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gravity. We also study gravitational collapse and discuss possible implications for the growth
of structure.
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1 Introduction

Stellar dynamics is an outstanding laboratory to explore the predictions of general relativity
(GR) and alternative theories in the strong field regime. A variety of systems, such as dwarf
stars, neutron stars, or even collapsed objects like black holes offer observational windows
to constrain the theory of gravity. This has led to the study of astrophysical systems in
several alternatives to GR, for example, f(R) theories [1, 2], brane-world models [3–8], non-
commutative theories [9, 10], scalar and vector-tensor theories [11–19] etc. In particular, it
is important to study how the equilibrium equations are modified and what are the con-
sequences for the magnitudes that characterize compact systems, such as the mass, radius,
and compactness. For simplicity these studies often begin with constant density objects,
but it is also important to use more realistic equations of state and identify degeneracies
between modifications due to the theory of gravity and those due to the equation of state.
On the other hand, the long-standing cosmological constant problem [20, 21] continues to be
a motivation for proposing alternative theories of gravity. One of these alternatives, known
as Unimodular Gravity (UG) [22–24], attempts to relax this problem by a mechanism that
makes vacuum energy non-gravitating and attributes the observed cosmological constant to
an arbitrary integration constant of the theory, helping to evade the gap between the theoret-
ical and observational estimates of the cosmological constant. This form of UG works under
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the assumption that the energy-momentum tensor is covariantly conserved, and does not offer
physical insights on the nature of the cosmological constant: its classical field equations are
the same as in GR [25–29]. The study of cosmological perturbations requires some care in the
gauge choice, for instance, now the gauge symmetry consists of transverse diffeomorphisms
only, but it has been shown that in gauge invariant quantities the equivalence between GR
and UG holds [28]. At the quantum level, this equivalence is not yet clear. Differences have
been argued to arise, with implications for the hierarchy and radiative stability of the cos-
mological constant [25, 30–32], but it has also been suggested that the equivalence depends
on the details of the classical starting point — whether the determinant of the metric is
explicitly constrained or not — as well as on the quantization procedure [33, 34].

As mentioned above, the conservation of the energy-momentum tensor is not automatic
in UG but is introduced as an additional assumption. Recently, the possibility to discard this
assumption has received some attention in the literature, partially motivated by novel ideas
proposed by Perez et al. [35, 36] that do offer an insight on the nature of the cosmological
constant by allowing for a non-conserved energy-momentum tensor, a feature that can be
incorporated in UG. Further, exhaustive studies on the cosmological implications of this
version of UG have been reported in [37] and [38].

Given this scenario, it is important to put UG to test also in extreme gravitational
laboratories, such as stellar dynamics, with the assumption that energy-momentum is non-
conserved, thus stopping the classical theory from automatically reducing to GR. In this
work we study static, spherically symmetric solutions to the UG field equations subject to an
additional condition that is required in order to close the system of equations, since in UG
the number of independent field equations is reduced by one due to the trace-free property
of the field equations. We exploit this additional condition in two ways, first to simplify
the system of equations and obtain some analytical results, and then to parameterize the
type of non-conservation of energy-momentum in our numerical results and contrast with
GR predictions.

This paper is organized as follows: in section 2, we briefly review the theoretical frame-
work of UG. Section 3 is dedicated to the study of static, spherically symmetric solutions.
We begin by exploring the relation between solutions for metrics that satisfy explicitly the
unimodular condition — constant metric determinant — and solutions that do not satisfy
this condition, we justify that the systems that we explore in this work can be analyzed in
either coordinate chart. We then study an analytic solution of UG through the imposition
of a simplifying ansatz that allows us to obtain the Tolman-Oppenheimer-Volkoff (TOV)
equation, which we use to analyze some properties of a star in this conditions. In section 5
we study constant density configurations under an assumption for the non-conservation of
energy-momentum; we perform a numerical analysis and explore the behaviour of our solu-
tions near the Buchdahl limit of GR. In section 6 we extend the previous numerical analysis
to account for stars described by a polytropic equation of state (EoS), obtaining modifica-
tions that could provide constraints on the non-conservation of energy-momentum. Finally,
in section 7 we study gravitational collapse, showing that collapse times get modified, and
we discuss some consequences for black hole and structure formation in our Universe. Sec-
tion 8 is devoted to conclusions and perspectives for the study of stellar dynamics in UG. In
addition, we include several appendices with details of our calculations and assumptions: we
discuss the equivalence between unimodular and FLRW-like metrics; we give a formal justi-
fication for the simplifying assumptions used in section 3, we provide details of the equations
of motion for constant density objects, we discuss how different assumptions for the non-
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conservation of energy-momentum affect our results, and we revisit the Reissner-Nordström
solution, clarifying misleading results reported in previous studies.

2 Unimodular gravity: Lagrangian and equations of motion

Unimodular gravity can be described by the action

S =

∫
d4x
√
−g
(

1

2κ
R+ Lmatter

)
, (2.1)

where κ = 8πG with G the Newtonian gravitational constant. Importantly, the metric
determinant in (2.1) is restricted to satisfy the unimodular condition

√
−g = ε0, where ε0 is

a fixed scalar density usually set to unity, i.e
√
−g = 1. The unimodular action can then be

written as

S =

∫
d4xε0

(
1

2κ
R+ Lmatter

)
, (2.2)

where all the tensors in the action are constructed with a metric that satisfies the unimod-
ular condition. After some manipulations — transparent when the unimodular condition is
incorporated into the action by means of a Lagrange multiplier — the equations of motion
result in

ξµν := Gµν − κTµν = −1

4
gµν(R+ κT ) , (2.3)

where Tµν is the standard energy-momentum tensor

Tµν = − 2√
−g

δ(
√
−gLmatter)

δgµν
. (2.4)

Some confusion might arise here since, strictly, the energy-momentum tensor in UG should
be defined like in (2.4) but without the metric determinants. However, it can be shown
that the combination Tµν − gµνT/4 which appears in the equations of motion is independent
of what definition of the energy-momentum tensor is used [25]. In contrast to General
Relativity, where the trace of the equations of motion gives R = −κT , here the equations of
motion are trace-free, and the differences with respect to GR are indeed parameterized by
R + κT . Furthermore, while in GR the Bianchi identities ∇µGµν = 0 enforce the covariant
conservation of the energy-momentum tensor, i.e. ∇µTµν = 0, in unimodular gravity there is
the possibility to have non-conserved energy-momentum tensors since the conservation that
must be satisfied is

∇µ
(
κTµν −

κ

4
gµνT −

1

4
gµνR

)
= 0 . (2.5)

If ∇µTµν = 0 is assumed, then the above equation implies ∂ν(κT + R) = 0, so that we can
write κT + R = −4Λ for some integration constant Λ. Plugging this back in the equations
of motion of unimodular gravity we get Gµν + Λgµν = κTµν . Then, assuming conservation of
the energy-momentum tensor, the equations of motion of GR with a cosmological constant
are recovered.

In the formulation of UG described above the unimodular condition is reflected in
the trace-free property of the equations of motion. For our purposes this formulation is
enough, since what we actually exploit in this work is the fact that this condition reduces the
number of independent equations of motion, but it is worth mentioning that there are other
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approaches in the literature, for instance, the field equations of UG can be derived from a
fully diffeomorphism invariant action [39].

Rather than assuming ∇µTµν = 0, which automatically leads to the usual Einstein
field equations, in the next sections we work with (2.3) and look for configurations where
the energy-momentum tensor is not conserved. Physical motivations for this possibility have
been presented in [40].

