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1 Introduction

The improvement in the quality of the cosmological observations of the last years [1–4] has
reinforced the theory of cosmic inflation [5–7]. The inflationary theory gives by now the most
likely scenario for the early universe, since it provides the explanation to flatness, horizon
and monopole problems, among others, for the standard hot Bing Bang cosmology [8–14].
In other words, the inflation can set the initial conditions for the subsequent hot Big Bang,
by eliminating the fine-tuning condition needed for solving the horizon, flatness and other
problems. Besides that, the quantum fluctuations during inflation could provide the seeds for
the large scale structure and the observed CMB anisotropies [15–22]. In particular, inflation
allows as to understand how the scale-invariant power spectrum can be generated, though
it does not predict an exact scale invariant but nearly scale invariant power spectrum [22].
The deviation from scale invariance is connected with the microphysics description of the
inflationary theory which is still incomplete.

The simplest and most studied model of inflation consists of minimally-coupled scalar
field with flat enough potential to provide the necessary conditions for slow-roll [6, 7]. But
the inflation scenario can be realized in many other models like non-minimally coupled scalar
field [23–27], kinetic inflation [28], vector inflation [29–31], inflaton potential in supergrav-
ity [32–34], string theory inspired inflation [35–40], Dirac-Born-Infeld inflation model [41–44],
α-attractor models originated in supergravity [45–49]. Apart from the DBI models of infla-
tion, another class of ghost-free models has been recently considered, named “Galileon”
models [50, 51]. In spite of the higher derivative nature of these models, the gravitational
and scalar field equations contain derivatives no higher than two. The effect of these Galileon
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terms is mostly reflected in the modification of the kinetic term compared to the standard
canonical scalar field, which in turn can improve (or relax) the physical constraints on the
potential. In the case of the Higgs potential, for instance, one of the effects of the higher
derivative terms is the reduction of the self coupling of the Higgs boson, so that the spectra of
primordial density perturbations are consistent with the present observational data [52, 53]
(which is not possible within the standard canonical scalar field inflation with Higgs poten-
tial). Different aspects of Galilean-inflation have been considered in [52–57]. A particular and
important case belonging to the above class of models is the scalar field with kinetic coupling
to the Einstein tensor [58–61] whose application in the context of inflationary cosmology has
been analyzed in [62–67].

In the present paper we consider a scalar-tensor model with non-minimal coupling to
scalar curvature, non-minimal kinetic coupling to the Einstein tensor and coupling of the
scalar field to the Gauss-Bonnet 4-dimensional invariant, to study the slow-roll inflation
and the observable magnitudes, the scalar espectral index and the tensor-to-scalar ratio,
derived from it. These interaction terms have direct correspondence with terms presented
in Galileon theories [57, 68]. This model is the simplest and more general scalar-tensor
theory (whose Lagrangian density contains up to first derivatives of the scalar field) leading
to second-order field equations, avoiding the appearance of Ostrogradsky instabilities and
leading to ghost-free theory. These couplings, including linear and second-order curvature
corrections, arise in the low energy effective action of string theory (in fact a remarkable
peculiarity of the string effective action is the appearance of field-dependent couplings to
curvature) [69, 70], where couplings such as Gauss-Bonnet provide the possibility of avoiding
the initial singularity [71, 72]. Given that there exist non-singular cosmological solutions
based on these couplings, it is pertinent to investigate the effect of these correction terms on
the evolution of primordial fluctuations that leave the power-spectrum nearly scale-invariant.
Also, in view of the accuracy of future observations, we expect that these corrections to the
simplest, canonical scalar field, inflation model become important in a high-curvature regime
typical of inflation. The effect of such corrections to the inflationary scenario could provide
a connection with fundamental theories like supergravity or string theory. For studies of
inflation with GB coupling and modified gravity see, for instance [72–85].

In the appendices we develop in detail the linear and quadratical perturbations for
all the interaction terms of the model and deduce the second order action for the scalar
and tensor perturbations. In appendix A we present the basic formulas for the first order
perturbations, needed for the model, in the Newtonian gauge. In appendix B we deduce the
gravitational and scalar field equations in a general background. In appendix C and D we
give the first order perturbations of the field equations in the Newtonian gauge. In appendix
E we give the details for constructing the second order action using the Xpand tool [86], and
in appendix F we give a detailed description of the slow-roll mechanism for the minimally
coupled scalar field.

The expressions for the primordial density fluctuations in terms of the slow-roll param-
eters and the corresponding power spectra were found. We have found a consistency relation
that is useful to discriminate the model from the standard inflation with canonical scalar
field. The latest observational data disfavor monomial-type models V ∝ φn with n ≥ 2 in
the minimally coupled scalar field. With the Introduction of additional interactions like the
non-minimal coupling, kinetic coupling and Gauss-Bonnet coupling (GB), it is shown that
the tensor-to-scalar ratio can be lowered to values that are consistent with latest observa-
tional constraints [2, 3]. This is sown in the case of quadratic potential with non-minimal and
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kinetic coupling, quadratic potential with kinetic and GB coupling and the general power-law
potential with GB coupling.

The paper is organized as follows. In the next section we introduce the model, the
background field equations and define the slow-roll parameters. In section 3 we use quadratic
action for the scalar and tensor perturbations (details are given in the appendix) to evaluate
the primordial power spectra. In section 4 we work some explicit models. Some discussion
is given in section 5.

2 The model and background equations

We consider the scalar-tensor model with non-minimal coupling of the scalar field to curva-
ture, non-minimal kinetic coupling of the scalar field to the Einstein’s tensor and coupling of
the scalar field to the Gauss-Bonnet (GB) 4-dimensional invariant

S =

∫
d4x
√
−g
[

1

2
F (φ)R− 1

2
∂µφ∂

µφ− V (φ) + F1(φ)Gµν∂
µφ∂νφ− F2(φ)G

]
(2.1)

where Gµν is the Einstein’s tensor, G is the GB 4-dimensional invariant given by

G = R2 − 4RµνR
µν +RµνλρR

µνλρ (2.2)

F (φ) =
1

κ2
+ f(φ), (2.3)

and κ2 = M−2p = 8πG. One remarkable characteristic of this model is that it yields second-
order field equations and can avoid Ostrogradski instabilities. Using the general results of
appendix B, expanded on the flat FRW background

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
(2.4)

one finds the following equations

3H2F

(
1− 3F1φ̇

2

F
− 8HḞ2

F

)
=

1

2
φ̇2 + V − 3HḞ (2.5)

2ḢF

(
1− F1φ̇

2

F
− 8HḞ2

F

)
= −φ̇2 − F̈ +HḞ + 8H2F̈2 − 8H3Ḟ2 (2.6)

− 6H2F1φ̇
2 + 4HF1φ̇φ̈+ 2HḞ1φ̇

2

φ̈+ 3Hφ̇+ V ′ − 3F ′
(

2H2 + Ḣ
)

