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1 Introduction

Black holes are massive objects in the universe, and they exhibit various features of gravity.
A significant feature of a black hole is its event horizon, through which no matter is able
to escape. This is also applicable to light, such that an outside observer cannot detect any
radiation from the inside of a black hole. From the perspective of quantum physics, there is an
energy radiated from the black hole, such that, according to Hawking radiation, black holes
can be treated as a thermodynamic system that remains in Hawking temperature [1, 2].
The mass of a black hole can be divided into two types: irreducible mass, and reducible
energy [3–5]. The irreducible mass increases in any irreversible process. However, the mass
of a black hole can decrease, as with the Penrose process [6]. Here, reduced mass is the
reducible energy among the energy of a black hole. This reducible energy includes electric and
rotational energies, and it can be reduced by external fields or particles. In thermodynamics,
the irreducible property of entropy is similar to that of irreducible mass, and the Bekenstein-
Hawking entropy of a black hole is given to be proportional to the square of the irreducible
mass [7, 8]. According to these definitions of the temperature and entropy of a black hole,
the laws of thermodynamics are defined.

Recently, the thermodynamic pressure and volume of the black hole can be introduced
into the laws of thermodynamics. Here, pressure is defined by the cosmological constant as
a dynamic variable. In fact, the dynamic cosmological constant is a concept that has been
assumed for some time [9, 10]. Since then, the cosmological constant has been introduced
to reflect pressure in the spacetime of a black hole [11, 12]. According to the laws of ther-
modynamics, furthermore, a thermodynamic conjugate must be introduced to the pressure.
This conjugate is the thermodynamic volume of the black hole [13, 14]. The combination
extends the first law of thermodynamics with the PV term [15]. Here, the mass of a black
hole does not correspond to its internal energy, but rather to the enthalpy [16]. Since the
physical implication of the mass changes from internal energy to enthalpy, thermodynamic
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phenomena differ depending on whether the PV term is included. In particular, various
studies have focused on thermodynamic applications with the PV term [17–24].

The asymptotic geometry of a black hole with the negative cosmological constant is
anti-de Sitter (AdS) spacetime. For AdS spacetime, the gravity solution in a D-dimensional
bulk corresponds to conformal field theory (CFT) on the D−1-dimensional boundary [25–28].
This is the well-known AdS/CFT correspondence. According to this correspondence, physics
in the AdS bulk has an implication for CFT on its boundary. In particular, AdS black holes
play a significant role when introducing thermodynamic properties to the corresponding
CFT [29]. For example, an AdS black hole corresponds to finite-temperature CFT, but the
AdS spacetime corresponds to zero temperature. According to AdS/CFT correspondence,
AdS solutions are connected to various physical situations. As a representative application,
an extended correspondence is found to associate with condensed matter theory (CMT),
referred to as AdS/CMT correspondence [30, 31]. Here, the correspondence to the charged
AdS black hole is found to be holographic superconductors [32–36].

Solutions to black holes have a singularity at their inside. Indeed, the existence of
this singularity is inevitable according to Einstein’s theory of gravity [37]. Since a naked
singularity without a horizon causes problems in terms of causality, the cosmic censorship
conjecture states that the singularity should be hidden to an observer in the spacetime of
a black hole [38, 39]. There are two forms of this conjecture, depending on the kind of
observer. The weak cosmic censorship (WCC) conjecture, our main focus, suggests that the
singularity is invisible to an asymptotic observer owing to the horizon. Hence, the horizon
should be stable. The other is the strong cosmic censorship (SCC) conjecture, in which
the singularity is invisible to all observers. The first test of the WCC conjecture involved
adding a particle to the Kerr black hole [40]. Regarding extremal Kerr black holes, this test
demonstrated the validity of the WCC conjecture. Notably, there is no generalized proof
for a test of the WCC conjecture, so each investigation can come to a different conclusion
depending on its assumptions. For instance, the horizon of a near-extremal Kerr black hole
can be unstable with the addition of a particle [41]. This invalidity differs from the validity
supposed in an extremal black hole. Subsequently, if self-force or back-reaction is introduced,
the instability is resolved, and the WCC conjecture becomes valid for near-extremal black
holes [42–46]. Further, this is closely related to the physical process and thermodynamics
of black holes [47]. Similar studies have been conducted in Reissner-Nordström black holes
with a particle [48, 49]. Indeed, the WCC conjecture is continuously tested in various black
holes [50–66]. We can expect that the existence of the PV term affects the validity of the
WCC conjecture when adding a particle. Fortunately, when testing a charged AdS black
hole, the validity of the WCC conjecture was demonstrated with the PV term [67].

The WCC conjecture can also be investigated under the scattering of external fields,
rather than through the addition of a particle. Here, the responses in the black hole depend
on the scattered field contents, such as its modes and spin number, which are not considered
when adding a particle. In consideration of scalar and Maxwell fields, various tests for the
WCC conjecture were conducted [68–72]. In particular, the WCC conjecture was tested in
the extremal Kerr-Newman AdS black hole by a scalar field [71]. For a Kerr–(anti-)de Sitter
black hole, the WCC conjecture was proven valid in both extremal and near-extremal cases,
because there is a limit to the transfer of energy from the scalar field to the black hole
during a given time interval [73]. Actually, the scattering of an external field has distinct
features compared to cases of a particle. The superradiance is a process when extracting the
energy of a black hole from the radiation as it scatters with an external field given under
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specific conditions [74, 75]. Since the radiation can be amplified according to the asymptotic
geometry, it is associated with the instability of a black hole. In cases of AdS black holes,
the instability depends on their size under superradiance. For example, small Kerr-AdS
black holes are unstable, but large ones are stable [76–81]. Superradiance has been studied
recently in various AdS black holes [82–87]. Further, the scattering of external fields plays
an important role when testing the SCC conjecture, and the decay rate of its quasinormal
modes is significant.

