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1 Introduction

The inflationary universe scenario has been generally accepted as a solution to the horizon
problem and some other related problems of the standard Big Bang cosmology. The origin
of the field that drives inflation is still unknown and is subject to speculations. Among
many models of inflation a popular class comprise tachyon inflation models [1–15]. Tachyon
models are of particular interest as in these models inflation is driven by the tachyon field
originating in M or string theory. The existence of tachyons in the perturbative spectrum of
string theory, both open and closed, indicates that the perturbative vacuum is unstable and
that there exists a true vacuum towards which a tachyon field θ tends [16]. The basics of
this process are represented by an effective field theory model [17] with a Lagrangian of the
Dirac-Born-Infeld (DBI) form

L = −`−4V (θ/`)
√

1− gµνθ,µθ,ν , (1.1)

where ` is an appropriate length scale, θ is a scalar field of dimension of length, and

X = gµνθµθν . (1.2)

The dimensionless potential V is a positive function of θ with a unique local maximum at
θ = 0 and a global minimum at |θ| =∞ at which V vanishes.

We plan to study a braneworld inflation model in the framework of a holographic
cosmology [18–21]. By holographic cosmology we mean a cosmology based on the effec-
tive four-dimensional Einstein equations on the holographic boundary in the framework of
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anti de Sitter/conformal field theory (AdS/CFT) correspondence. A connection between
AdS/CFT correspondence and cosmology has been studied in a different approach based on
a holographic renormalization group flows in quantum field theory [22, 23].

As we will argue in the next section, the holographic cosmology has a property that the
universe evolution starts from a point at which the energy density and cosmological scale
are both finite rather then from the usual Big Bang singularity of the standard cosmology.
Then the inflation phase proceeds naturally immediately after t = 0. Our model is based
on a holographic braneworld scenario with an effective tachyon field on the brane. This
paper is a sequel to previous works [24–27] in which we have studied tachyon inflation on
a Randall-Sundrum type of braneworld. In the present approach a D3-brane is located at
the holographic boundary of an asymptotic ADS5 bulk. We have improved the analytical
calculations of [20] in the slow role regime up to the second order in the slow role parameters.
We solve the evolution equations numerically and confront our result with the Planck data.

The remainder of the paper is organized in four sections and two appendices. In the
next section, section 2, we describe the tachyon cosmology in the framework of a holographic
braneworld scenario. The following section, section 3, is devoted to a detailed description
of inflation based on the holographic braneworld scenario with tachyon field playing the role
of the inflaton. Our numerical results and comparison with observations are presented in
section 4. In section 5 we summarize our results and give an outlook for future research.

2 Holographic tachyon cosmology

Our aim is to study tachyon inflation in the framework of holographic cosmology. We assume
that the holographic braneworld is a spatially flat FRW universe with line element

ds2 = gµνdx
µdxν = dt2 − a2(t)(dr2 + r2dΩ2), (2.1)

and we employ the holographic Friedmann equations (A.16) and (A.18) derived in ap-
pendix A. If we set k = 0 and µ = 0, these equations take the form

h2 − 1

4
h4 =

κ2

3
`4ρ, (2.2)

ḣ

(
1− 1

2
h2
)

= −κ
2

2
`3(p+ ρ), (2.3)

where, following ref. [25], we have introduced a dimensionless expansion rate h ≡ `H and the
fundamental dimensionless coupling

κ2 =
8πGN

`2
. (2.4)

The holographic cosmology has interesting properties. Solving the first Friedmann equa-
tion (2.2) as a quadratic equation for h2 we find

h2 = 2

(
1±

√
1− κ2

3
`4ρ

)
. (2.5)

Now, because we do not want our modified cosmology to depart too much from the standard
cosmology after the inflation era, we demand that eq. (2.5) reduces to the standard Friedmann
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equation in the low density limit, i.e., in the limit when κ2`4ρ� 1. Clearly, this demand will
be met only by the (−) sign solution in (2.5). Therefore we stick to the (−) sign and discard
the (+) sign solution as unphysical. Then, it follows that the physical range of the Hubble
expansion rate is between zero and the maximal value hmax =

√
2 corresponding to the

maximal energy density ρmax = 3/(κ2`4) [19, 28]. Assuming no violation of the weak energy
condition p+ρ ≥ 0, the expansion rate will, according to (2.3), be a monotonously decreasing
function of time. The universe evolution starts from t = 0 with an initial hi ≤ hmax with
energy density and cosmological scale both finite. Hence, as already noted by C. Gao [29], in
the modified cosmology described by the Friedmann equations (2.2) and (2.3) the Big Bang
singularity is avoided!

2.1 Equations of motion

Tachyon matter in the holographic braneworld is described by the Lagrangian (1.1) in which
the scale ` can be identified with the AdS curvature radius. The covariant Hamiltonian
associated with (1.1) is given by [25]

H = `−4V
√

1 + η2, (2.6)

where

η = `4V −1
√
gµνπµπν (2.7)

and the conjugate momentum πµ is, as usual, related to θ,µ via

πµ =
∂L
∂θ,µ

. (2.8)

From the covariant Hamilton equations

θ,µ =
∂H
∂πµ

, πµ;µ = −∂H
∂θ

, (2.9)

we obtain two first order differential equations in comoving frame

θ̇ =
η√

1 + η2
, (2.10)

η̇ = −3hη

`
−
V,θ
V

√
1 + η2, (2.11)

where the subscript , θ denotes a derivative with respect to θ. As usual, the Lagrangian and
Hamiltonian are identified with the pressure and energy density, respectively i.e.,

p ≡ L = −`−4V
√

1−X = − `−4V√
1 + η2

, (2.12)

ρ ≡ H =
`−4V√
1−X

= `−4V
√

1 + η2, (2.13)

and X = θ̇2 in comoving frame.
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2.2 Exponential potential