+ 24H2
(
H2 + Ḣ

)
F ′2 (2.7)

+ 18H3F1φ̇+ 12HḢF1φ̇+ 6H2F1φ̈+ 3H2F ′1φ̇
2 = 0
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where (′) denotes derivative with respect to the scalar field. Related to the different terms
in the action (2.1) we define the following slow-roll parameters

ε0 = − Ḣ

H2
, ε1 =

ε̇0
Hε0

(2.8)

`0 =
Ḟ

HF
, `1 =

˙̀
0

H`0
(2.9)

k0 =
3F1φ̇

2

F
, k1 =

k̇0
Hk0

(2.10)

∆0 =
8HḞ2

F
, ∆1 =

∆̇0

H∆0
(2.11)

The slow-roll conditions in this model are satisfied if all these parameters are much smaller
than one, and will be used in the next section. From the cosmological equations (2.5) and (2.6)
and using the parameters (2.8)–(2.11) we can write the following expressions for φ̇2 and V

V = H2F
[
3− 5

2
∆0 − 2k0 − ε0 +

5

2
`0 +

1

2
`0 (`1 − ε0 + `0) (2.12)

− 1

2
∆0 (∆1 − ε0 + `0)−

1

3
k0 (k1 + `0 − ε0)

]
φ̇2 = H2F

[
2ε0 + `0 −∆0 − 2k0 + ∆0 (∆1 − ε0 + `0)− (2.13)

`0 (`1 − ε0 + `0) +
2

3
k0 (k1 + `0 − ε0)

]
where we used

F̈ = H2F`0 (`1 − ε0 + `0) , F̈2 =
F∆0

8
(∆1 + ε0 + `0) (2.14)

It is also useful to define the variable Y from eq. (2.13) as

Y =
φ̇2

H2F
(2.15)

where it follows that Y = O(ε). Notice that for the simplest case of minimally coupled scalar
field (F = 1/κ2, F1 = F2 = 0), the eqs. (2.12) and (2.13) give the standard equations

H2 =
8πG

3

(
1

2
φ̇2 + V (φ)

)
, Ḣ = −4πGφ̇2

Under the slow-roll conditions φ̈� 3Hφ̇ and `i, ki,∆i � 1, it follows from (2.5)–(2.7)

3H2F ' V, (2.16)

2ḢF ' −φ̇2 +HḞ − 6H2F1φ̇
2 − 8H3Ḟ2, (2.17)

3Hφ̇+ V ′ − 6H2F ′ + 18H3F1φ̇+ 24H4F ′2 ' 0 (2.18)

showing that the potential V gives the dominant contribution to the Hubble parameter, while
eqs. (2.17) and (2.18) determine the dynamics of the scalar field in the slow-roll approxima-
tion. The number of e-folds can be determined from

N =

∫ φE

φI

H

φ̇
dφ =

∫ φE

φI

H2 + 6H4F1

2H2F ′ − 8H4F ′2 − 1
3V
′dφ (2.19)

where φI and φE are the values of the scalar field at the beginning and end of inflation
respectively, and the expression for φ̇ was taken from (2.18). The criteria for choosing the
initial values will be discussed below.
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3 Quadratic action for the scalar and tensor perturbations

Scalar Perturbations. After the computation of the second order perturbations we are
able to write the second order action for the scalar perturbations as follows

δS2
s =

∫
dtd3xa3

[
Gsξ̇2 −

Fs
a2

(∇ξ)2
]

(3.1)

where

Gs =
Σ

Θ2
G2T + 3GT (3.2)

Fs =
1

a

d

dt

( a
Θ
G2T
)
−FT (3.3)

with

GT = F − F1φ̇
2 − 8HḞ2. (3.4)

FT = F + F1φ̇
2 − 8F̈2 (3.5)

Θ = FH +
1

2
Ḟ − 3HF1φ̇

2 − 12H2Ḟ2 (3.6)

Σ = −3FH2 − 3HḞ +
1

2
φ̇2 + 18H2F1φ̇

2 + 48H3Ḟ2 (3.7)

And the sound speed of scalar perturbations is given by

c2S =
FS
GS

(3.8)

The conditions for avoidance of ghost and Laplacian instabilities as seen from the ac-
tion (3.1) are

F > 0, G > 0

We can rewrite GT , FT , Θ and Σ in terms of the slow-roll parameters (2.8)–(2.11) and using
eqs. (2.13) and (2.14), as follows

GT = F

(
1− 1

3
k0 −∆0

)
(3.9)

FT = F

(
1 +

1

3
k0 −∆0 (∆1 + ε0 + `0)

)
(3.10)

Θ = FH

(
1 +

1

2
`0 − k0 −

3

2
∆0

)
(3.11)

Σ =− FH2
[
3− ε0 +

5

2
`0 − 5k0 −

11

2
∆0 +

1

2
`0 (`1 − ε0 + `0) (3.12)

− 1

3
k0 (k1 − ε0 + `0)−

1

2
∆0 (∆1 − ε0 + `0)

]
The expressions for GS and c2S in terms of the slow roll parameters can be written as

GS =
F
(
1
2Y + k0 + 3

4W
2(1−∆0 − 1

3k0)
)(

1 + 1
2W
)2 (3.13)

c2S = 1+
W 2
(
1
2∆0(∆1+ε0+l0−1)− 1

3k0
)
+W

(
2
3k0 (2− k1 − l0)+2∆0ε0

)
− 4

3k0ε0

Y + 2k0 + 3
2W

2(1−∆0 − 1
3k0)

(3.14)
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where

W =
`0 −∆0 − 4

3k0

1−∆0 − 1
3k0

(3.15)

Notice that in general GS = FO(ε) and c2S = 1 + O(ε). Also in absence of the kinetic
coupling it follows that c2S = 1 + O(ε2). Keeping first order terms in slow-roll parameters,
the expressions for GS y c2S reduce to

GS = F

(
ε0 +

1

2
l0 −

1

2
∆0

)
(3.16)

c2S = 1 +
4
3k0

(
l0 −∆0 − 4

3k0
)
− 4

3k0ε0

2ε0 + l0 −∆0
(3.17)

To normalize the scalar perturbations we perform the change of variables [57] (see (F.7))

dτs =
cS
a
dt, z̃ =

√
2a (FSGS)1/4 , Ũ = ξz̃ (3.18)

and the action (3.1) becomes

δS2
s =

1

2

∫
dτsd

3x

[
1

2
(Ũ ′)2 −DiŨD

iŨ +
z̃′′

z̃
Ũ2

]
(3.19)

where “prima” indicates derivative with respect to τs. Working in the Fourier representation,
one can write

Ũ(~x, τs) =

∫
d3k

(2π)3
Ũ~k(τs)e

i~k~x (3.20)

and the equation of motion for the action (3.19) takes the form

Ũ ′′~k +

(
k2 − z̃′′

z̃

)
Ũ~k = 0 (3.21)

From (3.18), and keeping up to first-order terms in slow-roll variables using (3.16) and (3.17),
we find the following expression for z̃′

z̃′ =
1

cS

a5

z3

[
F 2df(ε0, `0,∆0)

dt
+ 2FḞf(ε0, `0,∆0)

]
+

1

cS
aHz (3.22)

where

f(ε0, `0,∆0) =

(
ε0 +

1

2
`0 −

1

2
∆0

)2

.