3 Static, spherically symmetric solutions

Before we start, it is important to mention that the unimodular condition (hereafter, we
consider the unimodular condition as

√
−g = 1 where ε0 = 1) is not the most formal way

to define unimodular gravity: what is really relevant is that the equations of motion are
obtained by considering an invariant volume form. A volume form is coordinate independent,
while

√
−g = 1 is not. The physical consequence of the restricted variation considered in

unimodular gravity is the fact that the equations of motion are trace-free. At the level of the
equations of motion we can impose any ansatz for the metric; furthermore, at least locally,
any metric can be rewritten in a form that satisfies

√
−g = 1.

Nevertheless, for the sake of completeness and clarity, here we review some static, spher-
ically symmetric solutions both in unimodular coordinates (i.e., coordinates where the uni-
modular condition is satisfied explicitly) and in standard spherically symmetric coordinates.
In addition, in appendix A we demonstrate the equivalence between a FLRW metric1 in
its standard form and in a form that fulfills the unimodular condition, showing that it is
irrelevant which metric we are using and the physical results are the same in each system.
Another important point that it is necessary to remark is that UG coordinates does not have
advantages from a numerical point of view2 and thus, the following analysis has only the goal
to underscore the connection between both coordinates system. Let us begin our discussion
in unimodular coordinates.

3.1 Static, spherically symmetric solutions of GR in unimodular coordinates

Given a metric of the form

ds2 = −f(r)dt2 + h(r)−1dr2 + r2(dθ2 + sin2 θdϕ2) , (3.1)

we can perform a coordinate transformation dr =
√
h(r)/(r4f(r))dy, x = cos θ, such that

the metric rewrites as.

ds2 = −f(y)dt2 +
dy2

r(y)4f(y)
+
r(y)2dx2

1− x2
+ r(y)2(1− x2)dϕ2 , (3.2)

as long as the radial coordinate can be expressed in terms of y. For example, for a so-
lution with f(r) = h(r) the coordinate change simplifies to r = (3y)1/3. Using this, the
Schwarzschild solution in unimodular coordinates reads (see [41] for a more complete study
of this solution in UG)

ds2 = −
(

1− 2M

(3y)1/3

)
dt2 +

(
1− 2M

(3y)1/3

)−1 dy2

(3y)4/3

+
(3y)2/3dx2

1− x2
+ (3y)2/3(1− x2)dϕ2 . (3.3)

1We use for simplicity the FLRW line element in order to illustrate the equivalence between metrics, due
to the integrability in this particular case.

2Unless it helps to diagonalize the metric, which is not the case with this paper.
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A similar procedure can be applied to (anti)-de Sitter and Reissner-Nordström metrics (the
latter is analyzed in appendix D). When f 6= h, expressing r in terms of y becomes more
complicated, for example, for a constant density TOV solution to the Einstein-Hilbert equa-
tions with matter described by T 0

0 = −ρ0, T
i
i = p(r) and all other elements vanishing, the

metric can be written in the spherical coordinates (3.1) with

f(r) =
ρ2

0

(ρ0 + p(r))2
,

h(r) = 1− 1

3
r2κρ0 ,

p(r) = ρ0

√
R2
sκρ0 − 3−

√
r2κρ0 − 3√

r2κρ0 − 3− 3
√
R2
sκρ0 − 3

, (3.4)

where the constant Rs is the radius of the compact object, defined by the vanishing of p(r).
The change of coordinates requires us to integrate

dy = −

√
3r2
(√

3− r2κρ0 − 3
√

3− κRs2ρ0

)
2
√

(3− r2κρ0) (3− κRs2ρ0)
dr ,

and then solve for r as a function of y. In a small ρ0 approximation (formally defined by
introducing a small, dimensionless parameter ε such that ρ0 → ερ0), we have to solve

r3

3
+

1

180
r3κ

(
9r2 − 5Rs

2
)
ρ0+

r3κ2
(
9r4 − 7Rs

4
)
ρ2

0

1008
+

5r3κ3
(
r6 −Rs6

)
ρ3

0

2592
+O(ρ4) = y . (3.5)

Since y is a new coordinate it does not depend on ρ0, so we can take r = r0(y) + ρ0r1(y) +
ρ0r2(y) + . . . . Proceeding in this way we find a perturbative solution to arbitrary order in
ρ0. The first few terms read

r0(y) = (3y)1/3 ,

r1(y) =
1

180

(
5 31/3y1/3κRs

2 − 27yκ
)
,

r2(y) =
9 32/3y5/3κ2

2800
− 1

40
yκ2Rs

2 +
11y1/3κ2Rs

4

432 32/3
. (3.6)

Notice that r0(y) coincides with the coordinate transformation of a vacuum solution. We
can now write down the unimodular form of the TOV metric for small, constant density
objects in GR:

f(y) ≈ 1+
1

6

(
32/3y2/3κ−κRs2

)
ρ0+

(
27 31/3y4/3κ2+50 32/3y2/3κ2Rs

2−75κ2Rs
4
)
ρ2

0

2160
+. . .

p(y) ≈ 1

12
κ
(
Rs

2−32/3y2/3
)
ρ2

0+
κ2
(
27 31/3y4/3−35 32/3y2/3Rs

2+30Rs
4
)
ρ3

0

1080
+. . . . (3.7)

The radius of the star is given by y(Rs) and can be obtained from (3.5). The previous
results verify that both Schwarzschild and the TOV metric of a constant density object can
be expressed in unimodular coordinates. Given that Schwarzschild is a vacuum solution and
that the energy-momentum tensor of TOV satisfies ∇µTµν = 0, they have to be also solutions
of unimodular gravity, although not the most general ones since in UG with ∇µTµν = 0 there
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is an additional integration constant that embeds these solutions in (anti-)de Sitter space-
time. Now that we are convinced that a change of coordinates from standard to unimodular
coordinates exists also for solutions in presence of matter, we continue our study of static,
spherically symmetric solutions of unimodular gravity in standard coordinates, allowing for
a non-conserved energy-momentum tensor.

3.2 Static, spherically symmetric solutions of UG

In order to study stellar dynamics, we assume that the geometry is described by the spheri-
cally symmetric line element given in eq. (3.1), and we consider a matter sector characterized
by a perfect fluid whose energy-momentum tensor is expressed in the form

Tµν = ρuµuν + p(gµν + uµuν), (3.8)

where p = p(r) and ρ = ρ(r) are, respectively, the pressure and density of the stellar matter
of interest, uµ is the fluid four-velocity, which satisfies the condition gµνu

µuν = −1, and
gµν +uµuν is orthogonal to uµ. In the following, we derive analytic expressions for the masss
and gravitational energy of gravitationally bound objects under some assumptions that allow
for analytical progress.

3.2.1 Analytic solution with a particular ansatz

This exercise is aimed to obtain an analytic solution of the UG field equations in order to
gain some insight on the physics that happens in this context, and later on extend this
knowledge to the numerical solutions. For this task, we assume that either Rtt = 0, Rrr = 0
or Rθθ = 0. This ansatz simplifies the field equations and allows us to obtain analytic results
(see appendix B for a formal justification of this ansatz choice).