Consider a potential of the form
V = V0e

−ω|θ|/`, (2.14)

which has been studied extensively in the literature related to string theory and tachyons [5,
11, 15, 30–32]. The dimensionless parameters ω and V0 are positive and basically free. It
proves advantageous to redefine the field θ → θ − θi and integrate equations of motion from
the initial θi defined as θi = −`ω−1 lnV0 instead of integrating from θ = 0. Then, in the
physically relevant domain θi ≤ θ <∞, the potential takes the form

V = e−ω(θi+|θ−θi|)/` = e−ωθ/`. (2.15)

In this way we have traded an arbitrary maximal value V0 > 0 of the potential at the origin
for an arbitrary initial value −∞ < θi < ∞ of the field. However, as we will discuss next,
the initial value θi although arbitrary, will be fixed by choosing initial value for h.

The potential (2.15) has a convenient property that one can eliminate dependence on the
fundamental parameter κ from the equations of motion. To demonstrate this we introduce a
dimensionless time variable t̃ = t/` and replace the function θ by a dimensionless function y
defined as

y =
κ2

3
e−ωθ/` . (2.16)

Then, from (2.10) and (2.11) with (2.5) and (2.13), we obtain the following equations of
motion

dy

dt̃
= − ωyη√

1 + η2
, (2.17)

dη

dt̃
= −3η

(
2− 2

√
1− y

√
1 + η2

)1/2

+ ω
√

1 + η2, (2.18)

with no κ-dependence.

2.3 Remarks on initial conditions

To solve equations (2.10) and (2.11), or equations (2.17) and (2.18), numerically one has to
fix initial values of the functions θ (or y) and η at an initial time. We will assume that the
evolution starts at t = 0 with a given initial expansion rate hi ≤

√
2. Then, for a chosen

initial ηi, the initial θi (or yi) will be fixed by the first Friedmann equation. We will seek
solutions imposing either of the two natural initial conditions: a) ηi = 0 or b) η̇i = 0. As
we shall shortly see, the condition a) assures a finite initial ḣ whereas b) yields solutions
consistent with the slow-roll regime which will be discussed in the next section.

a) ηi = 0
In this case from (2.12) and (2.13) it follows

pi = −ρi (2.19)

and, as a consequence of (2.3), ḣi will be finite even for hi =
√

2. The initial θi is fixed
from (2.2) and (2.13)

V (θi) =
3

κ2

(
h2i −

h4i
4

)
. (2.20)
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For example, the exponential potential (2.15) yields

θi = − `
ω

ln

[
3

κ2

(
h2i −

h4i
4

)]
, (2.21)

which corresponds to the initial

yi = h2i −
h4i
4
, (2.22)

independent of κ.

b) η̇i = 0
In this case from (2.11) it follows

ηi = −
(`V,θ/V )i√

9h2i − (`V,θ/V )2i

(2.23)

and from (2.2) we obtain (
1− h2i

2

)2

= 1− κ2

3
V (θi)

√
1 + η2i . (2.24)

Given V (θ) these two equations can, in principle, be solved for ηi and θi. In particular,
for the potential (2.15) we find

ηi =
ω√

9h2i − ω2
, (2.25)

θi = − `
ω

ln

[
3

κ2

(
h2i −

h4i
4

)√
1− ω2

9h2i

]
. (2.26)

The corresponding

yi =

(
h2i −

h4i
4

)√
1− ω2

9h2i
(2.27)

is again κ-independent. Because of (2.25) the free parameter ω is restricted by 0 < ω <
3
√

2 and the initial hi by hi > ω/3. Note that ηi is always positive non-zero and hence,
pi + ρi > 0. Then, according to (2.3), for the maximal hi =

√
2 the expansion starts

with a negative infinite ḣi.

3 Inflation on the holographic brane

Tachyon inflation is based upon the slow evolution of θ with the slow-roll conditions [15]

θ̇2 � 1, |θ̈| � 3Hθ̇. (3.1)

In view of (2.10) the conditions (3.1) are equivalent to

η � 1, |η̇| � 3h

`
η, (3.2)
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so that in the slow-roll regime the factors (1− θ̇2)−1/2 = (1 + η2)1/2 in (2.12) and (2.13) may
be omitted. Then, during inflation we have

h2 ' 2(1−
√

1− κ2V/3). (3.3)

Note that the second inequality in (3.2) is consistent with the evolution starting from the
initial η̇i = 0 as discussed in section 2.3.

Combining (2.10) and (2.11) with (3.1) and (3.2) we find

θ̇ ' −
`V,θ
3hV

, (3.4)

θ̈ '
`V,θḣ

3V h2
+

[(
V,θ
V

)2

−
V,θθ
V

]
`θ̇

3h
. (3.5)

As mentioned before, the evolution is constrained by the physical range of the expansion rate
0 ≤ h2 ≤ 2.

The most important quantities that characterize inflation are the slow-roll inflation
parameters εj defined recursively [15, 33]

εj+1 =
ε̇j
Hεj

, (3.6)

starting from ε0 = H∗/H, where H∗ is the Hubble rate at some chosen time. The next two
are then given by

ε1 ≡ −
Ḣ

H2
' 4− h2

12h2(2− h2)

(
` V,θ
V

)2

, (3.7)

ε2 ≡
ε̇1
Hε1

' 2ε1

(
1− 2h2

(2− h2)(4− h2)

)
+

2`2

3h2

[(
V,θ
V

)2

−
V,θθ
V

]
. (3.8)

During inflation ε1 < 1, ε2 < 1 and inflation ends once either of the two exceeds unity.
In the following we will study the exponential potential

V = e−ωθ/`, (3.9)

as in (2.15). As we have shown in section 2.2, this potential has a remarkable property that
the evolution does not depend on the fundamental parameter κ. For this potential we have(

V,θ
V

)2

=
V,θθ
V

=
ω2

`2
, (3.10)

so in this case the last term on the right-hand side of (3.8) vanishes. Note that near and at
the end of inflation h2 � 1 so that we approximately have ε2 ' 2ε1. Hence, the criteria for
the end of inflation will be ε2f = 1.