Then, under the approximation of slowly varying cS and up to first-order in slow-roll variables
we find the following expression for z̃′′/z̃

z̃′′

z̃
=
a2H2

c2S

[
2− ε0 +

3

2
`0 +

3

2

2ε0ε1 + `0`1 −∆0∆1

2ε0 + `0 −∆0

]
. (3.23)

This expression reduces to the one of the canonical scalar field given in appendix E, eq. (F.24),
in the case `0 = ∆0 = 0 where cS = 1 and ε1 = 2(ε0 − δ), with δ defined in (F.22). In what
follows the reasoning is similar to the simplest case, corresponding to minimally-coupled
scalar field, which is analyzed in detail in appendix E. So on sub-horizon scales when the k2
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term dominates in eq. (3.21) we choose the same Bunch-Davies vacuum solution defined for
the scalar field, which leads to

Ũk =
1√
2k
e−ikτs (3.24)

Note that from the expression

a
d

dt

(
1

aH

)
= −1 + ε =⇒ cS

d

dτs

(
1

aH

)
= −1 + ε0, (3.25)

in the approximation of slowly varying cS and ε0 one can integrate the last equation to obtain

τs = − 1

aH

cS
1− ε0

(3.26)

Then in the limit ε→ 0 for de Sitter expansion it follows that

1

aH
= −τdS

cS
(3.27)

In this last case and neglecting the slow-roll parameters (in this limit cS = 1) we can write
from (3.23)

z̃′′

z̃
' 2a2H2

c2S
=

2

τ2dS
(3.28)

which allows the integration of eq. (3.21), giving the known solution for the scalar perturba-
tions in a de Sitter background. Taking into account the slow-roll parameters and using (3.26)
we can rewrite the eq. (3.21) in the form

Ũ ′′k + k2Ũk +
1

τ2s

(
µ2s −

1

4

)
Ũk = 0 (3.29)

where

µ2s =
9

4

[
1 +

4

3
ε0 +

2

3
`0 +

2

3

2ε0ε1 + `0`1 −∆0∆1

2ε0 + `0 −∆0

]
(3.30)

where we have expanded up to first order in slow-roll parameters. The general solution of
eq. (3.30) for constant µs (slowly varying slow-roll parameters) is

Ũk =
√
−τs

[
C1kH

(1)
µs (−kτs) + C2kH

(2)
µs (−kτs)

]
(3.31)

and after matching the boundary condition related with the choosing of the Bunch-Davies
vacuum (3.24) we find the solution

Ũk =

√
π

2
ei
π
2
(µs+

1
2
)√−τsH(1)

µs (−kτs) (3.32)

using the asymptotic behavior ofH
(1)
µs (x) at x� 1, we find at super horizon scales (cSk � aH)

Ũk =
1√
2
ei
π
2
(µs− 1

2
)2µs−

3
2

Γ(µs)

Γ(3/2)

√
−τs(−kτs)−µs . (3.33)

To evaluate the power spectra we use the relationship

z̃′

z̃
= − 1

(1− ε0)τs

[
1 +

1

2
`0 +

1

2

2ε0ε1 + `0`1 −∆0∆1

2ε0 + `0 −∆0

]
= − 1

τs

(
µs −

1

2

)
(3.34)
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where we used (3.26) for aH, and for the last equality we have expanded up to first order in
slow-roll parameters, resulting in

µs =
3

2
+ ε0 +

1

2
`0 +

1

2

2ε0ε1 + `0`1 −∆0∆1

2ε0 + `0 −∆0
(3.35)

Assuming again the approximation of slowly varying slow-roll parameters we can Integrate
this equation to find

z̃ ∝ τ
1
2
−µs

s (3.36)

which gives, in the super horizon regime, for the amplitude of the scalar perturbations the
following expression

ξk =
Ũk
z̃
∝ k−µs (3.37)

where the τs dependence disappears as expected from the solution (3.33) in super horizon
scales (csk � aH). The power spectra for the scalar perturbations takes the following k-
dependence

Pξ =
k3

2π2
|ξk|2 ∝ k3−2µs (3.38)

and the scalar spectral index becomes

ns − 1 =
d lnPξ
d ln k

= 3− 2µs = −2ε0 − `0 −
2ε0ε1 + `0`1 −∆0∆1

2ε0 + `0 −∆0
(3.39)

It is worth noticing that the slow-roll parameter k0, related to the kinetic coupling, do not
appear in the above expression for the scalar spectral index. This is because k0 appears only
in second order terms (or higher) in the expressions for GS and FS (see (3.13) and (3.14)).

Tensor perturbations. The second order action for the tensor perturbations takes the form

δS2 =
1

8

∫
d3xdtGTa2

[(
ḣij

)2
−
c2T
a2

(∇hij)2
]

(3.40)

where GT and FT are defined in (E.2) and (E.3) (in terms of the slow-roll variables in (3.18)
and (3.19)). The velocity of tensor perturbations is given by

c2T =
FT
GT

=
3 + k0 − 3∆0 (∆1 + ε0 + `0)

3− k0 − 3∆0
. (3.41)

As in the case of scalar perturbations, in order to canonically normalize the tensor pertur-
bations the following variables are used [57]

dτT =
cT
a
dt, zT =

a

2
(FTGT )1/4 , vij = zThij (3.42)

leading to the quadratic action

δS2 =
1

2

∫
d3xdτT

[(
v′ij
)2 − (∇vij)2 +

z′′T
zT
v2ij

]
(3.43)

which gives the equation

v′′ij −∇2vij −
z′′T
zT
vij = 0. (3.44)

– 8 –
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Or for the corresponding Fourier modes

v′′(k)ij +

(
k2 −

z′′T
zT

)
v(k)ij = 0, (3.45)

which is of the same nature as the equation for the scalar perturbations, and therefore the
perturbations hij on super horizon scales behave exactly as the solutions (F.6). For the
evaluation of the primordial power spectrum we follow the same steps as for the scalar
perturbations. To this end we write the expression for z′′T /zT , up to first order in slow-roll
parameters, as follows

z′′T
zT

=
a2H2

c2T

(
2− ε0 +

3

2
`0

)
(3.46)

Then, the normalized solution of (3.45) in the approximation of slowly varying slow-roll
parameters can be written in terms of the Hankel function of the first kind as

v(k)ij =

√
π

2

√
−τTH(1)

µT
(−kτT )e

(k)
ij (3.47)

where the tensor e
(k)
ij describe the polarization states of the tensor perturbations for the

k-mode, and

µT =
3

2
+ ε0 +

1

2
`0. (3.48)

At super horizon scales (cTk � aH) the tensor modes (3.47) have the same functional form
for the asymptotic behavior as the scalar modes (3.33), and therefore we can write power
spectrum for tensor perturbations as

PT =
k3

2π2
|h(k)ij |

2 (3.49)

where h
(k)
ij = v(k)ij/zT , and the sum over the polarization states must be taken into account.

