be captured already before the N th collision.
The expressions for minimum and maximum velocity depend on the assumed expression for
si(z1, z2, . . . zi), and the above expressions have been obtained with a uniform distribution,
and similar expressions can be obtained for more general choices.

2.3 Number of scatterings required for capture

The conditions 0 ≤ gN(u) ≤ 1 can also be reinterpreted in a slightly different way. It gives
the typical minimum and maximum number of collisions required to capture a dark matter
particle with a given velocity u,

1 +
log
[
(1− β)u

2+v2esc
v2esc

]
log

[
log 1

1−β
β

] ≤ Nreq ≤ 1 +
log
[
u2+v2esc
v2esc

]
log

[
log 1

1−β
β

] . (2.13)

One should not confuse this quantity with the typical maximum number of scatterings that
the dark matter can experience inside the celestial object before coming to rest. This latter
number depends not only on the capture rate in the object but also the life time of the object.

In figure 2, we show the typical maximum required number of scatterings as a function
of the dark matter velocity u. For smaller dark matter masses and smaller halo velocities,
our exact expression in eq. (2.13) (solid lines) is always staying larger than 1 and gives
a more meaningful result compared to the approximate result (dashed lines). This is ex-
pected, because multi-scatter capture is less viable for light dark matter particles, and the
approximation of replacing zi by its average value of 1/2 is inaccurate for small N [45]. The
improvement for smaller halo velocity u is also understandable on similar grounds. Lower
values of u imply a lower initial velocity w and consequently, it is more probable for the
dark matter particle to get captured after a few scatterings (lower N) rather than multiple
scatterings. Remarkably, Nreq is never smaller than 1 according to the result we obtain. The
dotted lines in figure 2 represent the absolute minimum number of collisions that is essential
for the dark matter to be captured from kinematical considerations alone. This happens
when the maximum about of kinetic energy is lost in each collision, i.e., when zi = 1 in
eq. (2.7). Note how the typical minimum number of collisions required (thin lines) is always
larger than this absolute minimum number.

2.4 Capture rate

Using the analytical expression for gN(u) in eq. (2.9), we can now evaluate the capture rate
for N -scattering. Using energy per unit mass ζ = u2/2 along with the definition of capture
rate in eq. (2.2), we find

CN = πR2 pN(τ)nDM

∫ ζmax

ζmin

f(ζ)dζ

ζ
(ζ + ζesc) gN(ζ) , (2.14)

where ζmax and ζmin can be obtained from eq. (2.11) and eq. (2.12) respectively and is given by

ζmax = ζesc

[
1

1− β

(
1

β
log

1

1− β

)N−1

− 1

]
, (2.15)
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and

ζmin = ζesc

[(
1

β
log

1

1− β

)N−1

− 1

]
. (2.16)

with ζesc = v2
esc/2.

Finally, using Maxwell Boltzmann distribution from eq. (2.14) capture rate for N -
scattering is

CN =

(
8

π

) 1
2

πR2 pN(τ)
nDM√
ζ̄

[
ζesc

βN

(
log

1

1− β

)N−1

p−
(

1

β
− 1

)
q

]
, (2.17)

where p and q are given as

p = exp

[
−ζmin

ζ̄

]
− exp

[
−ζmax

ζ̄

]
, (2.18)

and

q =
(
ζ̄ + (ζesc + ζmin)

)
exp

[
−ζmin

ζ̄

]
−
(
ζ̄ + (ζesc + ζmax)

)
exp

[
−ζmax

ζ̄

]
, (2.19)

with ζ̄ = v̄2/3.

2.5 Number of scatterings allowed in the object

It is obvious that the maximum number of scatterings that a dark matter particle can actually
undergo must also depend on the time over which such captures can take place. Roughly,
τCN gives the total number of dark matter particles that are captured at their N th collision
within the lifetime τ of the celestial object under study.

In figure 3, we show the total number of dark matter particles captured in the Sun,
Earth, a typical neutron star and white dwarf, with respect to the number of scatterings it
took to capture them within a time τ taken to be the age of the Universe. Note that the
number of particles captured particles after N & 10 or so is already smaller than 1, for a cross
section σ that we will see is marginally allowed. In contrast, the typical maximum number
of scatters needed to capture WIMPs, as shown in figure 2, are much larger. This means
that the capture rate is dominated by the low-velocity part of the galactic dark matter halo
or they are extremely rare events.