In this paper, we investigate the WCC conjecture in D-dimensional charged AdS black
holes in consideration of thermodynamic pressure and volume by the scattering of the charged
scalar field. To our knowledge, this is the first study of the WCC conjecture with the PV
term by the charged scalar field. As the scalar field flowing into the black hole affects not only
the mass of the black hole but also its volume, changes in the black hole differ considerably
given the addition of the PV term. Therefore, we expect that the PV term will be significant
to the laws of thermodynamics and the WCC conjecture. We begin with the Lagrangian for
a nonminimally coupled massive scalar field with an electric charge. Then, we obtain the
energy and charge carried into the black hole in terms of the energy and charge fluxes of the
scalar field at the outer horizon. According to the fluxes, the state in the final black hole can
be estimated from the initial state after an infinitesimal time interval. Under this process,
the changes in the black hole come together to produce the first law of thermodynamics with
the PV term. However, the second law of thermodynamics is violated, because Bekenstein-
Hawking entropy is reduced when the initial state is a near-extremal black hole (including an
extremal black hole). This violation is only observed in the case with the PV term. Then,
the WCC conjecture is investigated in a near-extremal black hole. Under the scattering, the
mass and charge of the black hole change as much as those transferred by the fluxes of the
scalar field, but the initial extremality is invariant. This implies that the extremal black
hole is still extremal, and that a near-extremal black hole remains near-extremal. Even if
the second order of the variation is considered, the black hole cannot be overcharged beyond
the extremal condition. This is because we consider the scattering of the charged scalar field
under which the carried energy and charge have a limit during the infinitesimal time interval.
Therefore, by scattering the charged scalar field, we prove the validity of the WCC conjecture.
Further, we apply our analysis to the saturation of the black hole with the potential of the
scalar field. Based on the changes in the black hole, our analysis shows that the saturation
of the black hole takes the very long time.

This paper is organized as follows: section 2 reviews the charged AdS black hole and
thermodynamics with the thermodynamic pressure and volume; section 3 obtains the charged
scalar field equations at the horizon of the charged AdS black hole; section 4 tests the laws
of thermodynamics with the PV term in the charged AdS black hole; section 5 validates the
WCC conjecture in extremal and near-extremal AdS black holes with the PV term; section 6
discusses the change in the electric potential of the charged AdS black hole during scattering
of the charged scalar field. Section 7 summarizes our results.

2 Thermodynamics with pressure and volume in AdS black holes

We consider an electrically charged AdS black hole in higher dimensions (including four
dimensions). We derive a solution to Einstein-Maxwell gravity theory with a negative cos-
mological constant in D-dimensional spacetime. The action is given as

S = − 1

16π

∫
dDx
√
−g (R− FµνFµν − 2Λ) , (2.1)
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where the curvature is denoted by R. The field strength Fµν and cosmological constant Λ
are defined in terms of the gauge field Aµ and AdS radius ` as

Fµν = ∂µAν − ∂νAµ, Aµ = −δ0
µ

Q

rD−3
, Λ = −(D − 1)(D − 2)

2`2
. (2.2)

Then, the solution to the charged AdS black hole is obtained from field equations of the
action in eq. (2.1). The metric is

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2dΩD−2, ∆(r) = r2 − 2M

rD−5
+

Q2

r2D−8
+
r4

`2
, (2.3)

where M and Q are mass and electric charge parameters, respectively. The metric and surface
area of (D − 2)-sphere ΩD−2 are denoted by

dΩD−2 =
D−2∑
i=1

 i∏
j=1

sin2 θj−1

 dθ2
i , θ0 ≡

π

2
, θD−2 ≡ φ, ΩD−2 =

2π
D−1
2

Γ(D−1
2 )

. (2.4)

There are two horizons satisfying ∆(r) = 0: the inner horizon, and the outer horizon. Here,
we focus on the WCC conjecture and thermodynamics, so the outer horizon is mainly con-
sidered and denoted by rh. Note that the metric in eq. (2.3) becomes a Reissner-Nordtröm
AdS black hole in four dimensions. The mass and electric charge of the black hole depend
on the dimensionality of the spacetime [88].

MB =
(D − 2)ΩD−2

8π
M, QB =

(D − 2)ΩD−2

8π
Q. (2.5)

Here, we consider the extended thermodynamics given in a D-dimensional charged AdS black
hole. The extended thermodynamics include the pressure and volume, where the cosmolog-
ical constant is defined for the thermodynamic pressure P . The cosmological constant is
considered a fixed value in the action of eq. (2.1), and its mathematically incompleteness is
clear. In this extension, the cosmological constant is an effective value originating from the
expectation value of gravity theory [14]. This implies that the variation of the cosmological
constant is effective shorthand for denoting the decay into a different vacuum expectation
value. The thermodynamic volume VB is defined as the conjugate variable of the pressure.
According to the PV term, the extended thermodynamics is well constructed [13, 15]. The
definitions for thermodynamic pressure and volume are [89]

P = − Λ

8π
=

(D − 1)(D − 2)

16π`2
, VB =

ΩD−2

D − 1
rD−1

h . (2.6)

The Hawking temperature of the black hole is given as

Th =
1

4π

(
d∆h

r2
h

)
=

1

4πrh`2

(
(D − 1)r2

h + (D − 3)`2 − (D − 3)Q2`2

r2D−6
h

)
, d∆h =

∂∆

∂r

∣∣∣
r=rh

.