Then, the tensor spectral index will be given by

nT = 3− 2µT = −2ε0 − `0 (3.50)

An important quantity is the relative contribution to the power spectra of tensor and scalar
perturbations, defined as the tensor/scalar ratio r

r =
PT (k)

Pξ(k)
. (3.51)

For the scalar perturbations, using (3.38), we can write the power spectra as

Pξ = AS
H2

(2π)2
G1/2S

F3/2
S

(3.52)

where

AS =
1

2
22µs−3

∣∣∣ Γ(µs)

Γ(3/2)

∣∣∣2

– 9 –
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and all magnitudes are evaluated at the moment of horizon exit when csk = aH (kτs = −1).
For z̃ we used (3.18) with a = cSk/H. In analogous way we can write the power spectra for
tensor perturbations as

PT = 16AT
H2

(2π)2
G1/2T

F3/2
T

(3.53)

where

AT =
1

2
22µT−3

∣∣∣ Γ(µT )

Γ(3/2)

∣∣∣2.
Noticing that AT /AS ' 1 when evaluated at the limit ε0, `0,∆0, . . .� 1, as follows from (3.35)
and (3.48), we can write the tensor/scalar ratio as follows

r = 16
G1/2T F

3/2
S

G1/2S F
3/2
T

= 16
c3SGS
c3TGT

. (3.54)

Taking into account the expressions for GT ,FT ,GS ,FS up to first order obtained
from (3.9), (3.10), (3.16) and (3.17), and using the condition ε0, `0, k0,∆0 � 1, then we
can see that cT ' cS ' 1 (in fact in the limit `0 → 0, cS = 1 independently of the values of
ε0 and ∆0) and we can make the approximation

r = 8

(
2ε0 + `0 −∆0

1− 1
3k0 −∆0

)
' 8 (2ε0 + `0 −∆0) (3.55)

which is a modified consistency relation due to the non-minimal and GB couplings. In the
limit `0,∆0 → 0 it gives the expected consistency relation for the standard inflation

r = −8nT , (3.56)

with nT = −2ε0. Taking into account the non-minimal and GB couplings we find the
deviation from the standard consistency relation in the form

r = −8nT + δr, δr = −8∆0, (3.57)

with nT given by (3.50). Thus, the consistency relation still valid in the case of non-minimal
coupling, and if there is an observable appreciable deviation from the standard consistency
relation, it can reveal the effect of an interaction beyond the simple canonical scalar field or
even non-minimally coupled scalar field models of inflation. It is worth noticing that in the
first-order formalism the kinetic-coupling related slow-roll parameter k does not appear in
the spectral index for the scalar and tensor perturbations and is also absent in the tensor-to-
scalar ratio, appearing only starting form the second order expansion in slow-roll parameters.
Nevertheless, all the couplings are involved in the definition of the slow-roll parameters trough
the field equations. Of special interest are the cases of monomial potentials V ∝ φn. These
potentials are disfavored by the observational data for n ≥ 2 in the minimally coupled model.
As will be shown for some cases, with the GB and (or) kinetic coupling added, the spectral
index and especially the scalar-to tensor ratio can be accommodated within the range of
values obtained from the latest observational data.
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4 Some explicit cases

Model I. First we consider the particular case of the non-minimal coupling ξφ2 with
quadratic potential and kinetic coupling with constant F1.

F (φ) =
1

κ2
− ξφ2, V (φ) =

1

2
m2φ2, F1 (φ) = γ, F2 (φ) = 0. (4.1)

Using the eqs. (2.16) and (2.18) we can express the slow-roll parameters (2.8)–(2.11) in
therms of the potential and the coupling functions, and once we specify the model, we can
find the slow-roll parameters in terms of the scalar field and the coupling constants. For the
model (4.1) the slow-roll parameters take the form

ε0 =
2 + 2ξφ2

φ2 + (m2γ − ξ)φ4
, ε1 =

4(1− ξφ2)
(
(m2γ − ξ)(ξφ2 + 2)φ2 + 1

)
φ2 (1 + (m2γ − ξ)φ2)2

`0 =
4ξ(ξφ2 + 1)

(m2γ − ξ)φ2 + 1
, `1 = −4(m2γ − 2ξ)(ξφ2 − 1)

((m2γ − ξ)φ2 + 1)2
. (4.2)

where φ is dimensionless (φ has been rescaled as κφ → φ to measure it in units of Mp) and
γ has dimension of mass−2 . Additionally, the scalar field at the end of inflation can be
evaluated under the condition ε0(φE) = 1. Sitting ε0 = 1 in (4.2) it follows

φ2E =

√
8m2γ + 4ξ2 − 12ξ + 1 + 2ξ − 1

2m2γ − 2ξ
(4.3)

From eq. 2.19 it follows that the number of e-foldings can be evaluated as

N =

φE∫
φI

φ+ (m2γ − ξ)φ3

2ξ2φ4 − 2
dφ =

1

8ξ2
[
m2γ ln

(
1− ξ2φ4

)
− 2ξ ln

(
1− ξφ2

)] ∣∣∣φE
φI

(4.4)

This expression allows us to evaluate φI for a given N . We can make some qualitative analysis
by assuming that ξφ2 � 1 and m2γ � ξ. In this case from (4.3) it is found that

φ2E ≈
(

2

m2γ

)1/2

, (4.5)

and from (4.4) we find for φI

φ2I ≈
(

8N + 2

m2γ

)1/2

(4.6)

giving an approximate relation between the values of the scalar field at the beginning and
end of inflation as

φI ≈ (4N + 1)1/4φE

So, assuming N = 60 gives φI ≈ 3.9φE . This will have sense only if the scalar spectral index
and the tensor-to-scalar ratio behave properly. In fact from (4.2) and replacing in (3.39)
and (3.55), we find (under the condition ξφ2 � 1 and m2γ � ξ)

ns ≈ 1 +
2

(8N + 2)1/2(m2γ)1/2
− 12

8N + 2
− 8

(8N + 2)3/2(m2γ)1/2
(4.7)
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Figure 1. The behavior of the scalar spectral index ns and tensor-to-scalar ratio r for the two fixed
values ξ = 1/6 (red) and ξ = 0.2 (blue), with m2γ in the interval 2× 102 ≤ m2γ ≤ 5× 102.