It is easy to see that the CN are monotonically decreasing, so that if τ CN < 1, on
average less than one dark matter particles is captured after more than N collisions. Thus,
high-N captures are exceedingly rare because the CN are exponentially decreasing with N .
We use this physically derived criterion to truncate the series in CN where τ CN = 1.

3 Results

3.1 Luminosity via multi-scatter capture and constraints from white dwarfs

We now consider the capture of dark matter inside white dwarfs. White dwarfs are domi-
nantly made up of carbon nuclei, which we take to be the target particle. For the range of
dark matter masses that are of interest to us in this work, the typical average momentum
transferred to a carbon nuclei inside a solar mass white dwarf is .MeV. This turns out to

– 8 –
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Figure 3. Number of particles captured after N collisions during the life time of the different celestial
objects plotted against the number of collisions N . Note that, here σ denotes the interaction cross
section with the relevant target. For example, in Earth the target nucleus is taken to be that of iron
while for neutron stars it is simply a neutron. The density of dark matter, for simplicity, has been
taken to be the that around the solar system, i.e., 0.3 GeV cm−3.

be much larger than the inverse of the de Broglie wavelength of the nucleus, which is less
than a fm−1. Thus, we can treat the relevant collisions to be coherent and elastic. More
precisely, the form factor which describes the loss of coherence in case of large energy trans-
fers turns out to be ∼ 1 for low momentum transfers. For example, using the Helm form
factor [46], we find that for a 10 GeV dark matter F 2

Helm ∼ 0.8 for the maximum possible
momentum transfers. For higher dark matter masses, it goes down to ∼ 0.3 and saturates to
this constant value.

To compare with the present direct detection limits, we will translate the DM-carbon
cross section σ to DM-proton cross section σp. As we are in the regime of coherent scat-
tering, for spin-independent interactions and assuming equal contributions from protons and
neutrons, this translation is simply given by [47]

σ =
µ2
N

µ2
p

A2σp .

Here, µN and µp are the reduced masses of the dark matter-nuclei and dark matter-proton
system. The ratio µN/µp is ∼ 1 for light dark matter particles MDM .Mp and rises to ∼ 12
for the heavier MDM �Mcarbon.

The number of captured dark matter particles Ncap evolves as dNcap/dt = Ctot −
AN2

cap/2, where A is the annihilation rate of the self-conjugate WIMP. As long as the capture

– 9 –
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Figure 4. Dark luminosity from annihilation of captured dark matter particles for multiple and single
scatterings with carbon nuclei. σ denotes the interaction cross section of dark matter with the target.

and annihilation processes are in equilibrium,1 the dark luminosity LDM arising solely from
annihilation of captured dark matter particles is given by the mass capture rate MDMCtot.
This additional luminosity is expected to thermalize inside a white dwarf, as long as the
annihilation products are SM particles.2

In figure 4, we plot the dark luminosity LDM as a function of the dark matter mass. For
collision with carbon nuclei inside solar mass white dwarfs, we note that multi-scatter capture
becomes important for dark matter masses & 10 TeV. This is still an order of magnitude
below the unitarity bound ∼ 100 TeV [48], and relevant to canonical thermal WIMPs that
are elementary particles.

To obtain constraints on the dark matter interaction cross section, we now compare
the dark luminosity LDM, which depends mainly on the dark matter properties and the
radius of the white dwarf, to the observed luminosities of M4 white dwarfs. McCullough and
Fairbairn [39] reported independent measurements of luminosity Lobs and temperature Tobs

of a few dozen white dwarfs in the M4 cluster. These white dwarfs are unique in that they
are among the oldest known celestial objects and are used extensively to study the age of
the Universe itself [49]. In the absence of a dominant burning mechanism inside these dead

1To ensure that the equilibration time ≤ tage, the 〈σav〉 must be larger than ∼ 10−56 cm3 s−1 which is
obviously much smaller than expected for thermal WIMPs.

2For the range of energies considered here, all SM particles, including neutrinos, are expected to thermalize
inside a white dwarf.