For the purpose of calculating the spectral index we will also need the third slow roll
parameter ε3 given by

ε3 ≡
ε̇2
Hε2

' ε2 +
4h2(8− h4)

(2− h2)(4− h2)(8− 8h2 + h4)
ε1, (3.11)

where the second equality holds for the exponential potential in the slow-roll approximation.
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Equation (3.4) with (3.9) may be easily integrated yielding the time as a function of h
in the slow-roll regime

t =
3`

ω2

[
2(hi − h) + ln

(2− hi)(2 + h)

(2 + hi)(2− h)

]
, (3.12)

where we have chosen the integration constant so that h = hi at t = 0. In our numerical
calculations we treat the initial value h2i as a free parameter ranging between 0 and 2.

Another important quantity is the number of e-folds N defined as

N ≡
∫ tf

ti

Hdt ' −3

∫ θf

θi

h2V

`2V,θ
dθ, (3.13)

where the subscripts i and f denote the beginning and the end of inflation, respectively.
Typically N ' 50–60 is sufficient to solve the flatness and horizon problems. The second
equality in (3.13) is obtained by making use of eq. (3.4). For the potential (3.9) the integral
can be easily calculated and expressed in terms of elementary functions. With the substitution

x ≡ 1− h2/2 =
√

1− κ2e−ωθ/`/3 (3.14)

we find

N =
6

ω`
(θf − θi)−

12

ω2

∫ xf

xi

x2dx

1− x2
, (3.15)

where

xi,f = 1− h2i,f/2 =

√
1− κ2e−ωθi,f/`/3. (3.16)

The end-value of θ is fixed by the condition ε2f = 1, so that

ε2f '
ω2

κ2Vf
=
ω2

κ2
eωθf/` = 1, (3.17)

yielding

θf =
`

ω
ln
κ2

ω2
(3.18)

and

xf =
√

1− ω2/3. (3.19)

Using this in (3.15) yields a functional relationship between the parameter ω, the e-fold
number N , and the initial value hi

N =
12

ω2

[√
1− ω2

3
− 1 +

h2i
2

+ ln

(
2− h2i

2

)
− ln

(
1 +

√
1− ω2

3

)]
. (3.20)

Expanding the expression in brackets up to the lowest order in ω2 we find an approximate
expression

N =
12

ω2

[
h2i
2

+ ln

(
1− h2i

4

)]
− 1. (3.21)

As expected for the potential (3.9), neither N nor the slow-roll parameters depend on the
parameter κ.
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Figure 1. Slow-roll parameters ε1 (dashed red line) and ε2 (full blue line) versus time in units of `
calculated analytically in the slow-roll approximation (left panel) and numerically (right panel) for
ω2 = 0.027 and the initial value h2i = 0.6 corresponding to N = 60 according to (3.20).

4 Numerical calculations

In this section we present the results obtained by numerically solving the exact equations
of motion (2.17) and (2.18) given the initial conditions at t = 0 as described in section 2.3.
The numerical procedure is similar to that developed in ref. [24]. For each pair of randomly
chosen N and hi in the intervals 60 ≤ N ≤ 90 and 0 < h2i < 2, respectively, the parameter ω
is fixed by (3.21). Then, the set of equations (2.17) and (2.18) supplemented by the equation
for N

dN = hdt̃ (4.1)

is evolved from t = 0 up to an end time of the order of a few hundreds of `. In figure 1
we plot the evolution of the slow roll parameters for the initial h2i = 0.6 and ω2 = 0.027
corresponding to N = 60 according to (3.20). The inflation actually ends at a time tf
obtained using the function ε2(t) and demanding ε2(tf) = 1. In comparison with the end
time obtained analytically in the slow roll approximation the numerical tf is substantially
larger as is evident by comparing left and right panels of figure 1. As a consequence, the
numerically calculated N(tf) turns out to be larger then the assumed N . Hence, the inflation
is assumed to begin at some time ti > 0, rather than at t = 0, such that

N(tf)−N(ti) = N. (4.2)

The time ti is then used to find the initial ε1(ti) and ε2(ti) which in turn are used to calculate
the tensor-to-scalar ratio r and spectral index nS.

4.1 Spectral index and tensor to scalar ratio

A proper calculation of the power spectra by perturbing the Einstein equations (A.8) would
go beyond the scope of the present paper. We propose instead a simplified scheme described
in appendix B where we derive approximate expressions for the scalar and tensor power
spectra PS and PT, respectively.
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For scalar perturbations we calculate the power spectrum in the limit when the modes
are well outside the acoustic horizon characterized by the comoving wave number q = aHc−1s .
Here cs is the adiabatic sound speed defined by

c2s ≡
∂p

∂ρ

∣∣∣∣
θ

=
p,X
ρ,X

=
p+ ρ

2Xρ,X
, (4.3)

where the subscript , X denotes a derivative with respect to X and |θ means that the deriva-
tive is taken keeping θ fixed, i.e., ignoring the dependence of L on θ. This definition coincides
with the usual hydrodynamic definition of the sound speed squared as the derivative of pres-
sure with respect to the energy density at fixed entropy per particle. For the tachyon fluid
described by the Lagrangian (1.1) the sound speed squared may be expressed as

c2s = 1−X = 1− 4(2− h2)
3(4− h2)

ε1, (4.4)

where the first equation follows from (2.12) and (2.13) and the second equation is a conse-
quence of the modified Friedmann equations (2.2) and (2.3). This equation shows a substan-
tial deviation from the standard tachyon result [15]

c2s |st = 1− 2

3
ε1. (4.5)

The expressions (4.4) and (4.5) agree near the end of inflation, i.e., in the limit h→ 0. This is
what one would expect since the holographic cosmology described by equation (2.5) reduces
to the standard cosmology in the low density limit.