m2 γ = 1 m2 γ = 2.5

0.960 0.965 0.970 0.975

0.01

0.02

0.03

0.04

0.05

ns

r

Figure 2. The variation of the scalar spectral index ns and tensor-to-scalar ratio r for the two cases
m2γ = 1 and m2γ = 2.5, for ξ in the interval [−0.04,−0.01]. The values covered by ns and r are in
the region bounded by the latest observations [3, 4].

and

r ≈ 32

8N + 2
+

64ξ

(8N + 2)1/2(m2γ)1/2
(4.8)

where we have used (4.6) for φI . Additional simplification can be made if we assume that the
scalar field at the beginning of inflation is of the order of Mp (φ ' 1). This can be achieved
if m2γ = 8N + 2, as follows from (4.6), which gives

ns ≈ 1− 10

8N + 2
− 8

(8N + 2)2
, r ≈ 32 + 64ξ

8N + 2
(4.9)

Thus, for 60 e-foldings we find ns ≈ 0.98 and r ≈ 0.067 (ξ = 10−2). In this case the inflation
begins with φI = Mp and ends with φE ≈ 0.25Mp. For the numerical analysis with the
exact expressions, we assume N = 60, m = 10−6Mp. In fact from eqs. (4.2) follows that
the spectral index ns and the tensor-to-scalar ratio depend on the dimensionless combination
m2γ. Figure 1 shows the behavior of ns and r where ξ takes two fixed values ξ = 1/6, ξ = 0.2
and m2γ is running in the interval 2× 102 ≤ m2γ ≤ 5× 102, and in figure 2 we consider the
two fixed values m2γ = 1 and m2γ = 2.5 while ξ is varying in the interval −0.04 ≤ ξ ≤ −0.01.

The behavior shown in figure 2 is more interesting than the one in figure 1, since the
values for ns and r fall in a more acceptable range, according to the latest observational
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bounds [3, 4]. Thus, keeping m2γ ∼ 1 with ξ varying in the interval [−0.04,−0.01] gives the
expected values for the observables, according to latest observations.

Model II. The following example considers a model with kinetic and GB couplings

F =
1

κ2
, V (φ) =

1

2
m2φ2, F1(φ) = γ, F2(φ) =

η

φ2
(4.10)

where the constant η has dimension of mass2 and φ is measured in units of Mp. The slow-roll
parameters from (2.8)–(2.11), necessary to evaluate ns and r, take the form

ε0 =
6− 8m2η

3φ2(1 +m2γφ2)
, ε1 =

4(3− 4m2η)(1 + 2m2γφ2)

3φ2(1 +m2γφ2)2

∆0 =
16m2η(3− 4m2η)

9φ2(1 +m2γφ2)
, ∆1 =

4(3− 4m2η)(1 + 2m2γφ2)

3φ2(1 +m2γφ2)2
, (4.11)

where theproduct m2η is measured in units of M4
p and the product m2γ is dimensionless.

The scalar field at the end of inflation is obtained from the condition ε(φE) = 1, which gives

φ2E =
1

6m2γ

[√
72m2γ − 96m4γη + 9− 3

]
(4.12)

And from eq. (2.19), the number of e-foldings can be evaluated as

N =
3φ2(2 +m2γφ2)

8(4m2η − 3)

∣∣∣φE
φI

(4.13)

which allows to find φI for a given N and φE from (4.12). From (3.39) and (4.11) we find
the scalar spectral index as

ns =
3m4γφ2

(
γφ4 + 16η

)
+ 6m2γφ2(φ2 − 6) + 3φ2 + 32m2η − 24

3φ2(1 +m2γφ2)2

∣∣∣
φI

(4.14)

And from (3.55) and (4.11) we find the expression for the tensor-to-scalar ratio as

r =
3φ(1 +m2γφ2)

8m2η − 6

∣∣∣
φI

(4.15)

For N = 60 and taking m = 10−6Mp we can find the behavior of ns and r in terms of the
dimensionless parameter m2γ. In figure 3 we show the behavior of the scalar field at the
beginning and end of inflation for 1 < m2γ < 5. In figure 44 we show the corresponding
behavior for ns and r.

Model III. The following model considers the general power-law potential and non-minimal
power-law functions for the GB and kinetic couplings

F =
1

κ2
, V (φ) =

λ

n
φn, F1(φ) =

γ

φn
, F2(φ) =

η

φn
(4.16)
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ϕ
E

Figure 3. The scalar field at the beginning and at the end of inflation for 1 ≤ m2γ ≤ 5 and
m2η = 0, 65, m2η = 0.7 (in units of M4

p ). At the end of inflation φE < Mp.
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r

Figure 4. The behavior of the scalar spectral index ns and r for m2γ, in the interval 1 ≤ m2γ ≤ 5
and m2η = 0, 65 , m2η = 0.7 (in units of M4

p ).

The slow-roll parameters (2.8)–(2.11) for this model take the form (κ = 1)

ε0 =
n2(3n− 8ηλ)

6(n+ 2γλ)φ2
, ε1 =

2n(3n− 8ηλ)

3(n+ 2γλ)φ2
, ∆0 =

8nηλ(3n− 8ηλ)

9(n+ 2γλ)φ2
,

∆1 =
2n(3n− 8ηλ)

3(n+ 2γλ)φ2
, k0 =

nγλ(3n− 8ηλ)2

9(n+ 2γλ)φ2
, k1 =

2n(3n− 8ηλ)

3(n+ 2γλ)φ2
(4.17)

The scalar field at the end of inflation (ε0 = 1) takes the form

φE =
n
√

3n− 8ηλ√
6n+ 12γλ

(4.18)

The number of e-foldings from (2.19) is given by

N = − 3(n+ 2γλ)

2n(3n− 8ηλ)
φ2
∣∣∣φE
φI

(4.19)

which, using (4.18) allows to find the exact explicit form for the scalar field N e-folds before
the end of inflation as

φI =

(
(4N + n)(3n2 − 8nηλ)

6n+ 12γλ

)1/2

=

√
(4N + n)

n
φE (4.20)
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From (3.39) and (4.17) after replacing the value of the scalar field φI from (4.20), we find
the scalar spectral index as

ns =
(6γλ+ 16nηλ+ 3n)φ2 − 3n3 − (6− 8ηλ)n2

3(n+ 2γλ)φ2

∣∣∣
φI

=
4N − n− 4

4N + n
(4.21)

And from (3.55), (4.17) and (4.20) we find the expression for the tensor-to-scalar ratio as

r =
8n(3n− 8ηλ)2

9(n+ 2γλ)φ2

∣∣∣
φI

=
16(3n− 8ηλ)

3(4N + n)
(4.22)