– 10 –
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Figure 5. Dark luminosity arising from annihilation of captured dark matter compared with the
observed white dwarf luminosities. The dark matter mass was fixed at 400 MeV and five benchmark
dark matter-proton cross sections are shown. The topmost curve corresponds to the luminosity when
DM-nuclei cross section takes its effectively maximum value, i.e, σsat. The lower curves correspond to
smaller cross sections, with the curve marked by σp = 3 × 10−43 cm2 being just excluded. The local
dark matter density in the M4 cluster is taken to be ∼ 103 GeV cm−3 [39] and the dispersion velocity
to be ∼ 20 km s−1 [39].

stars, they are assumed to be nearly perfect black body emitters. Under this assumption, if
the luminosity and temperature of a white dwarf are independently measured, we can infer

its radius to be R =
(
L/(4πσ0T

4)
)1/2

. We next calculate the mass capture rate, i.e., LDM,
using the procedure described in section 2, for a fixed dark matter mass and interaction cross
section, as a function of the white dwarf radius. Demanding that this dark luminosity should
not exceed Lobs for a white dwarf of known radius, we impose an upper bound on the dark
matter cross section for a given dark matter mass.

In figure 5, the solid lines denote the predicted dark luminosity LDM as a function of the
white dwarf radius, for several benchmark DM-proton cross sections and a fixed dark matter
mass (400 MeV). The position of each colored dot denotes the observed luminosities of a
white dwarf and its radius inferred through an independent measurement of its temperature,
as explained before. The observed temperature is encoded in color, as per the shown color-
bar. The topmost solid line, marked by σsat denotes the maximum attainable dark luminosity
when the cross section reaches its saturation limit. As argued, LDM must be smaller than
the Lobs. Hence, we find that a DM-proton cross section σp ∼ 10−42 cm2 is in tension with
the lower luminosity white dwarfs.

In figure 6 we furnish an upper bound on σp as a function of the dark matter mass.
This is obtained by demanding that the dark luminosity contribution to the low luminosity

– 11 –



J
C
A
P
0
8
(
2
0
1
9
)
0
1
8

Figure 6. Upper bound on the DM-proton cross section (solid black line) from the observed luminos-
ity of 2.5× 1031 GeV s−1 and a derived radius of ∼ 9× 106 m from a white dwarf in the M4 cluster.
Related exclusion limits from direct detection experiments, CRESST-III [14] and CDMSlite [50] in the
low mass regime and XENON-1T [51] in the high mass regime, that provide the most stringent bounds.
The dashed black line corresponds to σsat (translated to nucleonic cross sections). Above this, in the
light gray shaded region, any cross section is essentially equivalent to σsat and ruled out alike.

white dwarf represented by the right-most red point in figure 5 be smaller than its observed
luminosity. The observed luminosity of this white dwarf is ∼ 2.5×1031 GeV s−1. We assume,
that in the worst case scenario, all of this luminosity comes only from burning of trapped
dark matter inside the star. The radius of this white dwarf is inferred to be ∼ 9 × 106

m. The most stringent bounds obtained from different direct detection experiments in the
light and heavy dark matter regimes are shown for comparison. Notice that the constraint
is practically independent of the dark matter mass and, unlike the corresponding constraint
from direct detection experiments, it remains quite strong at lower and higher dark matter
masses. This is simply because LDM = MDMCtot, while Ctot itself scales as 1/mDM due to its
dependence on dark matter number density. As a result the dark matter mass-dependence
cancels out and the constraint is practically mass-independent in this range. The weak mass-
dependence of the constraint on the DM-proton cross section σp, is due the presence of the
form factor and the ratio of the reduced masses, both of which depend on the dark matter
mass. The dark-gray shaded region in figure 6 corresponds parameter space excluded by our
results. Cross sections exceeding σsat (above the dashed line) are also excluded, but at the
same significance as at the dashed line.

The constraints obtained here are highly competitive. In the low-mass regime, i.e., below
10 GeV, it is the strongest available bound. For such light dark matter masses, the constraint
from direct detection experiments is rather weak and we find that we were able to make an
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improvement of nearly 3–7 orders of magnitude when compared with CRESST-III [14] or
CDMSlite [50]. Crucially, because of the signature mass-independence, one finds stringent
bounds for dark matter particles less than 350 MeV that are below the sensitivity of typi-
cal direct detection experiments. Likewise, in the high-mass regime above a few TeV, these
constraints are the strongest. In this regime the improvement due to multi-scattering is im-
portant.

3.2 Variations on the theme

It is possible that dark matter particles are leptophilic and thus only collide with electrons,
or perhaps have interactions that are not spin-independent. In these scenarios, and several
others, the calculation we perform can be repeated to obtain a corresponding constraint,
though they are not as strong. As an illustration of how the constraint changes, we rederive
our constraint for DM-electron scattering in solar mass white dwarfs. This is also motivated
by the fact that multiple scatterings are expected to become more important for much smaller
dark matter masses with electrons as targets.