Next, using the definition (B.37) with (B.22), (B.28), and (B.30) derived in appen-
dix B.1, we evaluate the scalar spectral density at the horizon crossing, i.e., for a wave-
number satisfying q = aH. Following refs. [15, 34] we make use of the expansion of the
Hankel function in the limit csqτ → 0

H(1)
ν (−csqτ) ' − i

π
Γ(ν)

(
−csqτ

2

)−ν
, (4.6)

where q is the comoving wave number and τ denotes the conformal time (τ < 0). Using this
we find at the lowest order in ε1 and ε2

PS '
κ2h2

8π2(1− h2/2)csε1

[
1− 2

(
1 + C +

Ch2

2− h2

)
ε1 − Cε2

]
, (4.7)

where C = −2 + ln 2 + γ ' −0.72 and γ is the Euler constant. In comparison with PS
obtained in the standard tachyon inflation [15], our result is enhanced by a factor 1 − h2/2
in the denominator on the right side of (4.7) and the linear term in ε1 gets an additional
contribution proportional to h2/(2− h2).

Similarly, from the expression (B.46) with (B.44) for tensor perturbations we obtain

PT '
2κ2h2

π2
[1− 2(1 + C)ε1], (4.8)

Hence, the tensor perturbation spectrum is given by the usual expression for PT [15].

– 9 –
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The scalar spectral index nS and tensor to scalar ratio r are then given by

nS − 1 =
d lnPS
d ln q

, (4.9)

r =
PT
PS

, (4.10)

where PS and PT are evaluated at the horizon crossing.
Using (4.7)–(4.10) and keeping the terms up to the second order in εi we find

r = 8(2− h2)ε1
[
1 + Cε2 + 2

(
Ch2

2− h2
− 2− h2

12− 3h2

)
ε1

]
(4.11)

and

ns = 1−
(

2 +
2h2

2− h2

)
ε1 − ε2 −

(
2 +

2h2

2− h2
− 8h2

3(4− h2)2
− 8Ch2

(2− h2)2

)
ε21

−
(

8

3
+

h2

3(4− h2)
+

4C

2− h2

)
ε1ε2 − Cε2ε3. (4.12)

It is understood that the quantities h, ε1, and ε2 in these expressions are to be taken at the
beginning of the slow roll inflation. A comparison of (4.11) and (4.12) with the second order
predictions of the standard tachyon inflation [15]

r|st = 16ε1(1 + Cε2 − ε1/3), (4.13)

nS|st = 1− 2ε1 − ε2 − 2ε21 −
(

8

3
+ 2C

)
ε1ε2 − Cε2ε3 (4.14)

shows a substantial deviation. As expected, near the end of inflation, i.e., in the limit h→ 0,
expressions (4.11) and (4.12) agree with (4.13) and (4.14), respectively.

In figures 2 and 3 we plot r and 1− nS as functions of the initial Hubble rate squared
h2i for fixed N and varying ω. For each pair (h2i , N) the parameter ω, being in a functional
relationship with N and hi, is calculated using the approximate expression (3.21). In figure 4
we present the r versus nS diagram. The dots represent the numerical data for randomly
chosen N ranging between 60 and 90 and h2i between 0 and 2. Variation of N and h2i is
represented by color. Each point on the left panel is depicted by a color representing a value
of N and similarly on the right panel a value of hi. Clearly, the numerical data set is bounded
by the points corresponding to N = 60 from above and N = 90 from below. For each point
the parameter ω is calculated using (3.21). The results obtained analytically in the slow-roll
approximation are depicted by dashed and full black lines corresponding to N = 60 and
N = 90, respectively. In figure 5 the numerical and analytical data are superimposed on
the observational constraints taken from the Planck collaboration 2018 [35]. To demonstrate
more explicitly the dependence of our theoretical predictions on N we plot r versus nS in
figure 6 for several fixed e-fold numbers N ranging between 60 and 140. Both numerical and
analytical results show that agreement with observations is better for larger values of N .

Figures 4 and 5 show that the approximate analytical results are shifted downwards
with respect to the numerical data. This shift reflects the departure of the analytical from
the numerical curve in figure 3 as a consequence of analytical calculations being subject to the
slow-roll approximation. To see this, for definiteness, consider N = 90. The corresponding
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Figure 2. r versus initial h2i calculated analytically (full lines) and numerically (dashed lines) for
fixed N = 60 (upper red lines) and N = 90 (lower blue lines). The parameter ω is varying along the
lines in accordance with (3.21).
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Figure 3. 1 − nS versus initial h2i calculated analytically (full lines) and numerically (dashed lines)
for fixed N = 60 (upper red lines) and N = 90 (lower blue lines). The parameter ω is varying along
the lines in accordance with (3.21).

numerical results are represented in figures 4 and 5 by the points at the lower boundary
of the numerical data set and the corresponding analytical results by a two-valued function
depicted by the full line. The upper (lower) branch of that curve corresponds to the part
of the curve in figure 3 left (right) from the maximum. The departure of the analytical
from the numerical curve in figure 3 increases with hi which is consistent with the slow-roll
approximation. Clearly, the slow-roll approximation breaks down at the maximum of the
curve in figure 3 so the results represented by the lower branch of the curve in figures 4 and 5
are not physically relevant.
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Figure 4. r versus nS diagram. The dots represent the theoretical predictions obtained by solving the
equations of motion numerically for randomly chosen N ranging between 60 and 90 and h2i between 0
and 2. Variation of color represents variation of N (left panel) and variation of hi (right panel). The
parameter ω varies in accordance with (3.21). The analytical results of the slow roll approximation
are depicted by the black lines corresponding to N = 60 (dashed) and N = 90 (full).