The field equations give us the form of h(r) as

h(r) = 1− 2GMUG(r)

r
, (3.9)

where we define

M(r)UG ≡ C
∫ r

0
4πr′2(p+ ρ)dr′ , (3.10)

with C a constant that depends on which component of the Ricci tensor is set to zero:
C = 3/2 for Rtt = 0 and C = 1/2 both for Rrr = 0 and Rθθ = 0. After some manipulations
that combine the field equations with eq. (2.5), we get

f(r)′

f(r)
= ±p(r)

′ + ρ(r)′

p(r) + ρ(r)
, (3.11)

and with this we can arrive to an equation that contains only the mass function, the pressure,
and the density of matter, this is the modified TOV equation in UG under the assumptions
mentioned above:

−r2(p′ + ρ′) = GMUGρ

[
1 +

p

ρ

] [
±S 4πr3(p+ ρ)

MUG
∓ 2

] [
1− 2GMUG

r

]−1

, (3.12)

where S = 1 for Rtt = 0 and S = 3 both for Rrr = 0 and Rθθ = 0. One concern is that
the TOV equation found in this approach is not continuously connected to the Newtonian
equation found in the weak field limit of GR. This is caused by the ansatz imposed to integrate
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and obtain the analytic solution: by choosing these ansatz we are imposing a non-infinitesimal
deviation from GR. It is interesting that the system admits solutions under these conditions
and this could lead to observable effects useful to constrain the model.

Integrating eq. (3.11) and using the modified TOV equation, we obtain the gtt compo-
nent of the metric,

f(r) = exp

{
±
∫ ∞
r

2G

r′2
[∓MUG ± 2πSr′3(ρ+ p)]

[
1− 2GMUG

r′

]−1
}
dr′, (3.13)

where we consider the boundary condition f(∞) = 1 in order to obtain an asymptotic
Minkowski space-time. The upper signs corresponds to Rtt = 0 and the lower signs to the
other two cases. Outside the configuration of matter the pressure and density vanish and the
Schwarzschild solution is recovered, this is possible since our ansatz is automatically satisfied
for Schwarzschild. As a complement, we compute the redshift of spectral lines from the
surface of the star as

z + 1 =

(
1− 2MUGG

R

)1/2

, (3.14)

where MUG ≡ M(R)UG, given by eq. (3.10), existing a substantial change in comparison
with the standard result due to the presence of p and C in the previous equations. On the
other hand, in similarity with GR, we expect that the number of nucleon in the star can be
written as [42]

N =

∫ R

0
4πr2

[
1− 2GMUG(r)

r

]−1/2

n(r)dr, (3.15)

being n(r) the proper number density. In addition, the internal energy of the star is given
by E ≡ M − mNN , where mN = 1.66 × 1024g is the rest mass of a nucleon. If we now
assume a proper internal material energy density3 e(r) ≡ (ρ(r) + p(r)) −mNn(r), we have
E = T + V , where

T =

∫ R

0
4πr2

{
1 +

GM(r)UG
r

+ . . .

}
e(r)dr, (3.16)

V = −
∫ R

0
4πr2

{
(1− C)+

GM(r)UG
r

+
2

3

(
GM(r)UG

r

)2

+. . .

}
(ρ(r)+p(r))dr, (3.17)

where T and V are the thermal and gravitational energies in UG, respectively. In order to
compare eq. (3.17) with the standard gravitational energy, we propose the following dimen-
sionless variables

Ṽ = V/M, ρ̄ = ρ/ρeff , p̄ = p/ρeff , and x =
√
GM/R(r/R), (3.18)

with ρeff = 3M/4πR3, M the standard GR mass, and assuming the case where p � ρ for a
constant ρ. Therefore we finally have

Ṽ ≈ −ρ̄(1− C)− 3

5
ρ̄2Cmcomp, (3.19)

3The form of e(r) is inspired by the structure of the UG mass given in eq. (3.10), which depends both on
p and ρ, in contrast with the mass and e(r) for GR which depend only on ρ(r) (see [42] for details in the
GR case).
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UG with Rtt=0

UG with Rrr=0/Rθθ=0

GR

0 2 4 6 8 10

-0.6

-0.4

-0.2

0.0

x

V
/M

Figure 1. Behavior of gravitational energy described by eq. (3.19), for the two ansatz imposed and a
comparison with the standard behavior of GR. As a initial conditions, we propose ρ̄ = 1 and p� ρ.

where Cmcomp ≡ GMC/R is the stellar compactness modified by UG together with the ansatz
made in this section for the Ricci tensor. Eq. (3.19) is to be compared to the dimensionless
gravitational energy in GR, Ṽ = −(3/5)ρ̄2Ccomp, which is shown in figure 1 assuming ρ̄ = 1,
notice that in this particular case the traditional GR behavior is recovered when C = 1,
therefore Cmcomp → Ccomp = GM/R. However, while in GR the constraint GM/R < 4/9
holds, it remains to be seen whether UG allows for higher values of the compactness, this is
analyzed in the next section. Also, notice that in some cases UG predicts positive values for
the gravitational energy, this suggests that the ansatz Rtt = 0 has no physical interpretations.
For the other ansatz we found a lower gravitational energy than the one expected in GR.
This result highlights the differences due to the UG modifications to the dynamical equation.

In the next section we present a full numerical study of compact objects in UG without
assuming the ansatz of this section, but rather closing the system of equations with an
assumption on the type of violation of energy-momentum tensor that allows for a continuous
limit to GR.

4 On the choice of non-conservation of Tµν

The trace-free property of the equations of motion in UG reduces the number of independent
equations of motion. In GR, when a matter Lagrangian and a spherically symmetric ansatz
for the metric are considered, the metric equations of motion contain three independent equa-
tions — one of them equivalent to the Bianchi identities combined with the conservation of
Tµν . Together with an EoS, these equations suffice to determine the four free functions of
the system (two metric functions and the pressure and density of matter). Under the same
considerations, in UG there are only two independent metric equations of motion, which
together with the EoS can determine only three of the four free functions. Therefore we need
an extra condition to close the system of equations. One possibility is to use this freedom
to impose simplifying assumptions on the equations of motion, as in section 3.2.1. Another
option is to impose a form of violation of ∇µTµν = 0. This has the advantage that we have

– 8 –



J
C
A
P
0
9
(
2
0
1
9
)
0
0
5

under control the non-conservation of Tµν in the model. Also, we can parametrically recover
the GR solutions when this non-conservation is small. But, what type of non-conservation
should we choose? Most studies on UG actually impose conservation of Tµν and take the
“automatic” presence of a cosmological constant as an integration constant as the main char-
acteristic of UG. However, this approach leads to the same dynamics as GR with cosmological
constant [29]. On the other hand, a few mechanisms leading to non-conservation of energy
momentum have been discussed in the literature. For instance, in [35] non-conservation orig-
inating from the interaction between a discrete space-time and matter at a microscopic level
is seen as a friction-like force acting on massive particles, which macroscopically generates an
accelerated expansion of the universe. Similar energy-momentum diffusion effects have been
found in causal set theory [43, 44]. Another scenario where non-conserved energy-momentum
arises is found in non-unitary modifications of quantum dynamics, such as the Continuous
Spontaneous Localization (CSL) collapse model. Recently, NSs have been pointed out as
competitive candidates to test this model [45]. Dissipative effects can also be motivated by
standard physics of NSs. After they form, NSs undergo a rapid cooling phase driven by the
Urca process, in which neutrinos escape from the star carrying energy away [46, 47]. After
a few minutes, the Urca process is replaced by a much slower modified version that lasts up
to a million years (see, e.g., the Minimal cooling paradigm [48]). Along the same lines, with
exception of the CSL model, all the interpretations above lead to energy-momentum loss,
and would therefore correspond to a negative k in our ansatz for non-conservation. A de-
tailed incorporation of these effects in modified gravity is an interesting line of research that
seems natural to pursue in UG, since the framework allows for a non-conserved Tµν , which
is incompatible with GR. Given the limited number of works in this direction (see [37, 38]
for a cosmological study), it seems better to start with the simplest case, ∇µTµν = δrνk, for
a constant k .4 This is the choice we make in section 5 for constant density objects. When
studying objects described by a more realistic EoS it might also be important to consider less
simple assumptions for the non-conservation of Tµν . In section 6 we use ∇µTµν = δrνkρ(r) for
two reasons: first, because it is a straightforward generalization of the constant violation used
for constant density objects, and second, because in a preliminary study we found that a con-
stant violation does not allow for objects with compactness higher than the compactness of
GR solutions for the same density and equation of state. Thus, if UG with non-conservation
of Tµν is taken seriously, observations of highly compact objects could rule out a constant
violation of energy-momentum conservation.