(2.7)

Further, Bekenstein-Hawking entropy and electric potential are given at the outer horizon as

Sh =
ΩD−2r

D−2
h

4
, Φh =

Q

rD−3
h

. (2.8)
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When we consider the thermodynamic pressure and volume, the mass of the black hole is
defined as its enthalpy [14, 16].

MB = UB + PVB, (2.9)

where the internal energy UB plays an important role in our analysis of the WCC conjecture.
Then, when the cosmological constant is varied, the change in the mass of the black hole
is derived and given by the first law of thermodynamics with the terms for pressure and
volume [89, 90].

dMB = ThdSh + ΦhdQB + VBdP, (2.10)

where the Legendre transformation is applied. Here, the change in the mass is clearly related
to the pressure and volume. This cannot be seen from the first law without the PV term.
Therefore, according to an external field such as the charged scalar field, the change in the
black hole should be balanced in consideration of the PV term. Then, it will have physical
implications that differ from the case without the PV term.

3 Solution to charged scalar field equation

Black holes can obtain conserved quantities, such as energy, momenta, and electric charge, by
the scattering of an external field. The amount of conserved quantities taken into the black
hole is given as the fluxes of the scattered external field. As much as the fluxes, the black
hole can change its states while interacting with the external field. According to the fluxes,
we can estimate the change in the black hole during an infinitesimal time interval. Here, we
investigate the scattering of the nonminimally coupled massive scalar field with an electric
charge to the charged AdS black hole in D-dimensional spacetime. Then, the solution to the
charged scalar field is obtained at the outer horizon to obtain its fluxes. The action of the
charged scalar field is

SΨ = −1

2

∫
dDx
√
−g
(
DµΨDµΨ∗ + (µ2 + ξR)ΨΨ∗) , (3.1)

where the spacetime dimension is assumed to be D ≥ 4. Owing to a scalar field with electric
charge q, we consider the covariant derivative Dµ = ∂µ− iqAµ. The scalar field has the mass
µ and nonminimal coupling ξ with the curvature. There are two field equations, including
the complex conjugate.

1√
−g
Dµ
(√
−ggµνDνΨ

)
− (µ2 + ξR)Ψ = 0,

1√
−g
D∗
µ

(√
−ggµνD∗

νΨ∗)− (µ2 + ξR)Ψ∗ = 0,

(3.2)

where we mainly focus on the solution to Ψ, because the solution to Φ∗ is simply the complex
conjugate to that of Ψ. According to eqs. (2.3) and (2.4), the determinant of the metric is
simply noted as

√
−g = rD−2

D−3∏
j=0

sinD−2−j θj . (3.3)

Then, substituting the gauge field in eq. (2.2), the separable equation with respect to Ψ is
obtained as

1√
−g

∂µ(
√
−ggµν∂νΨ)− 2iqA0g

00∂0Ψ− q2g00(A0)2Ψ− (µ2 + ξR)Ψ = 0. (3.4)
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The solution to the scalar field is

Ψ(t, r, θ, φ) = e−iωtR(r)Ylm(θ1, θ2, . . . θD−2), (3.5)

where Ylm(θ1, θ2, . . . θD−2) is the hyperspherical harmonics on a (D − 2)-dimensional
sphere [91]. The hyperspherical harmonics has its eigenvalue given as −l(l+D−3). Then, the
field equation in eq. (3.4) is separated into radial and angular parts. The radial equation is [92]

−r
2

∆

(
−iω+iq

Q

rD−3

)2

R− l(l+D−3)

r2
R+

(D−4)∆

r3
∂rR+

1

r2
∂r(∆∂rR)−(µ2+ξR)R= 0,

(3.6)

where information regarding the angular momentum of the scalar field is simply compressed
into the eigenvalue of the hyperspherical harmonics in eq. (3.6). Since we consider a static
black hole, the detailed values of the angular momentum of the scalar field are not important
to our analysis. Note that the angular equations can be recurrently written in terms of the
Laplace-Beltrami operator.

∇2
θi
Ylm = (sin θi)

2+i−D ∂

∂θi

(
(sin θi)

D−2−i ∂

∂θi
Ylm

)
+

1

sin2 θi
∇2
θi+1

Ylm, (3.7)

where ∇2
θi

is the Laplace-Beltrami operator on the (D − 1− i)-dimensional sphere.