The slow-roll parameters N e-folds before the end of inflation take the values

ε0 =
n

4N + n
, ε1 =

4

4N + n
, ∆0 =

16ηλ

3(4N + n)
,

∆1 =
4

4N + n
, k0 =

2γλ(3n− 8ηλ)

3(4N + n)(n+ 2γλ)
, k1 =

4

4N + n
(4.23)

The eq. (4.21) predicts the scalar spectral index ns in terms of the number of e-foldings N,
and the power n, which is the same result as that obtained for the standard chaotic inflation.
However, the tensor-to-scalar ratio depends additionally on the self coupling λ and the GB
coupling constant η, but not on the kinetic coupling constant. As can be seen from the
expressions (4.18) and (4.20), the kinetic coupling can lower the values of the scalar field
at the end, and therefore at the beginning, of inflation. Note also that the strong coupling
regime of the GB coupling spoils the inflation (∆0 and k0 break the slow-roll restrictions),
while at the strong coupling limit all slow-roll parameters and derived quantities are well
defined. Note also that all of the slow roll parameters (4.17), and therefore the quantities
derived from them, depend on coupling constants through the products ηλ and γλ. The
dimension of η is massn, the dimension of λ is mass4−n and the dimension of γ is massn−2,
and therefore independently of n, the product ηλ has constant dimension [ηλ] = mass4 and
the corresponding dimension of γλ is mass2 . This can be used to write ηλ = αM4

p where
α is a dimensionless parameter that defines the behavior of r once n and N have been fixed.
While the coupling λ is subject to different restrictions, depending on the power n, one can
vary the coupling η (and therefore α) to find the appropriate value for the tensor-to-scalar
ratio. On the other hand, the parameter β = γλ leads to consistent inflation in the weak
coupling, γ → 0, and strong coupling, γ → ∞, limits and can take any value between
these limits. In table 1 we list some sample values for ns, r, for N = 60 and a range of α,
for some power-law models including models with fractional n that appear in string theory
compactification [87, 88] and are favored by Planck 2018 data [3].

It is noticeable the n = 2 case, which for minimally coupled scalar field is disfavored by
the latest observations [3, 4], but in the presence of GB coupling falls in the range favored by
the observational data. For all cases, the low tensor-to-scalar ratio is consistent with current
observations. Since the parameter β = γλ is a free parameter, then one can use this freedom
to set the values φE , and therefore φI , to any desired value.

Model IV. This model considers the general power-law potential and the non-minimal
kinetic coupling of the form

F =
1

κ2
, V (φ) =

λ

n
φn, F1(φ) =

β

φn+2
, F2(φ) = 0 (4.24)
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Power n ns Parameter α range r in α range

4 0.9508 1 ≤ α ≤ 1.3 0.0874 ≥ r ≥ 0.0349
3 0.959 0.7 ≤ α ≤ 1.1 0.0746 ≥ r ≥ 0.0044
2 0.9669 0.3 ≤ α ≤ 0.7 0.0746 ≥ r ≥ 0.0088
4/3 0.9724 0.01 ≤ α ≤ 0.4 0.0866 ≥ r ≥ 0.0177
1 0.9751 10−3 ≤ α ≤ 0.3 0.0664 ≥ r ≥ 0.0133
2/3 0.9778 10−4 ≤ α ≤ 0.2 0.0443 ≥ r ≥ 0.0089

Table 1. Some values of ns and r in an appropriate range for α in each case.

The slow-roll parameters (2.8)–(2.11) take the form (κ = 1)

ε0 =
n3

2nφ2 + 4βλφ4
, ε1 =

2n2(n+ 4βλφ2)

φ2(n+ 2βλφ2)2

k0 =
βλn3

(n+ 2βλφ2)2
, k1 =

8βλn2

(n+ 2βλφ2)2
(4.25)

from above the first equation we fond the scalar field at the end of inflation as

φ2E =

√
n2(1 + 4nβλ)− n

4βλ
. (4.26)

The number of e-foldings from (2.19) is

N =
βλφ4

2n2
− φ2

2n

∣∣∣φE
φI

(4.27)

This equation allows to find the scalar field N e-foldings before the end of inflation as

φ2I =
n

4βλ

(
√

2n

√
n+ 2nβλ(n+ 8N) + n

√
1 + 4nβλ

n3
− 2

)
(4.28)

Using this result we find the expression for the scalar spectral index from (3.39) and (4.25) as

ns = 1−
4nβλ

[√
2n(n+ 4)f(n,N, β, λ)− 4

]
n3f2(n,N, β, λ)

[√
2nf(n,N, β, λ)− 2

] , (4.29)

where

f(n,N, β, λ) =

√
n+ 2nβλ(n+ 8N) + n

√
1 + 4nβλ

n3
.

An for the tensor-to-scalar ratio it is found (from (3.55), (4.25) and (4.28))

r =
32
√

2βλ

f(n,N, β, λ)
[√

2nf(n,N, β, λ)− 2
] (4.30)

As can be seen form above results, both the slow-roll parameters and all the observable
quantities depend on the product βλ, which independently of the power n, has dimensions
of (mass)4. The coupling λ takes different significance and undergoes different restrictions
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Power n ns Parameter α range r in α range

4 0.9666 ≤ ns ≤ 0.9667 10 ≤ α ≤ 20 0.1335 ≥ r ≥ 0.1339
3 0.9709 ≤ ns ≤ 0.971 102 ≤ α ≤ 103 0.0998 ≥ r ≥ 0.0995
2 0.973 ≤ ns ≤ 0.9744 0.1 ≤ α ≤ 1 0.0756 ≥ r ≥ 0.0692
4/3 0.9721 ≤ ns ≤ 0.9736 10−3 ≤ α ≤ 10−2 0.080 ≥ r ≥ 0.062
1 0.9746 ≤ ns ≤ 0.977 10−3 ≤ α ≤ 0.05 0.06 ≥ r ≥ 0.04
2/3 0.9777 ≥ ns ≥ 0.9774 10−4 ≤ α ≤ 10−2 0.0438 ≥ r ≥ 0.0313

Table 2. ns and r in an appropriate range for α in each case.

depending on n, but we have some freedom in choosing the coupling β, so we can define the
free parameter

α = βλ (4.31)

In table 2 we list some sample values for the power-law potentials considered in table 1.
N = 60 is assumed and an appropriate range of α is chosen for each power n.