5 Constant density objects in UG

We explore solutions for objects with constant density in UG. This simple scenario is always
a good starting point in the study of stellar dynamics from where some physical intuition
can be drawn, even if we can only access the solutions numerically.

As stressed earlier, the system of equations obtained from variation of the action in UG
is under-determined. In order to get a closed system, and at the same time to control the
violations of conservation of Tµν , we supplement the set of equations with

∇µTµν = δrνk , (5.1)

4A derivation of the type of non-conservation of energy-momentum from microscopic physics, in the spirit
of [36], is left for future work.
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)(10−5cm−1) k̃. The numerical factors are typical density and length scales of astrophysical

compact objects.

for some constant k that parameterizes the non-conservation of the energy-momentum tensor
of matter. Given the symmetries of our set-up, the time and angular components of ∇µTµν
vanish identically. Then, the fact that the non-conservation of energy-momentum happens
only in the radial direction is not an assumption but a consequence of the symmetries of
the system, what we are assuming is that this non-conservation is constant. All in all, we
solve numerically ξ00, ξ11, and (5.1) for the functions f(r), h(r) and p(r). Initial conditions
are set at a small radius ri by Taylor expanding and solving these equations near r = 0. We
find that these initial conditions depend on the constant density ρ0, the central value of the
pressure p(0), the parameter k, and the second derivative of the pressure at the origin, p′′(0).
The presence of p′′(0) in the initial conditions is a difference with respect to GR, and can be
related to the additional integration constant of UG. In particular, one can check that the
initial conditions for k = 0 only coincide with those of GR if p′′(0) takes the value dictated by
the constant density solution of GR: in general, setting the additional integration constant
of UG to zero means choosing p′′(0) in such a way that it coincides with its value in the GR
solution, this is how we fix p′′(0). Another thing to note is that the first derivative of the
pressure does not vanish at r = 0, indeed it is equal to k, this is a consequence of the type
of violation of energy-momentum conservation that we impose. More details can be found in
appendix C.

Figure 2 shows our results for the masses of constant density configurations with different
values of k. The GR solution corresponds to k = 0 and it is shown in solid line. Notice
that sizable changes in the mass occur without large modifications in the radius of the
configuration. This has interesting consequences for the compactness of these objects, defined
as the dimensionless ratio C = GMUG(Rs)/Rs, whereMUG(Rs) is the mass function defined
in (3.9) evaluated at the radius of the star, Rs. The GR solution displayed in figure 2 has
compactness C ≈ 0.4435, just below the Buchdahl limit [49] C = 4/9 that comes from
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requiring the pressure to be finite at the center of the star. As can be inferred from the same
figure, the solution with k = 0.01 has a larger compactness, and indeed we find C0.01 = 0.4635,
where we introduced the notation Ck to indicate that C is computed for a configuration with
a given value of k.

In view of these results, it is worth exploring the region k > 0 in more detail. To do so
we parameterize the density in terms of the critical density in GR for uniform distributions
of mass:

ρ0 = a
8

3(RGRs )2κ
≡ aρcrit , (5.2)

for a constant a. The initial conditions are thus determined in terms of a and RGRs , the latter
can be fixed as the radius of the GR configuration by choosing appropriate values for p(0),

p(0) =
ρ0

(
−
√

3 +
√

3− κ(RGRs )2ρ0

)
√

3− 3
√

3− κ(RGRs )2ρ0

. (5.3)

For k 6= 0 we do not have an explicit relation between the radius of the star and the initial
conditions at r = 0, so even though we use RGRs in the initial condition for the pressure, the
radius of the star is Rs 6= RGRs . As we explained above, p′′(0) is chosen in such a way that
for k = 0 the GR solution is recovered, i.e., we set to zero the additional integration constant
of UG. For given a and RGRs , the only free parameter in the initial conditions is k, and by
the discussion after figure 2 we are interested in k > 0.

Figure 3 shows the compactness of configurations with a = 0.850 and a = 0.998, and
values of k between 0.005 ≤ k ≤ 0.05. These results confirm that solutions in unimodular
gravity can go well beyond the Buchdahl limit C = 4/9. Interestingly, they approach asymp-
totically to the compactness of a Schwarzschild black hole, C = 1/2. For a = 0.850 and
k ≥ 0.04, instead of a smooth approach p(r) → 0 as r approaches some value that would
correspond to the radius of the compact object, we find dp/dr → −∞ at some finite radius,
similar to the radius of configurations with lower k. It is not clear whether this is a numerical
problem or a physical limit on the size of k. In any case, this limit is beyond the values of k
that give us Ck ≈ 0.5, so that we do not expect it to be observationally relevant, in the sense
that any observed compactness higher than 4/9 would be sufficiently interesting already.

In the next section we explore how the properties of constant density configurations
change when we consider a still simple but more realistic approximation to the equation of
state of compact stars.

6 Polytropic stars in UG

In this section we build upon the previous results in order to study compact objects described
by a polytropic equation of state, chosen in such a way that GR configurations with masses
and radii in the range of neutron stars are obtained. As before, we use a diagonal energy-
momentum tensor T 0

0 = −ρ(r), T ii = p(r), with

ρ(r) = ρ0

(
χ(r) +

K

Γ− 1
χ(r)Γ

)
, (6.1)

p(r) = Kρ0χ(r)Γ , (6.2)

where χ(r) is a dimensionless function, while K and γ are the free parameters of the EoS.
These parameters are determined by requiring that the properties of the resulting configu-
ration in GR match a realistic equation of state, in particular, K = 0.0225 and Γ = 2.34 are
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Figure 3. Compactness as a function of the non-conservation of Tµν for objects with two fixed
densities near the critical density of GR solutions. The dashed line at C = 4/9 represents the GR
limit for the compactness of constant density objects, achieved only for objects with ρ = ρcrit. In UG,
objects with ρ < ρcrit can surpass this limit if the non-conservation of Tµν is large enough.

compatible with the masses of PSR J1614-2230 (1.97 ± 0.04M� [50]) and PSR J0348+0432
(2.01± 0.04M� [51]), two of the most massive neutron stars (NS) observationally confirmed
to date.5

In addition to the EoS, in order to close the system of equations we decide to assume
a type of violation of conservation of Tµν . Following the discussion in section 4, here we
focus on

∇µTµν = δrνkρ(r) . (6.3)

This is a generalization of the constant violation assumed in the case of constant density.

We look for solutions numerically, setting initial conditions at a small radius ri by solving
the equations of motion in a Taylor expansion around r = 0. In contrast to GR, where the
initial conditions depend only on χ(0), here they depend on χ(0), χ′′(0) and k. The value
of χ′′(0) is related to the additional integration constant of UG — the one associated with a
cosmological constant; to set this contribution equal to zero we fix χ′′(0) to be the same as
in the GR solution. Thus, the only free parameters of our solution are χ(0) and k.