4.2 Comment on primordial non-Gaussianity

The prime diagnostic of non-Gaussianity of inflationary fluctuations is described by the three-
point correlation function [36]

〈ζ̂q1 ζ̂q2 ζ̂q3〉 = (2π)3δ(q1 + q2 + q3)fNLF (q1, q2, q3), (4.15)

where ζ̂q is the operator associated with the curvature perturbation ζ introduced in ap-
pendix B.1. The quantity fNL is a dimensionless parameter defining the amplitude of non-
Gaussianity and the function F captures the momentum dependence.

Our model belongs to the class of k-essence inflation models. In these models the La-
grangian L(θ,X) has a non-canonical dependence on the kinetic term X defined in (1.2).
As a consequence, the adiabatic sound speed cs defined by (4.3) in these models may sig-
nificantly deviate from 1. In the k-essence models, the largest non-Gaussianity is peaked at
the so called equilateral configuration with q1 ∼ q2 ∼ q3. The non-Gaussianity amplitude of
equilateral triangle f equilNL in a general k-essence is given by [36, 37]

f equilNL = − 35

108

(
1− c2s
c2s

)
+

20

81
Λ, (4.16)

where

Λ ≡ X2
L2,XX − (1/3)L,XL,XXX
L2,X + 2XL,XL,XX

. (4.17)

Precisely as in the string theory motivated DBI model [38], the quantity Λ in the tachyon
model turns out to be identically zero and the amplitude is directly proportional to 1 − c2s .
In the tachyon model with standard cosmology one has

f equilNL

∣∣∣
st

= − 35

108

(
1− c2s
c2s

)
, (4.18)

where cs is given by (4.5).
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Figure 5. r versus nS diagram with observational constraints from ref. [35]. As in figure 4 the
dots represent the theoretical predictions obtained by solving the equations of motion numerically for
randomly chosen N and h2i and the analytical results in the slow roll approximation are depicted by
the dashed (N = 60) and full (N = 90) lines.

Now, we estimate the non-Gaussianity amplitude in our tachyon model. As the sound
speed deviates from unity most at the end of the slow roll regime, we estimate the equilateral
amplitude at the end of inflation neglecting possible post-inflationary effects. From (4.18)
and the calculation of the two point function presented in appendix B.1, where the main
difference between our model and the standard tachyon inflation is the factor 1−h2/2 which

appears in the denominator of (4.7), we expect f equilNL in our model to be of the form (4.18)
possibly multiplied by a factor (1 − h2/2) raised to some power. For the purpose of an
estimate this factor can be neglected since h2 � 1 at the end of the slow roll regime. An
estimate based on (3.14), (3.19), and ω2 = 0.027 yields h2 . 0.01 at the end of inflation.
Hence, we can use the result (4.18) with cs given by (4.4) and ε1 = 1 yielding

f equilNL ≈ − 70(1− h2/2)

108(1 + h2/4)
≈ f equilNL

∣∣∣
st

= − 70

108
. (4.19)

This value is well within the observational constraints provided by the Planck 2015 collabora-
tion [39]: f equilNL = 2.6±61.6 from temperature data and f equilNL = 15.6±37.3 from temperature
and polarization data.

In conclusion, the estimated non-Gaussianity in our model at the end of inflationary
period cannot be distinguished from that in the standard tachyon inflation. Possible post-
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Figure 6. r versus nS diagram with observational constraints from ref. [35] for several fixed N
(indicated at the end of each line) and varying h2i in the interval 0.01–2.

inflationary persistence of isocurvature perturbations, as discussed recently by C. van de
Bruck, T. Koivisto, and C. Longden [40], may alter this conclusion. However, a study of
such effects is beyond the scope of the present paper.

5 Conclusions

We have investigated a model of tachyon inflation based on a holographic braneworld scenario
with a D3-brane located at the boundary of the ADS5 bulk. The slow-roll equations in this
model turn out to differ substantially from those of the standard tachyon inflation with the
same potential. We have studied in particular a simple exponentially attenuating potential.
For a given number of e-folds our results depend only on the initial value of the Hubble rate
and do not depend on the fundamental coupling κ. A comparison of our results with the most
recent observational data [35, 41] shows reasonable agreement as demonstrated in figure 5.
Apparently, the agreement with observations is better for larger values of the numbers of
e-folds N .

It would be of considerable interest to perform precise calculations for other types of
tachyon potentials that are currently on the market. To this end, one would need to estimate
the phenomenologically acceptable range of the fundamental coupling parameter κ and solve
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the exact equations numerically for various potentials. Based on our experience from the
previous work [24, 27] we do not expect a substantial deviation from the present results.
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A Cosmology on the holographic brane

In this appendix we present a brief review of the holographic cosmology elaborated in [19].
The basic idea is to use the action of the second Randall-Sundrum (RSII) model [42] as a
regulator of the bulk action and derive the Friedmann equations on the AdS5 boundary using
the AdS/CFT prescription and holographic renormalization [43].