The nontrivial behavior of the charged scalar field comes from the radial solution to
eq. (3.6). The radial solution can be obtained in simple form in the tortoise coordinate
defined as

dr∗

dr
=
r2

∆
, (3.8)

where the radial range of rh ≤ r < +∞ becomes that of −∞ < r∗ ≤ 0. Then, the radial
equation in eq. (3.6) is rewritten in the tortoise coordinate as

d2R
dr∗2 +

(D−2)∆

r3

dR
dr∗

+

((
ω− qQ

rD−3

)2

−∆

r2

(
(µ2+ξR)r2+

l(l+D−3)

r2

))
R= 0. (3.9)

Here, we need to consider the fluxes of the charged scalar field entering inside of the black
hole through its outer horizon. Hence, the radial solution at the outer horizon provides the
fluxes. In the limit of r → rh, the radial equation in eq. (3.9) becomes a Schrödinger-like
equation.

d2R
dr∗2 +

(
ω − qQ

rD−3
h

)2

R = 0, (3.10)

where the mass and nonminimal coupling term of the scalar field in eq. (3.9) is removed
owing to ∆(rh) = 0. Then, the electric interaction only contributes to the radial solution.
The radial solution of the scalar field at the outer horizon is

R(r) = e
±i
(
ω− qQ

rD−3
h

)
r∗

. (3.11)
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The ingoing field is the minus sign in eq. (3.11), and the outgoing field is the plus sign. We
select the former to represent the scalar field entering the outer horizon under the scattering.
Therefore, the solutions of the two scalar fields are obtained as

Ψ = e−iωte
−i
(
ω− qQ

rD−3
h

)
r∗

Ylm(θ1, θ2, . . . θD−2), Ψ∗ = eiωte
i

(
ω− qQ

rD−3
h

)
r∗

Y ∗
lm(θ1, θ2, . . . θD−2).

(3.12)

Then, the exact forms of the scalar fields at the outer horizon can be estimated from eq. (3.12),
and these solutions are assumed to the boundary condition for the scalar field at the outer
horizon. According to the solutions, transferred fluxes into the black hole can be obtained
through the energy-momentum tensor of the scalar field.

4 Thermodynamics under charged scalar field

Here, we investigate changes in a charged AdS black hole owing to ingoing fluxes of the
scattered scalar field. Flowing into the black hole, the energy and electric charge of the
scalar field will vary as much as those of the black hole. Hence, depending on the energy and
charge, properties of the black hole undergo changes that are expected to satisfy a specific
relation between them. We show the relation between the conserved quantities of a black
hole and the scalar field, considering the PV term. The carried energy and electric charge of
the scalar field are given as their fluxes at the outer horizon. These fluxes are obtained from
the energy-momentum tensor that

Tµν =
1

2
DµΨ∂νΨ∗ +

1

2
D∗µΨ∗∂νΨ− δµν

(
1

2
DµΨD∗µΨ∗ − 1

2
(µ2 + ξR)ΨΨ∗

)
.

The energy flux is the component T rt integrated by a solid angle on an SD−2 sphere at the
outer horizon. Further, we read the electric charge flux from the energy flux [93]. Then,
fluxes of energy and electric charge are

dE

dt
=

∫
T rt
√
−gdΩD−2 =ω

(
ω− qQ

rD−3
h

)
rD−2

h ,
de

dt
=
q

ω

dE

dt
= q

(
ω− qQ

rD−3
h

)
rD−2

h . (4.1)

Fluxes in eq. (4.1) will infinitesimally change the corresponding properties of the black hole
during the infinitesimal time interval dt. The electric charge flux obviously corresponds to
the change in that of the black hole. The energy flux is ambiguous, however, because it
can correspond to the enthalpy or internal energy of the black hole. Here, we will relate
this to the internal energy. There are three reasons for doing so. First, when we consider
thermodynamics without the PV term, the internal energy consistently corresponds to the
mass of the black hole, because MB = UB, compared with eq. (2.9). Second, this well
reproduces the first law of thermodynamics with the PV term, such that the choice ensures
no loss of energy. Third, under this choice, the validity of the WCC conjecture is possible
(regarding which validity, see the next section). By contrast, the alternative choice does not
ensure these points. The alternative choice is introduced in the appendix. Hence, the changes
in internal energy and electric charge are given as

dUB =

(
dE

dt

)
dt, dQB =

(
de

dt

)
dt. (4.2)
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Further, the change in the enthalpy is connected to the change in internal energy.

dUB = d (MB − PVB) = ω

(
ω − qQ

rD−3
h

)
rD−2

h dt. (4.3)

In consideration of the PV term, ingoing fluxes of the external scalar field change both the
mass and the volume of the black hole. Hence, this change is expected to differ considerably
from the case without the PV term. Note that the fluxes in eq. (4.1) are negative when

ω <
qQ

rD−3
h

. (4.4)

Then, the black hole emits energy and charge through the charged scalar field under eq. (4.4).
This is called superradiance, an interesting phenomenon observed in the scattering of an
external field.

Since we focus on thermodynamics and the WCC conjecture, the location of the outer
horizon plays a significant role in our analysis. The outer horizon rh is located at the point
satisfying ∆ = 0, which has parameters (MB, QB, rh, `). When we assume that the parameters
change to (MB + dMB, QB + dQB, rh + drh, `+ d`) by the scalar field, the changed location
of the outer horizon is determined by

∆(MB+dMB,QB+dQB, rh+drh, `+d`) =
∂∆h

∂MB
dMB+

∂∆h

∂QB
dQB+

∂∆h

∂rh
drh+

∂∆h

∂`
d`= 0,

(4.5)

where

∆h ≡ ∆|r=rh = 0,
∂∆h

∂MB
= − 16π

ΩD−2(D − 2)rD−5
h

,
∂∆h

∂QB
=

16πQ

ΩD−2(D − 2)r2D−8
h

, (4.6)

∂∆h

∂`
= −

2r4
h

`3
,

∂∆h

∂rh
= 2rh −

(2D − 8)Q2

r2D−7
h

+
(2D − 10)M

rD−4
h

+
4r3

h

`2
.