Figure 4 shows our results for polytropic configurations with k = 0 — which recovers
GR, k = −0.002 and k = 0.002. The left panel shows the mass-radius curves for equilibrium
configurations with central densities in the range 1014–1019 kg/m3. Assuming the same
values of K and Γ for every k, we find that the mass-radius curves for negative (positive)
k lie below (above) the GR curve. Similar results are found for the compactness of these
configurations, shown in the right panel of figure 4. These results show that the GR solution
is continuously recovered as k → 0, but relatively large deviations in the compactness of
low density objects appear even for small breaking of conservation of Tµν ; therefore, this

5Recently, the mass of PSR J2215+5135 has been estimated to be around 2.27 ± 0.17M� [52], but this
result depends on the orbital inclination, which has not been independently confirmed.
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Figure 4. Mass-radius curves and compactness for compact polytropic stars, with non-conservation
of energy-momentum parameterized by the dimensionless constant k̃ = (1.2 × 105cm)k. Notice that
the changes in the properties of the star due to k̃ get smaller as the matter density increases.

conservation breaking could be constrained, e.g., by observations of the compactness and
tidal deformabilities of NS (see, e.g. [53]). Furthermore, it is important to highlight that
we generically find solutions with masses higher than the ones allowed in GR by the static
equilibrium criterion dM/dρc > 0 [54]: stars with such masses, if observed, could hint towards
modifications of the theory of gravity. Similar effects are found in scalar-tensor and vector-
tensor gravity [12, 13, 16, 18, 55]. Also in connection to other modified gravity models, notice
that the deviations due to UG shown in figure 4 get smaller as the central density of the stars
increases, this behaviour is reminiscent of screening mechanism (see, e.g. [11]), we speculate
that it can be a consequence of the metric non-linear relation and the non-conservation of
Tµν implied by eq. (2.5).

Other constraints could be imposed by studying the sound speed c2
s = dp/dρ of our

solutions. Causality requires dp/dρ ≤ 1, and also we should have dp/dρ ≥ 0. However; we
find that the maximum c2

s in every solution is attained at the center of the star and it depends
very weakly on the value of k. This is shown in the left panel of figure 5, where the shaded
area is the region excluded by causality. The solutions in that area are already excluded by
the static equilibrium criterion, so that no new constraints arise from the sound speed. The
right panel of figure 5 shows that the changes to the sound speed inside the star induced by
k are also small.

By construction, for k = 0 the maximum mass of the configurations shown in figure 4 is
about the observed 2M� limit. For negative k, the maximum mass is reduced. Although the
parameters K and Γ of the EoS can be readjusted in such a way that the observed maximum
mass limit is recovered, these changes to the EoS also affect other quantities. For instance,
let M be the observed maximum mass and R its radius computed in GR with a polytropic
equation of state. In UG with k̃ = −0.01 we can obtain a mass-radius curve with maximum
at (R,M) (i.e. we require that the radius of the maximum mass configuration is the same
in GR and in UG) by setting the polytropic parameters K ≈ 0.0175 and Γ ≈ 2.88. However,
when we study the sound speed of these objects we find that the limit c2

s ≤ 1 is violated
before reaching the maximum mass. Thus, we learn that by combining conditions on the
mass, radius, and causality of the solutions we can constrain the size of k̃ even if some freedom
is allowed in the EoS: neutron stars in UG, compatible withM≈ 2M� and R ≈ 12 Km and
described by a polytropic equation of state, require k̃ > −0.01. Tighter constraints are not
yet possible due to the observational uncertainty of the mass-radius curves (see, e.g. [56]). For
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Figure 5. Left panel: sound speed at r = 0 for polytropic stars with different amounts of non-
conservation of Tµν . In all cases, the results agree with GR. Right panel: sound speed inside the
star for four different central densities. The GR curves (not displayed) lie between the curves for
k̃ = −0.002 and k̃ = 0.002. Small deviations from GR happen inside the star.

more realistic EoS, whose parameters are determined from effective theories and assumptions
on the behaviour of nuclear matter, there are two possibilities. First, the parameters of the
EoS get modified once the microscopic non-conservation of energy-momentum is taken into
account, in this case the situation would be similar to our discussion above for the polytropic
equation of state. Second, the parameters of the EoS remain unchanged. An interesting
consequence of this scenario would be that some equations of state previously discarded for
not reproducing M could be revived by assuming a minimum, positive value for k̃. This
could be the case, for instance, for the BSk19 EoS [57] (see also [58]), which predicts a
maximum mass of 1.86M�. Comparing with figure 4 we speculate that k̃ of order 10−3 can
lift this value to approximately 2M�, thus making this EoS viable. In order to analyze these
possibilities, a detailed study of the different equations of state proposed in the literature
and their underlying assumptions is required. Such a study is beyond the scope of this work.

Another quantity of interest is the surface redshift, i.e., the gravitational redshift of
emission lines originating near the surface of the star. As stated in eq. (3.14), this redshift is
closely related to the compactness. For the objects shown in figure 4 we find redshifts modified
by about 10% with respect to their GR value. For instance, a polytropic object with a radius
of 12Km has z ≈ 0.42 in GR, z ≈ 0.36 in UG with κ̃ = −0.002 and z ≈ 0.47 in UG with
κ̃ = 0.002. These changes are within the lower and upper bounds on the redshifts expected
in GR [59], and therefore do not offer an observational test of UG with −0.002 . z . 0.002.

To conclude our discussion of the structure of the star, let us comment on the properties
of the pressure at r = 0. In contrast to GR, where the equilibrium equations demand
p′(0) = 0, the solutions displayed in this section have p′(0) 6= 0 — indeed p′(0) = kρ(0),
thus, for positive k the maximum pressure is not necessarily the pressure at r = 0. Also, the
second derivative of the pressure at r = 0 is not necessarily negative as is the case in GR but
can become positive if k is sufficiently large, this can be seen by exploring the perturbative
solutions near r = 0. Nevertheless, for the stable solutions shown here we always have
p′′(0) < 0, indicating that the profiles of p(r) near r = 0 are concave downwards, and even if
k > 0, p′(r) becomes negative at a very small distance away from the origin and from there
the pressure decays monotonically to zero.

– 14 –



J
C
A
P
0
9
(
2
0
1
9
)
0
0
5

Intuitively one would expect solutions with non-monotonic p(r) to be perturbatively
unstable. Thus, a valid question to ask is whether there is a simple way to remove them from
the model. Indeed this can be done for polytropic objects by considering a non-conservation
of the form

∇µTµν = δrνk(ρ(r)− ρ(0)) . (6.4)

By expanding the equations of motion near r = 0 it is easy to verify that this leads to
solutions with p′(0) = 0. Furthermore, p′′(0) — or equivalently χ′′(0) is a free parameter
that can always be chosen negative so to guarantee that the maximum pressure is at r = 0.
Nevertheless, this choice is not free of problems: once again the properties of the solutions
are such that for configurations with dM/dρ > 0 the compactness is smaller than the com-
pactness of the corresponding GR objects. Also, the constant term kρ0 implies that the
non-conservation of Tµν is larger near the surface of the star, which is counter-intuitive in
particular for a polytropic model where ρ(Rs) = 0 and we expect a smooth transition to
the vacuum solution. Summing up, we found that configurations with compactness equal or
smaller than GR bounds are generic in UG with non-conserved energy-momentum tensor,
while higher compactness is possible if we allow for the maximum density of the star to be
shifted away from the origin. It would be interesting to study the theoretical viability of
these solutions, as well as their existence in models where the non-conservation of Tµν is not
directly sourced by matter but by the curvature. We leave this for future work.