When one considers electrons in a white dwarf, it becomes important to consider the
efficiency factor due to Pauli blocking. The electron is pushed to a higher momentum state
due to its collision with the incoming dark matter particle. However, this higher state may
or may not be available, owing to Pauli exclusion. Hence, while calculating the total capture
rate we have to include a corresponding efficiency factor [52, 53]

ξ = Min

[
1,
δp

pF

]
, (3.1)

where, δp ∼
√

2µr vesc, with µr being the corresponding reduced mass. The Fermi momentum
is pF = (3π2 nt)

1/3. For a solar mass white dwarf with R ∼ O(10−2)RSun, and for the range
of dark matter masses that we consider in this work, we find that for collisions with electrons
ξ ∼ 10−2, but with nucleons it is ∼ 1. So, we expect a suppression in case of collisions with
electrons but not with a nucleon (or other heavier nuclei). The dark luminosity LDM in the
case of collision with electrons inside a white dwarf is shown in figure 7. We see, unlike
the case with collisions against nuclei, here multi-scatter capture becomes important for
much lighter dark matter masses ∼ O(1) GeV, as expected. Unfortunately, with electrons as
targets, we find that even with the largest allowed cross section, i.e., σsat, the dark luminosity
LDM is always less than the observed luminosity of all the white dwarfs in the M4 globular
cluster. Hence, we are not able to constrain any physically relevant cross sections for a large
range of dark matter masses. The main source of this suppression in LDM in the case of
electrons comes from the efficiency factor due to the Pauli blocking as discussed earlier. If
somewhat colder white dwarfs are observed in future they would lead to very strong bounds.

The limits presented in this work concern only with the DM-proton spin-independent
cross sections. This is because, the white dwarfs are primarily rich in spin-zero carbon nuclei
which are the principal targets for the dark matter particles. To derive similar bounds on
DM-proton spin-dependent cross sections, one has to consider capture of dark matter through
collisions with targets having a net non-zero spin [54].

Recently several groups have explored scenarios where dark matter is captured inside
neutron stars due to its collision with electrons [42] and neutrons [41], and consequently
provided stringent projected constraints on σe and σn respectively. The limits we have
obtained for the DM-proton cross section are competitive.
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Figure 7. Dark luminosity from annihilation of captured dark matter particles for multiple and single
scatterings with electrons. σ denotes the total cross section of dark matter with the target electrons.

4 Summary

We have revisited the formalism for capture of dark matter in celestial objects and, upon
making improvements to the same, obtained constraints on the dark matter interactions
with SM particles. One of the key improvements we have made are a careful consideration
of the energy loss in each collision, that we relate to the differential cross section. Further,
we have generalized the formalism to be able to include arbitrary energy loss distributions,
in contrast to the uniform distribution based on the assumption of a heavy mediator. We
then compute the capture probability after N scatterings exactly, that leads to well-behaved
results at low dark matter velocities. By studying the analytical results, we are able to
interpret the calculation more physically, which provides a clearer picture of the importance
of multiple scatterings.

As a concrete improvement, we calculated the dark luminosity of white dwarfs in the M4
globular cluster arising only from the annihilation of captured dark matter. With electrons
as targets, we found that even with the largest allowed cross section, i.e., σsat, the dark
luminosity is well below the observed luminosities. Thus, in order to obtain a constraint, one
would need to either model these stars accurately and estimate the non-dark contribution,
or find much colder white dwarfs. The main source of this suppression in LDM in the case of
electrons comes from the efficiency factor due to the Pauli blocking. More encouragingly, with
carbon nuclei as targets, this suppression is absent. We were thus able to place a constraint
on the DM-proton (or equivalently DM-nucleon) cross section σp that is stronger than direct
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searches. The improvement occurs mostly in the light (up to 7 orders of magnitude) and heavy
dark matter regions (∼ 1 order of magnitude). As a bonus, we found that our constraints
can be extended to lower dark matter masses (. 350 MeV), where there are no existing
bounds from terrestrial direct detection experiments. These bounds at lower masses are
much stronger than the recently reported constraints on very light dark matter due to their
interactions with cosmic rays [55, 56], though with very complementary systematics. As
caveats, we must note that the constraint is strongly dependent on the capture of low-velocity
dark matter particles and thus subject to the uncertainties in the velocity distribution of dark
matter in the M4 cluster. Microstructure in the dark matter density and velocity, e.g., due
to possible dark matter streams or disks, might affect these constraints strongly.
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A Kinematics and energy loss in one or more collisions