A general asymptotically AdS5 metric in Fefferman-Graham coordinates [44] is of
the form

ds2 = Gabdx
adxb =

`2

z2
(
gµνdx

µdxν − dz2
)
, (A.1)

where the length scale ` is the AdS curvature radius and we use the Greek alphabet for 3 + 1
spacetime indices. Near z = 0 the metric gµν can be expanded as

gµν(z, x) = g(0)µν (x) + z2g(2)µν (x) + z4g(4)µν (x) + · · · . (A.2)

Explicit expressions for g
(2n)
µν in terms of arbitrary g

(0)
µν can be found in ref. [43]. The pure

gravitational on-shell bulk action is infra-red divergent and can be regularized by placing
the RSII brane near the boundary, i.e., at z = ε`, ε � 1, so that the induced metric on the
brane is

γµν =
1

ε2
gµν(ε`, x) =

1

ε2

(
g(0)µν + ε2`2g(2)µν + · · ·

)
. (A.3)

The bulk splits in two regions: 0 ≤ z < ε` and ε` ≤ z < ∞. We can either discard the
0 ≤ z < ε` region (one-sided regularization) or invoke the Z2 symmetry and identify two
regions (two-sided regularization). For simplicity we shall use the one-sided regularization.
The regularized on shell bulk action is [45]

Sreg[γ] =
1

8πG5

∫
z≥ε`

d5x
√
G

[
−R

(5)

2
− Λ5

]
+ SGH[γ] + Sbr[γ], (A.4)

where SGH is the Gibbons-Hawking boundary term which is required to make a variational
procedure well defined. The brane action is given by

Sbr[γ] =

∫
d4x
√
−γ(−σ + L[γ]), (A.5)
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where σ is the brane tension and the Lagrangian L describes matter on the brane. The
renormalized action is obtained by adding necessary counter-terms and taking the limit ε→ 0

Sren[γ] = Sreg[γ] + S1[γ] + S2[γ] + S3[γ], (A.6)

where the expressions for the counter-terms S1, S2 and S3 may be found in refs. [43, 46].
Next, the variation with respect to the induced metric γµν of the regularized on shell bulk
action (RSII action) should vanish, i.e., we demand

δSreg[γ] = 0 . (A.7)

The variation of the action yields effective four-dimensional Einstein’s equations on the
boundary

Rµν −
1

2
Rg(0)µν = 8πGN

(
〈TCFT
µν 〉+ Tµν

)
, (A.8)

where Rµν is the Ricci tensor associated with the metric g
(0)
µν and the energy-momentum

tensor

Tµν = diag(ρ,−p,−p,−p) (A.9)

corresponds to the matter Lagrangian L on the brane. According to the AdS/CFT prescrip-
tion, the expectation value of the energy-momentum tensor of the dual conformal theory is
given by

〈TCFT
µν 〉 =

2√
−g(0)

∂Sren

∂g(0)
µν = lim

ε→0

2√
−g

∂Sren

∂gµν
. (A.10)

This expectation value has been derived explicitly in terms of g
(2n)
µν , n = 0, 1, 2, in ref. [43]

for an arbitrary metric g
(0)
µν at the z = 0 boundary.

In the following we will specify the boundary geometry to be of a general FRW form

ds2(0) = g(0)µν dx
µdxν = dt2 − a2(t)dΩ2

k, (A.11)

where

dΩ2
k = dχ2 +

sin2(
√
kχ)

k
(dϑ2 + sin2 ϑdϕ2) (A.12)

is the spatial line element for a closed (k = 1), open hyperbolic (k = −1), or open flat (k = 0)
space. Assuming an AdS Schwarzschild geometry in the bulk one obtains [18, 19, 47]

〈TCFT
µν 〉 = tµν +

1

4
〈TCFTα

α〉g(0)µν . (A.13)

The second term on the right-hand side corresponds to the conformal anomaly

〈TCFTα
α〉 =

3`3

16πG5

ä

a

(
H2 +

k

a2

)
, (A.14)

where H = ȧ/a is the Hubble expansion rate on the boundary. The first term on the right-
hand side of (A.13) is a traceless tensor, the nonvanishing components of which are

t00 = −3tii =
3`3

64πG5

[(
H2 +

k

a2

)2

+
4µ

a40
− ä0
ȧ0

(
H2 +

k

a2

)]
, (A.15)
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where the dimensionless parameter µ is related to the black hole mass [48, 49]. Then,
from (A.8) we obtain the holographic Friedmann equations [18, 19]

H2 +
k

a2
− `2

4

(
H2 +

k

a2

)2

=
8πGN

3
ρ+

`2µ

a4
. (A.16)

From this, by making use of the energy conservation equation

ρ̇+ 3H(p+ ρ) = 0, (A.17)

we obtain the second Friedmann equation

H2 +
k

a2
+
ä

a

[
1− `2

2

(
H2 +

k

a2

)2
]

=
4πGN

3
(ρ− 3p), (A.18)

where the pressure p and energy density ρ are the components of the energy-momentum
tensor as defined in (A.9).

B Cosmological perturbations

Here we derive the spectra of the cosmological perturbations for the holographic cosmol-
ogy with tachyon k-essence. Calculation of the spectra proceeds by identifying the proper
canonical field and imposing quantization of the quadratic action for the near free field. The
procedure for a general k-inflation is described in [50] and applied to the tachyon fluid in
refs. [3, 15, 34].

We shall closely follow J. Garriga and V.F. Mukhanov [50] and adjust their formalism
to account for the modified Friedmann equations. In the following we consider a spatially flat
background with Friedman equations of the form (2.2) and (2.3) in which the pressure and
energy density p and ρ corresponding to the tachyon Lagrangian (1.1) are defined in (2.12)
and (2.13). Equation (2.2) can be written in the usual Friedmann form

H2 =
8πGN

3
ρ̃, (B.1)

where

ρ̃ =
6

κ2`4

(
1±

√
1− κ2

3
`4ρ

)
. (B.2)

Equation (B.1) with (B.2) suggests considering another k-essence Lagrangian L̃ = L̃(X, θ),
such that the effective energy density ρ̃ defined in (B.2) is obtained from L̃ by the usual
prescription

ρ̃ = 2XL̃,X − L̃ . (B.3)

Then, varying the action

S̃ =

∫
d4x
√
−g
[
− R

16πGN
+ L̃(X, θ)

]
, (B.4)

one obtains Einstein’s equations

Rµν −
1

2
Rgµν = 8πGNT̃µν , (B.5)
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where
T̃µν = (p̃+ ρ̃)uµuν − p̃gµν (B.6)

and

p̃ ≡ L̃, uµ =
θ,µ√
X
. (B.7)

In principle, the Lagrangian L̃ can be expressed as an explicit function of X and θ by
integrating eq. (B.3) but in the following we will not need an explicit expression for L̃.