Notice that ns varies in very narrow intervals, retaining almost the same value in each
case. The quartic potential presents better values for ns compared to the previous model,
but the tensor-to-scalar ratio becomes larger that in the previous model, moving away from
the values favored by the latest observations. The quadratic potential maintains its viability
in the present model, although r increases a bit with respect to the model (4.16). From
the expressions (4.29) and (4.30) we find the following behavior for ns and r in the strong
coupling limit (β →∞)

lim
β→∞

ns =
8N − n− 8

8N + n
, lim

β→∞
r =

16n

8N + n
(4.32)

In the weak coupling limit, β → 0, it is found

lim
β→0

ns =
4N − n− 4

4N + n
, lim

β→0
r =

16n

4N + n
. (4.33)

From the expressions for φE and φI we find that at the strong coupling limit

φE →
(
n3

4βλ

)1/4

, φI →
(
n2(8N + n)

4βλ

)1/4

(4.34)

and at the weak coupling limit, from the slow-roll parameter ε0 and N from (4.27), the φE
and φI fields tend to the constant values

φE →
n√
2
, φI →

n
√

4N + n√
2

(4.35)

It is clear that in the strong coupling regime the scalar field at the beginning and end of
inflation takes smaller values compared to the standard chaotic inflation.

5 Discussion

The slow-roll inflation driven by a single scalar field with non-minimal couplings of different
nature, that lead to second order field equations, have been studied. The detailed analysis
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of the linear and quadratic perturbations for all the interaction terms in the model is given.
The second oder action for scalar and tensor perturbations have been constructed, and the
expressions for the scalar and tensor power spectra in terms of the slow-roll parameters have
been obtained. In eq. (3.57) we give the consistency relation that allows to discriminate the
model from the standard inflation with minimally coupled scalar field. The results were ap-
plied to some models with power-law potential. For the scalar field with quadratic potential,
non-minimal coupling and kinetic coupling to the Einstein tensor (4.1), we have found that
the scalar spectral index and the tensor-to-scalar ratio can take values in the region favored
by the latest observational data [3, 4], as seen in figure 2. The quadratic potential is also
considered with kinetic and GB couplings (4.10). In this case ns takes values in the region
0.972 . ns . 0.974, and the range of values for r is of the order ≈ 10−2 for 60 e-foldings,
which falls in the region bounded by [3, 4]. A general monomial potential V ∝ φn with
non-minimal kinetic coupling, F1 ∝ φ−n and non-minimal GB coupling F2 ∝ φ−n, was con-
sidered (4.16). For this model it was possible to find exact analytical expressions for the
main quantities in the slow-roll approximation, and some notable values of n were analyzed.
While the predictions for ns correspond to the standard chaotic inflation, the results for r
could be improved due to the GB coupling, and particularly, for the quadratic potential it
was found that the tensor-to-scalar ratio falls in an appropriate range according to the latest
restrictions, as can be seen in table 1. Analyzing the behavior of the model (4.16) in the weak
and strong coupling limits, it was shown that the inflation is not viable in the strong GB
coupling limit, especially because ∆0 and k0 break the slow-roll restrictions (see (4.23)) and
the tensor-to-scalar ratio (4.22) increases substantially, while the kinetic coupling remains
consistent with inflation in the strong coupling limit. The kinetic coupling constant, as a free
parameter, can be used to lower the value of the scalar field to any desired value at the end,
and therefore at the beginning, of inflation, avoiding in this way the problem of large fields
in chaotic inflation.

Another interesting situation is found when we consider the model (4.24) with a power-
law potential V ∝ φn and non-minimal kinetic coupling (F1 = β/φn+2). In this case both ns
and r depend on the kinetic coupling constant and the model behaves appropriately for any
value of the coupling between the weak and strong coupling regimes. In the weak coupling
limit we recover the standard chaotic inflation results, and in the strong coupling limit we can
see from (4.32) and (4.33) that ns increments with respect to its value in the weak limit, and
r decreases with respect to its value in the weak coupling limit. This effect is appreciable,
in fact, in the intermediate regime as seen in table 2. Thus, for the quadratic potential
the tensor-to-scalar ratio falls in the region favored by the latest observations [3, 4], since
ns can reach a maximum value of (4N − 5)/(4N + 1) and r can reach the minimum value
of 16/(4N + 1)). For the quartic potential V = λφ4/4, ns can reach a maximum value of
(2N − 3)/(2N + 1) and r reaches a minimum value of 16/(2N + 1) which, assuming N = 60
gives r = 0.1322, which is lower than in the standard chaotic inflation, but is not enough to
satisfy the restriction r < 0.1.

The latest observational data disfavor monomial-type models V ∝ φn with n ≥ 2 in
the minimally coupled scalar field. With the introduction of additional interactions like the
non-minimal coupling, kinetic coupling and Gauss-Bonnet coupling, it is shown that the
tensor-to-scalar ratio can be lowered to values that are consistent with latest observational
constraints [3, 4]. An important consequence of the kinetic coupling in (4.16) and (4.24),
is that the coupling parameter can take any value between the weak and strong coupling
limits which gives rise to the freedom to impose any physical bounds on the self-coupling λ,
depending on the power n.
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It is clear that the inclusion of non-minimal kinetic and GB couplings in single scalar
field inflationary scenarios has important consequences for the observable magnitudes, as was
shown in the case of monomial potentials (see also [53, 65], [72]–[80]). Further analysis of
different single scalar field cosmological scenarios will be considered in the presence of these
couplings.

A Basic formulas for the first order perturbations

To analyze the physical phenomena during the period of inflation and make contact with
the observables that originated at that period, we start with the perturbations around the
homogeneous FRW background of the scalar field and the metric (including the geomet-
rical quantities derived from it) involved in the inflation. The metric with its first order
perturbation is written as

gµν = ḡµν(t) + hµν(~x, t) (A.1)

where ḡµν is the background FRW metric with components

ḡ00 = −1, ḡi0 = ḡ0i = 0, ḡij = a(t)2δij (A.2)

and hµν = hνµ is the small perturbation of the metric which satisfies the following first order
relation

hµν = −ḡµρḡνλhρλ, (A.3)

that follows from the metric property gµνg
νρ = δρµ. Writing in components we find

hij = −a(t)−4hij, hi0 = a(t)−2hi0, h00 = −h00. (A.4)

The background Christoffel symbols are given by

Γ̄ij0 = Γ̄i0j =
ȧ

a
δij , Γ̄0

ij = aȧδij, Γ̄ijk = 0 (A.5)

performing the first order perturbation in the Christoffel symbols for the metric (A.1) we
find the following components

δΓijk =
1

2a2
(−2aȧδjkhi0 + ∂khij + ∂jhik − ∂ihjk) (A.6)

δΓij0 =
1

2a2

(
−2

ȧ

a
hij + ḣij + ∂jhi0 − ∂ihj0

)
(A.7)

δΓ0
ij =

1

2

(
2aȧh00δij − ∂ih0j − ∂jh0i + ḣij

)
(A.8)

δΓi00 =
1

2a2

(
2ḣi0 − ∂ih00

)
(A.9)

δΓ0
i0 =

ȧ

a
hi0 −

1

2
∂ih00 (A.10)