One might notice that pressure is assumed to change in the scattering. We focus on pressure
as a thermodynamic conjugate of the volume rather than the AdS radius. Then, the pres-
sure can be varied such that it is balanced to the change in the volume of the black hole.
Consequently, we consider the change in the pressure. However, we show that the change in
the black hole is an isobaric process. This implies d` = 0. Thus, the pressure is constant. In
combination with eqs. (4.3) and (4.5), the change in the outer horizon is obtained as

drh =

16πr3
h`

2

(
ω − qQ

rD−3
h

)2

ΩD−2(D − 2)(d∆h`2 − (D − 1)r3
h)
dt. (4.7)

Here, even if we assume d` = 0 in eq. (4.5), the change in the outer horizon is still derived
by eq. (4.7). Hence, we can determine that the change in the black hole from the scattering
of the charged scalar field is an isobaric process in terms of thermodynamics. Insofar as it
is an isobaric process, we set d` = 0 without loss of generality in the following equations.
Moreover, the parameters ω and q of the scalar field positively contribute to the change in
the outer horizon of eq. (4.7). Then, we can show that the change is mainly determined by
the initial state related to the denominator in eq. (4.7).
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Figure 1. Denominator σ graphs regarding Q with ` = 1 in various dimensions.

From the change in the outer horizon, we expect that Bekenstein-Hawking entropy
behaves like eq. (4.7).

dSh =
1

4
ΩD−2(D − 2)rD−3

h drh, dSh =

4πrDh `
2

(
ω − qQ

rD−3
h

)2

d∆h`2 − (D − 1)r3
h

dt. (4.8)

The change in entropy depends on the initial state, per eq. (4.7) with respect to the in-
finitesimal time dt. In particular, the denominator determines whether the entropy increases
or decreases. Analytically, when the initial state is assumed for the extremal black hole, it
satisfies d∆h = 0. Hence, the denominator can be rewritten as

σ ≡ d∆h`
2 − (D − 1)r3

h = −(D − 1)r3
h < 0, (4.9)

which is always negative in any dimensions. This implies that the entropy of the extremal
black hole can decrease owing to the scattering of the charged scalar field. This violates the
second law of thermodynamics with the PV term. The violation is because of the PV term.
The change in the volume occurs outside of the black hole owing to the pressure. Hence,
the energy transferred from the scalar field contributes to the mass and volume. Therefore,
the effects of the scalar field are divided into two parts in the first law of thermodynamics.
Further, the entropy can decrease according to the change in the volume of the black hole.
In particular, such a violation is firstly observed in consideration of the PV term under the
scattering of the charged scalar field. Details regarding the behavior of the denominator are
shown numerically in figure 1. As we obtain eq. (4.9), the denominator becomes negative
with proximity to extremal black holes in figure 1. Further, this behavior occurs in any D-
dimensional case. Hence, when the initial black hole is highly charged, the entropy decreases
under the scattering of the scalar field. In other words, the initial state plays an important
role in the change in entropy. Note that there are singular points of the change in the entropy,
owing to σ = 0 in near-extremal points in figure 1. Since the initial state (M,Q) determines
the signs of the change in the entropy, we can determine the range within which the second
law of thermodynamics is violated, as shown in figure 2. Here, only the sign of the change is
important, so we normalize the value of the denominator σ between −1 and 1. For a given
mass, the denominator becomes negative when the initial state approaches a near-extremal
one. Further, as the mass increases, the negative range widens. The range of the negative sign
is narrow in higher-dimensional black holes, but it still exists in near-extremal and extremal
black holes. Therefore, when we consider the PV term, the violation of the second law can
be observed in arbitrary dimensions.
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Figure 2. Normalized denominator σ in Q–M diagrams with ` = 1 in various dimensions.

However, the first law of thermodynamics is clearly observed in our analysis. In combi-
nation with eqs. (4.3) and (4.8), we can obtain the first law with the infinitesimal change in
the internal energy. In particular, the term for the outer horizon is divided into the change in
entropy and PV term with the Hawking temperature in eq. (2.7). Then, the internal energy
is obtained as

dUB = ThdSh + ΦhdQB − PdVB. (4.10)

Note that even if the pressure does not change in the isobaric process, as the volume changes
in the process, the PV term works outside of the black hole. It implies that the energy
transferred from the scalar field contributes to not only the mass of the black hole but
also the volume; therefore these contributions are divided into two parts in the first law of
thermodynamics. This cannot be observed in thermodynamics without the PV term where
the energy of the scalar field only contributes to the mass of the black hole. According to the
Legendre transformation, we can rewrite the internal energy into the enthalpy of the black
hole. Hence, the first law of thermodynamics is ensured in terms of

dMB = ThdSh + ΦhdQB + VBdP, (4.11)

which implies that the thermodynamic energy of the system is conserved in consideration of
the PV term.