Assuming isotropy and homogeneity, equations (B.5) yield the Friedmann equation (B.1)
(or equivalently eq. (2.2)) and energy conservation equation

˙̃ρ+ 3H(p̃+ ρ̃) = 0. (B.8)

In this way we have obtained the holographic Friedman equation (A.16) (with k = 0 and
µ = 0) from a standard k-essence action (B.4). Now, we can apply the procedure of ref. [50]
directly to the modified k-essence described by (B.4) keeping in mind that the background
evolution is governed by our original equations (2.10) and (2.11) with (2.2) and (2.3).

B.1 Scalar perturbations

Assuming a spatially flat background with line element (2.1), we introduce the perturbed
line element in the longitudinal gauge

ds2 = (1 + 2Φ)dt2 − (1− 2Φ)a2(t)(dr2 + r2dΩ2). (B.9)

Next, we apply directly the procedure of ref. [50] to our modified k-essence. The relevant
Einstein equations at linear order are given by

a−2∆Φ− 3HΦ̇ + 3H2Φ = 4πGNδT̃
0
0 , (B.10)

(Φ̇ +HΦ),i = 4πGNδT̃
0
i , (B.11)

where the perturbations of the stress tensor components δT̃µν are induced by the perturbations
of the scalar field θ(t, x) = θ(t) + δθ(t, x), Using the energy conservation (A.17) and the
definition (1.2) of X one finds

δT̃ 0
0 =

p̃+ ρ̃

c̃2s

[(
δθ

θ̇

).
− Φ

]
− 3H(p̃+ ρ̃)

δθ

θ̇
, (B.12)

δT̃ 0
i = (p̃+ ρ̃)

(
δθ

θ̇

)
,i

, (B.13)

where the quantity c̃s is the adiabatic speed of sound defined by (4.3). Using (B.12) and (B.13)
equations (B.10) and (B.11) take the form(

δθ

θ̇

).
= Φ +

c̃2s
4πGNa2(p̃+ ρ̃)

∆Φ, (B.14)

(aΦ). = 4πGNa(p̃+ ρ̃)
δθ

θ̇
. (B.15)

So far we have merely applied the formalism of [50] in which we have only used the energy
conservation with no need to use the modified Friedmann cosmology so equations (B.14)
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and (B.15) coincide with those derived in [50]. However, from now on we invoke the modified
Friedmann dynamics encoded in equations (2.2) and (2.3). That means, in particular, that
all background variables, such as a, H, and Ḣ are obtained by solving equations (2.10)
and (2.11) with (2.2), and, as may be easily shown, c̃s = cs. As in ref. [50], we introduce new
functions

ξ =
aΦ

4πGH
, ζ = Φ +H

δθ

θ̇
. (B.16)

The quantity ζ is gauge invariant and measures the spatial curvature of comoving (or
constant-θ) hyper-surfaces. During slow-roll inflation ζ is equal to the curvature perturba-
tion on uniform-density hyper-surfaces [36]. Substituting the definitions (B.16) into (B.14)
and (B.15) and using (2.3) we find

ξ̇ = a
p+ ρ

H2
ζ − hḣ

2
ξ, (B.17)

ζ̇ =
c2sH

2

a3(p+ ρ)
∆ξ +

ḣ

2

(
ζ − 4πGN

a
Hξ

)
. (B.18)

where h = H`. Compared with the standard equations of Garriga and Mukhanov [50],
equations (B.17) and (B.18) have additional terms on the righthand sides proportional to ḣ
as a consequence of the modified Friedmann equations of the holographic cosmology.

In principle, one can find solutions to these equations numerically. However, for the sake
of comparison with previous calculations in other models, we prefer to look for approximate
solutions in the slow roll regime. We now show that in this regime the additional terms
in (B.17) and (B.18) are suppressed with respect to the standard terms by a factor ε1 ≡
−Ḣ/H2. With hindsight, we approximate time derivatives by |ξ̇| ≈ H|ξ| and |ζ̇| ≈ H|ζ| and
check the validity of this approximation a posteriori. With this we immediately see that the
magnitude of the last term on the right-hand side of (B.17) is smaller then the magnitude of
the left-hand side by a factor ε1h

2/2. Then, neglecting the last term we find an approximate
relation

H|ξ| ≈ a(p+ ρ)

H2
|ζ|. (B.19)

Using this we find that the magnitude of the second term on the right-hand side of (B.18) is
of the order ε1h

2H|ζ|/2 and is suppressed with respect to the left-hand side the magnitude of
which is of the order H|ζ|. For a consistency check we can use another relation |∆ξ| ≈ q2|ξ| ≈
H2a2c−2s |ξ| approximately valid at the sound horizon crossing. Using this we find that the
magnitude of the first term on the right-hand side is of the order H|ζ| and it dominates the
second term and is comparable with the left hand side of (B.18).

By neglecting the sub-dominant terms and keeping the leading order in ε1, equa-
tions (B.17) and (B.18) can be conveniently expressed as

ξ̇ = z2c2sζ, (B.20)

ζ̇ = z−2∆ξ, (B.21)

where

z =
a(p+ ρ)1/2

csH
=
a

cs

√
ε1

4πGN

(
1− h2

2

)
. (B.22)
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Hence, in our approximation we basically neglect the contribution of the conformal fluid in
the perturbations and the modified Friedman dynamics is reflected in a modified definition
of the quantity z.