7 Gravitational collapse in UG

In this section we study the Snyder-Oppenheimer (SO) model, which is the simplest case of
gravitational collapse, in the UG scenario without energy-momentum conservation, assuming
a spherically symmetric collapse of dust with negligible pressure.

The metric related to this type of collapse is the well known homogeneous and isotropic
line element [60] written in the form:

ds2 = −dt2 +R(t)2

[
dr2

1− kr2
+ r2dΩ2

]
, (7.1)

where R(t) is the comoving radius of the star, k is the curvature of the star which always
must be imposed positive and dΩ2 ≡ dθ2 + sin2 θdϕ2 is the solid angle. Using (2.3) with the
addition of a dust energy-momentum tensor (p = 0) we have

R̈R− Ṙ− k = −4πGR2ρdust. (7.2)

Additionally, eq. (2.5) generates

ρ̇dust + 3Hρdust =
H3

4πG
(1− j), (7.3)

where H ≡ Ṙ/R and j ≡
...
R/RH3, the last parameter is defined in order to encode the non-

conservation of the energy-momentum tensor and help us to elucidate if we are not facing with
spurious solutions due to the derivatives acting on the Ricci scalar, which translate into third
order derivatives of R(t) (in principle this should not be a problem since (2.5) is contained
in the second order equations of motion, but one has to be careful when including (2.5)
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in the system of equations as we do in this section). Therefore, using eqs. (7.2), (7.3) and
integrating we obtain

H2 =

(
Ṙ

R

)2

=
8πG

3
ρdust −

k

R2
+

2

3

∫ t

t0

H3 (j − 1) dt′ + Λ, (7.4)

where Λ is an integration constant. Notice that for j = 1 and Λ = 0 the traditional behavior
for stellar collapse is recovered, therefore the GR limit is approached as j → 1, so deviations
in gravitational collapse can be parameterized by j 6= 1.

In figure 6 we present the results of the numerical solution of eqs. (7.3) and (7.4)
with dimensionless variables τ → H0t, ρ̄ → 4πGH2

0ρ/3 and k̄ → H2
0k, where H0 is an

appropriate constant that has units of s−1. In all cases we assume that the collapse initiates
at a normalized radius R(τ) = 1 for τ = 0. As expected, our results show that UG differs
from GR when we use different values of the parameter j. Here, we explore small and
constant violations to energy-momentum conservation in order to observe the differences at
large values of τ in a simple model. We find that the collapse time is notably modified when
we increase the presence of unimodular gravity. More exotic forms of j could even stop the
collapse of the star, therefore it would be interesting to study in detail how this modifies
black hole formation and population. Assuming that this process has to be very similar in
UG and in GR, we should expect j ≈ 1, allowing the collapse of the star and only producing
small violations to the energy-momentum tensor.

It would also be interesting to study collapse in the context of structure formation. From
the results above, it would be possible for subtle differences in the presence of violations to
the conservation of energy-momentum to modify collapse times. In this vein we suggest
that the reionization [61, 62] epoch could be an excellent laboratory to validate or refute
some aspects of UG, in particular we propose a future study, through a comparison with
the empirical star-formation rate proposed by [63] and with the strength of the 21-cm signal
through the so-called differential brightness temperature T21, in star formation eras [64].

In addition, we notice that the solution of eq. (7.3) for values of j → 1 (as we expect)
can be approximately written as ρdust ≈ ρ(0)dustR

−3 + Corr, where the corrections comes
from the violations to the energy-momentum tensor, being ρ(0) the central stellar density.
This corrections contribute to the effective mass of the star, allowing the possibility of a
larger population of NS or black holes in the Universe. Moreover, the final fate of the star
strongly depends on the violations to non-conservation in UG, and also on the Chandrasekhar
and Oppenheimer-Volkoff limits associated to the UG mass. Therefore, the study of the SO
collapse is not enough to give a verdict on the destiny of the compact object.

8 Discussion and conclusions

This paper presents a systematic study of static, spherically symmetric solutions in unimodu-
lar gravity with non-conserved energy-momentum tensor. This non-conservation has relevant
consequences for the cosmological constant problem. However, to our knowledge, it has not
been exhaustively studied in the strong gravity regime. Here we report some progress in
this direction: we address issues regarding the choice of coordinate system, showing that a
coordinate transformation from unimodular to standard spherically symmetric coordinates is
possible in presence of matter, we study compact and polytropic configurations of matter in
detail, and we analyze a simple model for gravitational collapse. In addition, in appendix D
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Figure 6. Numerical solutions for gravitational collapse in unimodular gravity. We choose as initial
conditions: R(0) = 1, dR(0)/dτ = 0, ρ̄(0) = 1 and k̄ > 0.

we revisit the Reissner-Nördstrom solution, which had been claimed to incorporate effects
not accounted for in GR, even under the assumption that the energy-momentum tensor is
conserved [65]. This would contradict the classical equivalence between GR and UG. We
clarify this by pointing out that the solution reported in [65] makes use of results that only
hold in a different version of UG, known as density-metric unimodular gravity [66], and we
rederive the RN solution, finding full compatibility with GR.

Let us summarize our main results. We start by finding the TOV equation in UG
under a specific ansatz that allows for an analytic treatment of the field equations. We
show a comparison between the gravitational energy V/M in GR and in UG, obtaining that
the ansatz Rtt = 0 leads to positive values that indicate non-physical results in the case of
constant energy density. Furthermore, different stellar compactness are obtained due to the
presence of a constant related to the ansatz chosen to close the UG system of equations.

For constant density objects we parameterize continuous deviations from GR by choos-
ing an appropriate ansatz for the type of non-conservation of Tµν . We find that their compact-
ness goes well beyond the Buchdahl limit as this non-conservation increases, and approaches
asymptotically to the compactness of a black hole.

We have also studied neutron stars described by a polytropic EoS. We find that the
type of violation of Tµν becomes relevant. We focus on a choice that allows for objects with
higher compactness than their GR counterparts, but this comes with the peculiarity that the
maximum pressure of the star is shifted away from the origin by a distance related to the
size of the violation to energy-momentum conservation. This is in stark contrast with GR,
where a monotonically decreasing pressure is guaranteed by the equilibrium TOV equations.
Similarly, in a generic class of modified gravity models the equations do admit solutions where
the pressure increases with r near the origin, but it was shown that a complete solution does
not exist, i.e., that the pressure never turns from increasing to decreasing as a function of
r [67]. The existence of this type of solutions in UG is thus a novel prediction. A detailed
study of the stability of these solutions, left for future work, is a promising tool to constrain
this model. Furthermore, by combining causality and conditions on the mass and radius of
the maximum mass configuration we are able to set a bound on the parameter that controls
the non-conservation of energy-momentum.
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Finally, we revisit homogeneous and isotropic gravitational collapse in UG. The non-
conservation of energy-momentum is encoded in the fluid equation through the j parameter.
We show that even if we take this parameter close to its GR value, the solutions exhibit
modifications to the collapse time that could impact the process of black hole formation,
providing another way to constrain the violations to energy-momentum conservation. We
discuss that the growth of structure in our Universe could be also affected, specifically in the
reionization epoch [61, 62], modifying the population of collapsed objects (white dwarfs, NS
or black holes). In this vein, we propose that in future works, the results must be extended
and compared with the empirical star-formation rate, resulting in important consequences
for the observed peak of cosmic star formation history at z ≈ 2 [63]; not less important could
be a profound study of 21-cm signal through the T21 temperature which is not only sensitive
to the Hubble expansion but also to the temperatures that are intimately related with the
stellar formation and population [64].