5 Weak cosmic censorship in near-extremal and extremal charged AdS
black holes

The WCC conjecture assumes that the singularity of a black hole should be hidden by
the horizon from an asymptotic observer. This ensures that there is no naked singularity
in the geometry of a black hole with a stable horizon. Here, we investigate the stability
of the outer horizon under the scattering of the charged scalar field in consideration of
thermodynamic pressure and volume. From the scattering and the isobaric process, the
initial state (MB, QB, rh) becomes the final state (MB +dMB, QB +dQB, rh +drh) during the
infinitesimal time interval dt. Since the outer horizon is determined to be ∆(MB, QB, r) = 0,
we can estimate the existence of the horizon by testing solutions in ∆(MB + dMB, QB +
dQB, r) = 0. This process can be simplified to an analysis of the change in the minimum value
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Figure 3. Graphs of ∆ for given states of the charged AdS black holes.

of ∆. As shown in figure 3, we begin with the initial state in a near-extremal or extremal black
hole in figure 3 (a) or (b). In this initial state, the minimum value of the function ∆ is negative
or zero. As such, there exist solutions to their corresponding horizons. If the fluxes of the
scalar field enter the black hole, the mass and electric charge of the black hole change owing to
that of the charged scalar field during the infinitesimal time dt, and the minimum value also
varies according to changes in the mass and charge of the black hole. Under the changes, if
the minimum value is positive, as shown in figure 3 (c), no solution represents a horizon in the
final state, and the black hole thus becomes a naked singularity. In this case, we can conclude
that the black hole is overcharged, and that the WCC conjecture is invalid. Contrarily, in the
final state, other cases, such as figure 3 (a) or (b), imply that the horizon still stably covers
the inside of the black hole. Consequently, an asymptotic observer cannot see the singularity
and the WCC conjecture is thus valid. Therefore, the sign of the minimum value in the final
state is the key to validating the WCC conjecture in the scattering of the charged scalar field.

Here, we investigate the sign of the minimum value of the function ∆ in the final state.
The sign can be obtained in terms of the initial state, because the final state is infinitesimally
different from the initial state as much as the transferred conserved charges by the fluxes
during the infinitesimal time interval dt. This infinitesimal change becomes significant when
the initial state is a near-extremal or extremal black hole, rather than a nonextremal one.
The minimum value of a near-extremal black hole (including an extremal one) is very close
to zero. It thus has the possibility of being positive by infinitesimal changes contributing
to the external scalar field. Therefore, we focus on a near-extremal black hole as an initial
state. The near-extremal condition of the initial state is given at the minimum point rmin

with a negative constant |δ| � 1 representing the minimum value of ∆.

∆min ≡ ∆(rmin) = r2
min −

2M

rD−5
min

+
Q2

r2D−8
min

+
r4

min

`2
= δ ≤ 0, (5.1)

∂∆min

∂rmin
= 2rmin +

2(D − 5)M

rD−4
min

− 2(D − 4)Q2

r2D−7
min

+
4r3

min

`2
= 0,

∂2∆min

∂r2
min

= 2− 2(D − 4)(D − 5)M

rD−3
min

+
2(D − 4)(2D − 7)Q2

r2D−6
min

+
12r2

min

`2
> 0.

Then, beginning with the initial state given in eq. (5.1), we can estimate the infinitesimal
change to the minimum value of the final state after an infinitesimal time interval dt. As a
result of the fluxes, the mass and electric charge of the black hole change in the final state,
and the minimum location rmin moves to rmin + drmin, which is obtained in terms of the
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initial state as

∆(MB + dMB, QB + dQB, rmin + drmin) = ∆min +
∂∆min

∂MB
dMB +

∂∆min

∂QB
dQB +

∂∆min

∂rmin
drmin,

(5.2)

where

∂∆min

∂MB
= − 16π

ΩD−2(D − 2)rD−5
min

≡ d∆M,
∂∆min

∂QB
=

16πQ

ΩD−2(D − 2)r2D−8
min

≡ d∆Q.

In combination with eqs. (4.7), (5.1), and (5.2), we obtain the minimum value.

∆(MB + dMB, QB + dQB, rmin + drmin) = δ +
rD−2

h d∆hd∆M`
2

d∆h`2 − (D − 1)r3
h

(ω − qΦh) (ω − qΦeff) dt,

(5.3)

where the effective potential is obtained as

Φeff ≡
Q((D − 1)r6

hr
D
min + rDh r

3
min(d∆h`

2 − (D − 1)r3
h))

d∆h`r
D
minr

D
h

.

Since the initial state is a near-extremal black hole, the minimum location approaches the
location of the outer horizon. Hence, we can draw a relation using the constant ε � 1.
Further, the constant δ can also be rewritten in terms of ε as

rh ≡ rmin + ε, δ = −εd∆h +O(ε3), (5.4)

where we will show d∆h ∼ ε. When the initial state is an extremal black hole, the minimum
point is coincident with the location of the horizon, so ε = 0. Further, the minimum value of
the initial state begins at zero. This is consistently denoted by δ = 0, as shown in eq. (5.4).
In terms of ε, the effective potential is

Φeff = Φh +
Q(D − 3)(d∆h`

2 − (D − 1)r3
h)

rD−2
h d∆h`2

ε+O(ε2), (5.5)

d∆h =

(
2− 2(D − 4)(D − 5)M

rD−3
h

+
2(D − 4)(2D − 7)Q2

r2D−6
h

+
12r2

h

`2

)
ε+O(ε2).