By introducing the conformal time τ =
∫
dt/a and a new variable v = zζ, it is straight-

forward to show from equations (B.20) and (B.21) that v satisfies a second order differential
equation

v′′ − c2s∆v −
z′′

z
v = 0. (B.23)

By making use of the Fourier transformation

v(τ,x) =
1

(2π)3

∫
d3qeiqxvq(τ) (B.24)

we also obtain the mode-function equation

v′′q +

(
c2sq

2 − z′′

z

)
vq = 0. (B.25)

As we are looking for a solution to this equation in the slow-roll regime, it is useful to express
the quantity z′′/z in terms of the slow-roll parameters εi. In the slow-roll regime one can use
the relation

τ = −1 + ε1
aH

+O(εi), (B.26)

which follows from the definition of ε1 (3.7) expressed in terms of the conformal time. Using
this and (B.22) we obtain at linear order in εi

z′′

z
=
ν2 − 1/4

τ2
, (B.27)

where

ν2 =
9

4
+

3

2

(
2 +

h2

2− h2

)
ε1 +

3

2
ε2. (B.28)

We look for a solution to (B.25) which satisfies the positive frequency asymptotic limit

lim
τ→−∞

vq =
e−icsqτ√

2csq
. (B.29)

Then the solution which up to a phase agrees with (B.29) is

vq =

√
π

2
(−τ)1/2H(1)

ν (−csqτ), (B.30)

where H
(1)
ν is the Hankel function of the first kind of rank ν.

In the limit of the de Sitter background all εi vanish so ν = 3/2 in which case the
solution to (B.25) with (B.27) is given by

vq =
e−icsqτ√

2csq

(
1− i

csqτ

)
. (B.31)
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Now, we can use this as an approximate solution in the slow-roll regime to check the validity
of our estimate which led to eqs. (B.20) and (B.21). We set ζ ≈ vq/z at the sound horizon
crossing, i.e., we take csq = aH. Using eq. (B.26) we find

ζ̇ ≈
(vq
z

).
≈
(
αH − ż

z

)
ζ, (B.32)

where α is a complex constant with magnitude of order 1. From (B.22) it follows ż/z =
H +O(ε2i ) so |ζ̇| ≈ H|ζ| in accord with our previously assumed relation. Then, the relation
|ξ̇| ≈ H|ξ| also follows by virtue of eqs. (B.19) and (B.20).

Next, consider the action for a scalar field v

S[v] =
1

2

∫
dτd3x

(
v′

2 − c2s (∇v)2 +
z′′

z
v2
)
. (B.33)

The variation of this action obviously yields (B.23) as the equation of motion for v. Applying
the standard canonical quantization [51] the field vq is promoted to an operator

v̂q = vqâq + v∗−qâ
†
−q , (B.34)

where the operators âq and â†q satisfy the canonical commutation relation

[âq, â
†
q′ ] = (2π)3δ(q − q′). (B.35)

Then, the power spectrum of the field ζq = vq/z is obtained from the two-point correlation
function

〈ζ̂q ζ̂q′〉 = 〈v̂qv̂q′〉/z2 = (2π)3δ(q + q′)|ζq|2. (B.36)

The dimensionless spectral density

PS(q) =
q3

2π2
|ζq|2 =

q3

2π2z2
|vq|2 , (B.37)

with vq given by (B.30), characterizes the primordial scalar fluctuations. The difference
with respect to the standard expression is basically in a modified definition of z and in a
modification of vq owing to a new expression (B.28) for the rank ν of the Hankel function.

B.2 Tensor perturbations

The tensor perturbations are related to the production of gravitational waves during inflation.
The metric perturbation are defined as

ds2 = dt2 − a2(t) (δij + hij) dx
idxj , (B.38)

where hij is traceless and transverse. In the absence of anisotropic stress the gravitational
waves are decoupled from matter and the relevant Einstein equations at linear order are

h′′ij + 2aHh′ij −∆hij = 0. (B.39)

To solve this one uses the standard Fourier decomposition

hij(τ,x) =
1

(2π)3

∫
d3qeiqx

∑
s

hsq(τ)esij(q), (B.40)
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where the polarization tensor esij(q) satisfies qiesij = 0, and esije
s′
ij = 2δss′ with comoving wave

number q and two polarizations s = +,×. The amplitude hsq(t) then satisfies

h′′q + 2aHh′q + q2hq = 0, (B.41)

where we have suppressed the dependence on s for simplicity and bear in mind that we
have to sum over two polarizations in the final expression. As before, we introduce a new,
canonically normalized variable

vq =
a

16πGN
hq (B.42)

which satisfies the equation

vq
′′ +

(
q2 − a′′

a

)
vq = 0. (B.43)

This equation is of the same form as (B.25) with cs = 1 and z replaced by a. Then, the
properly normalized solution vq is given by

vq =

√
π

2
(−τ)1/2H(1)

ν (−qτ), (B.44)

with ν2 = 9/4 + 3ε1. The quantization proceeds in a similar way as in the scalar case and
the power spectrum of the field hq = (16πGN/a)vq is obtained from the two-point correlation
function

〈ĥqĥq′〉 = 〈v̂qv̂q′〉
(16πGN)2

a2
= (2π)3δ(q + q′)|hq|2. (B.45)

The dimensionless spectral density which characterizes the primordial tensor fluctuations is
given by

PT(q) =
q3

π2
|hq|2 =

q3

π2

∣∣∣∣16πGN

a
vq

∣∣∣∣2 , (B.46)

with vq given by (B.44).
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