In summary, the results presented in this work suggest several scenarios where the non-
conservation of energy-momentum allowed in UG could be constrained. We have chosen to
analyze simple forms of non-conservation, showing effects that we expect to be generic for
other choices, like the modifications to the compactness of neutron stars and the change in
gravitational collapse times. In addition, we remark that UG theory can be considered as a
particular case of f(R, T ) theories as reported in [68]. In this study, the authors adopted a
Lagrangian, which contains a linear combination of Ricci scalar and a trace of the energy-
momentum tensor, developing a thermodynamic and cosmological analysis, where at the end,
it is possible to demonstrate that the results degenerate to the UG theory, stressing a subtle
relation between f(R, T ) and unimodular gravity models. Finally, it would be interesting to
derive a form of non-conservation motivated by the possible discretization of space-time, as
some authors have done in the study of the cosmological constant problem [35, 36]. This is
ongoing research that will be presented elsewhere.

Acknowledgments

We thank the anonymous referee for thoughtful remarks and suggestions. J.C.F.-U acknowl-
edges support from IPN and UPIIZ-IPN, M.A.G.-A. and J.C. acknowledges support from
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A Equivalence between metrics

A point that tends to cause confusion in UG is whether it is necessary to use a metric that
fulfills the unimodular condition or a metric in traditional spherical coordinates — or any
coordinates — can be used. The requirement that the metric determinant equals a constant
is a coordinate-dependent statement, and one should prefer a statement about coordinate-
independent objects, like the volume form. We also remark that the goal of the unimodular
condition is to restrict the variations of the metric and not the metric per se. Nevertheless,
it is good to show explicitly the equivalence between metrics in unimodular and in other
system of coordinates. Here we do so for a FLRW metric.

Let us compare physical results derived for a FLRW line element written in the form
ds2 = −dt2 +a(t)2d~x2 and for a metric that fulfills the unimodular condition, used in Alvarez
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et al. [31] to study a cosmological scenario in UG. This metric reads

ds2 = −b(τ)−2/3dτ2 + b(τ)1/2d~x2. (A.1)

Notice that eq. (A.1) can be constructed from the standard FLRW line element via a change
of variables a→ b1/4 and dt→ b−3/4dτ .

Assuming a perfect fluid energy-momentum tensor and using the field equations of UG
(see eq. (2.3)) we have

b′′

b
− 1

4

(
b′

b

)2

= −16πGb−3/2(ρ+ p), (A.2)

where primes indicate derivatives with respect to τ . This is the Friedmann equation under
the unimodular condition, but the physical interpretation in this form is not straightforward.
However, if we return to the a(t) and t variables to recover the traditional FLRW line element,
we have: Ḣ = −4πG(ρ+p), which is the same equation used previously by several authors [26,
27]. Therefore, the result is independent of using the FLRW metric or the metric of eq. (A.1).
The essential point is, which metric provides the best insight into the physical interpretation
of the results.

B Ansatz election

Lemma B.1 Considering the metric (3.1), there is a chart such that Rtt = 0 and Rθθ 6= 0.

Proof. Let p a point in the space-time with metric (3.1), then there is a chart U ′ containing
p, where the first partial derivative of the metric tensor vanishes at the point. Also, since

h(r) = 1− 2MUGG/r̂ and ∂r̂h|p = −2G(
M ′UGr̂−MUG

r̂2
)
∣∣∣
p

= 0, we have

∂2
r̂h =

−2G

r̂4

[
(M ′′UGr̂ +M ′UG −M ′UG)r̂2 − 2(M ′UGr̂ −MUG)r̂

]
= −2G

[M ′′UG
r̂
− 2

(M ′UGr̂ −MUG)

r̂3

]
=
−2G

r̂

(
M ′′UG − 2∂r̂h

)
(B.1)

and at the point p

M ′UG =
MUG

r̂
, M ′′UG

∣∣∣
p

= − 1

2G
∂r̂h
∣∣∣
p

= 0, (B.2)

resulting

∂2
r̂h
∣∣∣
p

=
4G

r̂
∂r̂h
∣∣∣
p

= 0. (B.3)

Finally, we can infer

Rtt(p) = 0, Rθθ(p) = −1 + h(r) 6= 0, (B.4)

which is the ansatz that we used.
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C Equations of motion for constant density objects in UG

In section 5 we obtained numerical solutions for constant density objects. Here we elaborate
further on the analytic treatment of the system of equations. The angular part of the Einstein
equations satisfies ξθθ = ξϕϕ because of our spherically symmetric set-up, and ξtt+ξ

r
r+ξtt+

ξθθ = 0 because of the trace-free condition. Thus, there are only two independent equations,
say ξtt and ξrr. Notice that the trace-free condition plays the role usually played by the
Bianchi Identities and the conservation of Tµν in eliminating one of the metric equations of
motion. Explicitly, under ansatz (3.1) the independent equations read

f2
(
4rh′ + 4h+ 6κpr2 + 6κρr2 − 4

)
+ hr2f ′2 − fr

(
rf ′h′ + 2h

(
rf ′′ + 2f ′

))
= 0 , (C.1)

−2f2
(
2rh′ − 2h+ κpr2 + κρr2 + 2

)
+ hr2

(
f ′
)2 − fr (rf ′h′ + h

(
2rf ′′ − 4f ′

))
= 0 , (C.2)

where f, h and p are functions of r and ρ = ρ0 is constant. In order to close the system
of equations we choose to assume a type of non-conservation of Tµν : ∇µTµν = kν for some
constant vector kν with units of density over distance. Only the radial component of these
equations is not trivial

pf ′ + ρ0f
′ + 2fp′ = 2fk , (C.3)

where kν = δrνk. After a few manipulations we obtain that the metric satisfies

ν ′(r) =
h′ + κpr + κρr

h
, (C.4)

h(r) = 1 + c1r
2 − 1

4
κkr3 , (C.5)

with f(r) = eν(r). The GR form of the radial component is recovered when k = 0 and
c1 = −κρ0/3. The arbitrariness of c1 comes as a consequence of the additional integration
constant contained in UG. The pressure is determined by the equation

κr
[
8c1r (ρ0 − kr) + 2κk2r3 − k

(
3κρ0r

2 + 8
)

+ 4κρ2
0r
]

+ κr2 (8c1 + 8κρ0 − 3κkr) p(r) + 4κ2r2p(r)2 + κr
(
8c1r

2 − 2κkr3 + 8
)
p′(r) = 0. (C.6)

As in GR, this is a Ricatti equation, but with more complicated coefficients. Writing c1 =
−κρ0/3 − γ we can verify that the GR solution for a constant density object in presence of
cosmological constant Λ = 3γ is recovered when k = 0. It is interesting to note that this
effective cosmological constant is not related to the non-conservation of Tµν . For arbitrary k
we could not find exact solutions. As a complement to the numerical analysis performed in
section 5, let us study the near-origin solutions. Expanding eq. (C.6) near r = 0 and setting
c1 = −κρ0/3 we find

p′(0) = k , (C.7)

p′′(0) = −1

6
κ(ρ0 + p(0))(ρ0 + 3p(0)) , (C.8)

p′′′(0) = − 1

12
kκ(7ρ0 + 15p(0)) . (C.9)

Odd orders are turned on by k, and even orders in general do receive modifications due to
k (p′′(0) is independent of k by construction). If we choose a different value of c1, modifica-
tions due to the extra integration constant in UG appear at every order except p′(0). As a
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consequence, the maximum pressure is shifted away from the origin if k > 0. As shown in
section 6, this feature persists when a polytropic EoS is considered. It would be interesting to
explore its implications in more detail, for example, as another way to constrain k by stability
conditions or as a new effect non-degenerated with the EoS. Results in these directions will
be reported elsewhere.