For the validity of the WCC conjecture, the sign of the minimum value is significant in the
final state. The horizon exists for a negative minimum value in eq. (5.2). The right-hand
side of eq. (5.2) can be rewritten as

∆(MB + dMB, QB + dQB, rmin + drmin) = δ −
d∆Mr

D−2
h d∆h`

2

(D − 1)r3
h

(ω − qΦh) (ω − qΦeff) dt,

(5.6)

where we consider d∆M < 0 and d∆h`
2 � (D− 1)r3

h. If the initial state is an extremal black
hole, we can set δ, ε = 0. Moreover, d∆ = 0 in the extremal case. Then, we can obtain the
change to the minimum value from eq. (5.6).

∆(MB + dMB, QB + dQB, rmin + drmin) = 0. (5.7)
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This implies that an extremal black hole is still an extremal black hole. The mass and electric
charge of the black hole can change owing to the fluxes of the scalar field, but its state still
satisfies the extremal condition. Therefore, the WCC conjecture is valid for extremal black
holes. If the initial state is a near-extremal black hole, the scale of the variables becomes
important. In our analysis, the time interval is assumed to be infinitesimally small. Hence,
we can properly assume that the time interval is the same scale as ε, so dt ∼ ε. Then, the
change to the minimum value is obtained as

∆(MB + dMB, QB + dQB, rmin + drmin)−∆(MB, QB, rmin) = O(ε2), (5.8)

where we consider eq. (5.5) and q2 � 1. Thus, the change to the minimum value can be
assumed to be zero in the first order of ε. This implies that there is no change to the state of
the black hole: a near-extremal black hole is still near-extremal despite having different mass
and electric charge. Therefore, the WCC conjecture is also valid for near-extremal black
holes. Note that when the second order of ε is considered in eq. (5.8), a near-extremal black
hole reaches a slightly extremal state in ω/q > Φh. Likewise, it reaches a slightly nonextremal
state in ω/q < Φh. However, owing to eq. (5.7), the black hole cannot be overcharged under
the scattering of the charged scalar field. Thus, the WCC conjecture is valid.

When testing the WCC conjecture, we must recognize the importance of the energy and
charge transferring through the fluxes of the scalar field during the time interval dt. When
the time interval is introduced in our analysis, we have to assume that the energy and charge
of the scalar field flow into the black hole in infinitesimally small pieces during dt. This
clearly differs from particles entering black holes in previous studies [58, 70, 94, 95], where
the WCC conjecture is invalid in near-extremal black holes, because the particle can transfer
conserved quantities to overcharge the black hole beyond the extremal condition. To resolve
this issue in the particle, we need to consider that the conserved quantities of the particle are
absorbed into the black hole in infinitesimally small pieces [58]. However, with the scattering
of the scalar field, infinitesimally small energy and charge are transferred into the black hole
during this infinitesimal time dt. Thus, the concept of absorbing infinitesimally small pieces is
already inherent in the time interval. Hence, there is no overcharging in the scattering. This
is an important feature for the validity of the WCC conjecture with the charged scalar field.

6 Superradiance with pressure and volume

When we consider the PV term in a charged AdS black hole, we already show that the
changes in the black hole differ from those without the PV term. These changes suggest the
possibility of a different evolution of the black hole in the time flow from each time interval
dt, depending on whether or not the PV term is considered. According to eq. (4.1), the
fluxes of the scattered scalar field depend on the electric potential of the black hole. When
ω/q > Q/rD−3, the fluxes are positive, so the energy and charge flow into the black hole.
Moreover, when ω/q < Q/rD−3, the negative fluxes represent energy and charge flowing out
of the black hole. This superradiance is an interesting phenomenon observed in the scattering
of the scalar field. According to absorption and superradiance, the state of the black hole
can be expected to be saturated to an equilibrium where ω/q = Q/rD−3. Here, we assume
that the scalar field has a frequency that is infinitesimally smaller than the electric potential
of the black hole. Further, the ratio ω/q of the scalar field remains constant. Then,

ω

q
= Φh − ε, (6.1)

– 13 –



J
C
A
P
0
8
(
2
0
1
9
)
0
1
6

where ε � 1. Hence, the fluxes in eq. (4.1) become negative, inducing superradiance. Since
the fluxes are very small, however, changes to the black hole occur slowly. Thus, we investi-
gate whether the black hole can be saturated into the equilibrium in a finite period of time.
During a time interval dt, the initial electric potential infinitesimally changes

Φh(QB + dQB, rh + drh) = Φh +
∂Φh

∂QB
dQB +

∂Φh

∂rh
drh = Φh + dΦh, (6.2)

where

∂Φh

∂QB
=

8π

(D − 2)ΩrD−3
h

,
∂Φh

∂rh
= −(D − 3)Q

rD−2
.

Substituting eqs. (4.3), (4.7), and (6.1) into eq. (6.2), the change in the electric potential dΦh

is obtained in terms of the first-order ε as

dΦh = − 8πq2rhdt

(D − 2)ΩD−2
ε+O(ε2). (6.3)

Then, since dΦh/ε � 1, even if ε is infinitesimally small, sufficient and considerable time is
needed to saturate the potential of the black hole to ω/q of the scalar field. In particular,
the scale of q is much smaller than that of the black hole: q � Q. Thus, as the time-
step dt proceeds, the electric potential of the black hole approaches the ratio ω/q, though
saturation cannot be achieved during one time-step. Instead, it requires a very long time to
obtain. Moreover, when the black hole absorbs energy and charge, we can observe the same
behavior. Under transformation ε→ −ε in eq. (6.1), we obtain

dΦh =
8πq2rhdt

(D − 2)ΩD−2
ε+O(κ2). (6.4)

This further implies that saturation owing to absorption requires considerable time, as de-
noted in eq. (6.3). Therefore, in both cases, we conclude that a charged AdS black hole
slowly saturates its electric potential to the external scalar field.