The kinematics of single elastic scattering dictate that the fractional energy loss ∆E/E is
restricted in the range

0 ≤ ∆E

E
≤ β , (A.1)

where

β =
4MDMMt

(MDM +Mt)2
, (A.2)

is the maximal energy loss fraction that itself is ≤ 1.
On the other hand, scattering to velocity vesc or less requires a minimum energy loss

∆E

E
≥ w2 − v2

esc

w2
=

u2

u2 + v2
esc

. (A.3)

Eq. (A.1) can be rewritten as
∆E = βE cos2 θrecoil, (A.4)

where the recoil angle θrecoil is related to the scattering angle in CM frame θCM by

θrecoil =
π

2
− θCM

2
. (A.5)

We define the collision parameter z = cos2 θrecoil which takes values in the range [0, 1].
If we denote the velocity after collision by vf , then, from the kinematics described above,
we get

vf = (1− z β)1/2
(
u2 + v2

esc

)1/2
. (A.6)

A simple extension of this result leads us to the expression of vN , the velocity after N

collisions. It is given by vN =
∏N
i=1(1 − ziβ)1/2

(
u2 + v2

esc

)1/2
, with zi being the collision

parameter for the ith scattering.
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The distribution of z is determined by the distribution of θCM, which in turn is dictated
by the differential cross section dσ/dΩ of the relevant scattering process,

s(z) =
1

σ

dσ

dΩ
, (A.7)

where Ω is the solid angle with dΩ = sin θ dθ dφ. As an example, consider a fermionic dark
matter with mass MDM whose interaction is mediated by a vector or a scalar of mass Mmed.
In the non-relativistic perturbative limit, the Born differential cross section of dark matter
self interaction is given by

dσ

dΩCM
=

α2
DM

2
DM(

M2
DMv

2
rel sin2(θCM/2) +M2

med

)2 , (A.8)

where αD is the interaction strength. When the mediator is much heavier than dark matter,
the differential cross section is approximately a constant with respect to the scattering angle.
In such scenarios, s(z), i.e., the distribution of z, is uniform. In the opposite limit of a very
light mediator, where dσ/dΩCM ∼ 1/sin4(θCM/2), the assumption of uniform distribution
function is a poor approximation. In this case, the distribution of cos2 θrecoil ≡ z goes
as 1/z2.

If the distribution of energy loss is uniform, as in the case for a massive mediator, then
using eq. (A.1) and eq. (A.3) the probability for the dark matter particle to scatter to a
velocity vesc or less turns out to be

g1(u) =
1

β

(
β − u2

u2 + v2
esc

)
Θ

(
β − u2

u2 + v2
esc

)
. (A.9)

The Θ function ensures the positivity of this probability and sets an upper limit on the
halo velocity u. This is understandable because a dark matter particle with an arbitrarily
large halo velocity cannot lose enough energy to get captured after a single collision. The
remainder of the expression has a simple interpretation: it is the range of energy loss that
leads to a successful capture, divided by the range of possible energy loss. For a uniform
distribution of the energy loss, this ratio is the probability that there is sufficient energy loss
that leads to a capture.

Eq. (A.9) can also be looked upon as a special case of the more general expression of
gN(u) presented in eq. (2.6), i.e.,

g1(u) =

∫ 1

0
dzΘ

(
vesc − (1− zβ)1/2(u2 + vesc)

1/2
)
. (A.10)

This, when integrated, yields eq. (A.9) as expected. Furthermore, if we use N = 1 in
the general expression for the capture rate CN as given in eq. (2.2), and use the fact that
p1(τ) ∼ 2τ/3 for y τ � 1 along with the definition of the optical depth τ , we find that
πR2p1(τ)→ σNt, where Nt is the total number of targets present within the celestial body.
Eq. (2.2) thus reduces to

C1 = σNt
∫
f(u)du

u
(u2 + v2

esc) g1(w) (A.11)

Therefore, we recover the familiar result for single scatter capture as a limiting case of the
general framework of capture through multiple scatterings, as presented here.
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