D Reissner-Nordström solution in UG

For completeness we briefly review and clarify some aspects of the Reissner-Nordström solu-
tion in UG, partially reported in [65]. As discussed after eq. (3.1), a spherically symmetric
space-time can be described in unimodular coordinates by the line element

ds2 = −f(y)dt2 +
dy2

r(y)4f(y)
+
r(y)2dx2

1− x2
+ r(y)2(1− x2)dϕ2 , (D.1)

where dr =
√
h(r)/(r4f(r))dy, with f(r) and h(r) the gtt and grr components of the metric

in spherical coordinates. In particular, for a Reissner-Nordström black hole we have

f(r) = h(r) = 1− 2M

r
+
Q2

r2
, (D.2)

and r = (3y)1/3. Here we want to verify that this solution, supplemented with a cosmological
constant, is the only solution in UG for an electrically charged black hole. To this end, we
insert (D.1) without any assumptions on the form of f(y) and r(y) in the equations of motion

Rµν −
1

4
gµνR =

1

4

(
Tµν −

1

4
gµνT

)
, (D.3)

∇µFµν = 0 , (D.4)

where

Tµν = −1

2
gµνF

αβFαβ + 2FαµFαν , (D.5)

and Fµν = ∂µAν − ∂νAµ. Notice that — as we do throughout this work — we are using the
GR energy-momentum tensor

Tµν =
1√
−g

δ(
√
−gFαβFαβ)

δgµν

instead of the UG version Eµν =
δ(FαβFαβ)

δgµν used in [65]. This is justified since, as shown in [25],

Tµν −
1

4
gµνT = Eµν −

1

4
gµνE .

Neglecting the integration constant in r(y) since it is an arbitrary constant in a change of
coordinates, fixing the integration constant in f(y) in such a way that f(y → ∞) = 1, and
using gauge invariance of Aµ to set to zero another integration constant, we arrive to the
general solution

r(y) = (3y)1/3 , (D.6)

f(y) = 1 +
Q2

(3y)2/3
− 2M

(3y)1/3
+ by2/3 , (D.7)

A(y) =
2Q

(3r)1/3
. (D.8)
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This is nothing more than the RN solution in presence of a cosmological constant expressed
in unimodular coordinates. This differs from the results in [65], where additional corrections
to the RN solution are reported. To our understanding, the difference arises because in [65]
the equations of motion are computed by using the results of [66] to evaluate the curvatures
appearing in (D.4), these results hold for a theory that is closely related but different to
unimodular gravity, in which the metric is considered as a tensor density of weight −1/2
instead of a tensor density of weight 0, for this reason this theory is dubbed density-metric
unimodular gravity, and as pointed out in [66], the solutions to this theory differ from the
solutions to GR and to standard UG. This subtlety is not mentioned in [65], and we think it
is important that we have clarified it here.
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[31] E. Alvarez, S. González-Mart́ın, M. Herrero-Valea and C.P. Mart́ın, Quantum corrections to
unimodular gravity, JHEP 08 (2015) 078 [arXiv:1505.01995] [INSPIRE].

[32] R. de León Ardón, N. Ohta and R. Percacci, Path integral of unimodular gravity, Phys. Rev. D
97 (2018) 026007 [arXiv:1710.02457] [INSPIRE].

[33] R. Bufalo, M. Oksanen and A. Tureanu, How unimodular gravity theories differ from general
relativity at quantum level, Eur. Phys. J. C 75 (2015) 477 [arXiv:1505.04978] [INSPIRE].

[34] R. Percacci, Unimodular quantum gravity and the cosmological constant, Found. Phys. 48
(2018) 1364 [arXiv:1712.09903] [INSPIRE].

[35] A. Perez and D. Sudarsky, Dark energy from quantum gravity discreteness, Phys. Rev. Lett.
122 (2019) 221302 [arXiv:1711.05183] [INSPIRE].

[36] A. Perez, D. Sudarsky and J.D. Bjorken, A microscopic model for an emergent cosmological
constant, Int. J. Mod. Phys. D 27 (2018) 1846002 [arXiv:1804.07162] [INSPIRE].

[37] M. Daouda, J.C. Fabris, A.M. Oliveira, F. Smirnov and H.E.S. Velten, Non-conservative
unimodular type gravity, arXiv:1802.01413 [INSPIRE].

– 23 –

https://doi.org/10.1088/1361-6382/aa7c01
https://doi.org/10.1088/1361-6382/aa7c01
https://arxiv.org/abs/1703.09555
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.09555
https://doi.org/10.1088/1475-7516/2018/01/033
https://arxiv.org/abs/1709.02147
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.02147
https://doi.org/10.1088/1475-7516/2018/08/006
https://doi.org/10.1088/1475-7516/2018/08/006
https://arxiv.org/abs/1803.07476
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.07476
https://doi.org/10.1103/PhysRevD.87.084040
https://arxiv.org/abs/1210.2299
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D87,084040%22
https://doi.org/10.1103/RevModPhys.61.1
https://inspirehep.net/search?p=find+J+%22Rev.Mod.Phys.,61,1%22
https://doi.org/10.1103/PhysRevLett.65.1972
https://doi.org/10.1103/PhysRevLett.65.1972
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,65,1972%22
https://doi.org/10.1063/1.529283
https://doi.org/10.1063/1.529283
https://doi.org/10.1103/PhysRevD.80.084003
https://arxiv.org/abs/0904.4841
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4841
https://doi.org/10.1088/0264-9381/28/22/225007
https://doi.org/10.1088/1475-7516/2014/09/021
https://arxiv.org/abs/1405.1644
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.1644
https://doi.org/10.1007/s10714-016-2116-4
https://arxiv.org/abs/1511.01805
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.01805
https://doi.org/10.1140/epjc/s10052-015-3767-0
https://doi.org/10.1140/epjc/s10052-015-3767-0
https://arxiv.org/abs/1409.3573
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.3573
https://doi.org/10.1088/0264-9381/30/11/115016
https://arxiv.org/abs/1301.0879
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0879
https://doi.org/10.1007/JHEP08(2015)078
https://arxiv.org/abs/1505.01995
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.01995
https://doi.org/10.1103/PhysRevD.97.026007
https://doi.org/10.1103/PhysRevD.97.026007
https://arxiv.org/abs/1710.02457
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.02457
https://doi.org/10.1140/epjc/s10052-015-3683-3
https://arxiv.org/abs/1505.04978
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.04978
https://doi.org/10.1007/s10701-018-0189-5
https://doi.org/10.1007/s10701-018-0189-5
https://arxiv.org/abs/1712.09903
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.09903
https://doi.org/10.1103/PhysRevLett.122.221302
https://doi.org/10.1103/PhysRevLett.122.221302
https://arxiv.org/abs/1711.05183
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.05183
https://doi.org/10.1142/S0218271818460021
https://arxiv.org/abs/1804.07162
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.07162
https://arxiv.org/abs/1802.01413
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.01413


J
C
A
P
0
9
(
2
0
1
9
)
0
0
5
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