7 Summary

We investigated the laws of thermodynamics and the WCC conjecture under the scattering
of a nonminimally coupled massive scalar field with an electric charge in a D-dimensional
charged AdS black hole. We considered thermodynamic pressure and volume, and expected
distinct behavior depending on whether the PV term was considered. Since changes in a black
hole occur according to the transferred energy and electric charge from the scalar field, the
amount of energy and charge is estimated from the fluxes of the solution to the D-dimensional
scalar field at the outer horizon where the contributions of mass and nonminimal coupling in
the scalar field are removed, leaving only the charge effect. The infinitesimal changes in the
black hole should be well-related to each other in terms of the first law of thermodynamics
when regarding enthalpy as the mass of a black hole. Indeed, the first law is observed when
we assume that the energy flux of the scalar field contributes to the internal energy of a
black hole in consideration of its consistency with the WCC conjecture. However, the second
law of thermodynamics is violated slightly in the near-extremal and extremal range. This
is only observed with the PV term. Under scattering, changes to the mass and electric
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charge of the black hole induce changes in the function ∆, which determines the existence
of the horizons. For the WCC conjecture, we estimated the change in the function ∆ with
respect to an infinitesimal time interval. According to the change to the minimum value of
∆, extremal black holes remain extremal despite a different mass and charge contributing
to the fluxes. Likewise, near-extremal black holes remain near-extremal in the first order
because the fluxes of the scalar field have a limit to the transferred energy and charge to the
black hole during the time interval. Thus, the WCC conjecture is valid. Here, regarding the
validity of the WCC conjecture, the limits to transferred energy and charge owing to the time
interval play an important role in preventing the transfer of a large amount of energy and
charge to the black hole and thus preventing it from being overcharged beyond the extremal
condition. We also tested whether a black hole can reach an equilibrium with a fixed scalar
field in consideration of the PV term. Our results indicate that as the time-step proceeds,
the electric potential of a black hole approaches equilibrium. However, the saturation of the
potential to the scalar field requires a very long time, because the time derivative of the
potential becomes small. Therefore, when we consider the PV term, the WCC conjecture
is valid, but changes in extremal and near-extremal black holes are distinct in their detailed
responses with respect to the scattering of the charged scalar field.
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A Alternative choice

There is an alternative choice to the contribution of the energy of the scalar field. When
we assume that the energy contributes to the enthalpy of a black hole, the change in the
enthalpy is given as

dMB =

(
dE

dt

)
dt = ω

(
ω − qQ

rD−3
h

)
rD−2

h dt. (A.1)

Then, the change in the outer horizon takes a different form:

drh =
2r4

h

`3d∆h
d`+

16πr3
h

(
ω − qQ

rD−3
h

)2

ΩD−2(D − 2)d∆h
dt, (A.2)

where the change in the pressure term d` remains; it is not cancelled out. Under this choice,
the change in the entropy is

dSh =
(D − 2)ΩD−2r

D+1
h

2`3d∆h
d`+

4πrDh

(
ω − qQ

rD−3
h

)2

d∆h
dt. (A.3)

Hence, the change in the entropy depends on d`. When ω = qQ

rD−3
h

, if d` < 0, entropy decreases

in this process. This also implies that the violation of the second law of thermodynamics is
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associated with the characteristics of the charged scalar field and change in d`. Furthermore,
eq. (A.3) is qualitatively different from eq. (4.8), because eqs. (4.7) and (4.8) do not have
the d` term without a further assumption. Note that the change in entropy in eq. (A.3) is
positive under the choice of d` = 0, and the form of eq. (A.3) exactly reduces to that of the
case without the PV term. This is also related to the first law of thermodynamics under the
alternative choice. Eq. (A.3) can be rewritten as

ThdSh = dMB − ΦhdQB +
(D − 2)ΩD−2r

D−1
h

8π`3
d` = dMB − ΦhdQB − VBdP. (A.4)

Then, we impose d` = 0 as the condition to conserve the second law of thermodynamics.
The PV term can be removed, at least in this case.

The similar case arises in the WCC conjecture. For simplicity, we focus on an extremal
black hole. The locations of the outer horizon and minimum point of ∆r are coincident to
each other, so rh = rmin. Then,

∆(MB + dMB, QB + dQB, rmin + drmin) =
∂∆min

∂MB
dMB +

∂∆min

∂QB
dQB +

∂∆min

∂`
d`, (A.5)

where we use the extremal condition:

∆min = 0,
∂∆min

∂rmin
= 0. (A.6)

Then, we can derive

∆(MB + dMB, QB + dQB, rmin + drmin) = d∆M rD−2
h

(
ω − qQ

rD−3
h

)2

−
2r4

h

`3
d`, (A.7)

where the change in the minimum value still depends on d`. It is possible to violate the WCC
conjecture under d` < 0, however. As in the case of the laws of thermodynamics, eq. (A.7)
reduces to the case without the PV term under d` = 0. Then, this also ensures the WCC
conjecture.
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