δΓ0
00 = −1

2
ḣ00 (A.11)

and there is a useful formula for the trace of δΓ

δΓλλµ = ∂µ

(
1

2a2
hii −

1

2
h00

)
(A.12)
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In what follows all the calculations will be performed in the Newtonian gauge. The first-
order perturbation formalism will be applied to all terms in the general scalar-tensor model
described bellow, and here we describe the result for the basic geometrical quantities. In
the Newtonian gauge, after the standard scalar-vector-tensor decomposition of the metric
perturbations (see [89]), it is obtained

B = F = 0, E = 2Φ, A = −2Ψ,

And the metric perturbations take the form

h00 = −2Φ, hi0 = h0i = 0, hij = −2a2Ψδij

h00 = 2Φ, hi0 = h0i = 0, hij = 2a−2Ψδij (A.13)

Replacing these expressions into the results for the perturbations of the Christoffel symbols
given in eqs. (A.6)–(A.12) we find

δΓ0
00 = Φ̇, δΓ0

i0 = −∂iΦ, δΓi00 =
1

a2
∂iΦ, δΓ0

ij = −2aȧΦδij − 2aȧΨδij − a2Ψ̇δij

δΓij0 = −Ψ̇δij , δΓijk = −∂kΨδij − ∂jΨδik + ∂iΨδjk (A.14)

For the curvature tensor

Rρσµν = ∂µΓρσν − ∂νΓρσµ + ΓρµλΓλσν − ΓρνλΓλσµ, (A.15)

The background components are given by

R̄i0j0 = −R̄i00j = −
(
H2 + Ḣ

)
, R̄0

i0j = −R̄0
ij0 = aäδij , R̄ijk0 = 0 (A.16)

R̄ijkl = ȧ2 (δikδlj − δilδjk) , R̄0
000 = R̄0

i00 = R̄0
0i0 = R̄0

00i = R̄i000 = 0. (A.17)

The first order perturbations are given by

δRρσµν = ∂µδΓ
ρ
σν − ∂νδΓρσµ + Γ̄ρµλδΓ

λ
σν + δΓρµλΓ̄λσν − Γ̄ρνλδΓ

λ
σµ −−δΓ

ρ
νλΓ̄λσµ (A.18)

Using (A.5) and (A.14) in (A.18) we find the first-order perturbations for the components of
the curvature tensor

δRi0j0 = −δRi00j =
1

a2
∂i∂jΦ +

(
Ψ̈ +HΦ̇ + 2HΨ̇

)
δij (A.19)

δRijk0 = −δRij0k = ∂jΨ̇δik − ∂iΨ̇δjk +H∂jΦδik −H∂iΦδjk (A.20)

δR0
i0j = −δR0

ij0 = −
(

2aäΦ + aȧΦ̇ + 2aäΨ + a2Ψ̈
)
δij − ∂i∂jΦ (A.21)

δRijkl = −∂k∂jΨδil + ∂k∂iΨδjl + ∂l∂jΨδik − ∂l∂iΨδjk − 2aȧΨ̇δikδlj

− 2ȧ2Φδikδlj − 2ȧ2Ψδikδlj + 2aȧΨ̇δilδkj + 2ȧ2Φδilδkj + 2ȧ2Ψδilδkj (A.22)

δR0
000 = δR0

i00 = δR0
0i0 = δRi000 = δR0

00i = 0 (A.23)

Contracting (A.18) we find the different components of the perturbation of Ricci tensor as

δR00 =
1

a2
∇2Φ + 3Ψ̈ + 3HΦ̇ + 6ḢΨ̇, (A.24)

δRi0 = 2∂iΨ̇ + 2H∂iΦ, (A.25)

δRij = −
(

2aäΦ + 4ȧ2Φ + aȧΦ̇ + 4ȧ2Ψ + 2aäΨ + 6aȧΨ̇ + a2Ψ̈
)
δij

− ∂i∂jΦ + ∂i∂jΨ +∇2Ψδij . (A.26)
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For the mixed components it is found

δR0
0 = −6H2Φ− 6ḢΦ− 1

a2
∇2Φ− 3HΦ̇− 6HΨ̇− 3Ψ̈ (A.27)

δR0
i = −2∂i

(
HΦ + Ψ̇

)
(A.28)

δRij = −
(

6H2Φ + 2ḢΦ +HΦ̇ + 6HΨ̇ + Ψ̈
)
δij +

1

a2
∇2Ψδij −

1

a2
∂i∂j (Φ−Ψ) (A.29)

And the perturbation for the scalar curvature is given by

δR = −12
(

2H2 + Ḣ
)

Φ− 6HΦ̇− 2

a2
∇2Φ− 24HΨ̇− 6Ψ̈ +

4

a2
∇2Ψ (A.30)

For the scalar-tensor models that involve non-minimal couplings of the scalar field to cur-
vatures, given by general functions f(φ), the energy momentum tensor contains covariant
derivatives of these functions of the scalar field. Here we give the perturbations for expres-
sions that involve two covariant derivatives of functions of the scalar field. Let’s consider the
following derivatives

∇µ∇νf(φ) = ∂µ∂νf(φ)− Γλµν∂λf(φ), ∇µ∇νf(φ) = gµλ∇λ∇νf(φ). (A.31)

Then
∇0∇0f(φ) = ∂0∂0f(φ) = φ̇2f ′′(φ) + φ̈f ′(φ)

∇0∇if(φ) = ∇i∇0f(φ) = 0

∇i∇jf(φ) = −aȧφ̇f ′(φ)δij

∇0∇0f(φ) = −φ̇2f ′′(φ)− φ̈f ′(φ)

∇0∇if(φ) = −∇0∇if(φ) = 0

∇i∇jf(φ) = −Hφ̇f ′(φ)δij

∇µ∇µf(φ) = −3Hφ̇f ′(φ)− φ̇2f ′′(φ)− φ̈f ′(φ)

∇0∇0f(φ) = φ̇2f ′′(φ) + φ̈f ′(φ)

∇0∇if(φ) = ∇i∇0f(φ) = 0

∇i∇jf(φ) = − ȧ

a3
φ̇f ′(φ)δij .

(A.32)

Here ’ represents derivative w.r.t. the scalar field φ. Let us consider the perturbations of the
above derivative terms

δ
[
∇µ∇νf(φ)

]
= ∂µ∂ν

[
f ′(φ)δφ

]
− δΓλµν∂λf(φ)− Γ̄λµν∂λ

[
f ′(φ)δφ

]
(A.33)

For the different components we find

δ [∇0∇0f(φ)] = φ̇2f ′′′(φ)δφ+ φ̈f ′′(φ)δφ+ 2φ̇f ′′(φ) ˙δφ− Φ̇f ′(φ)φ̇ (A.34)

δ
[
∇0∇if(φ)

]
= f ′′(φ)φ̇∂iδφ+ f ′(0)∂0∂iδφ−

ȧ

a
f ′(φ)∂iδφ− f ′(φ)φ̇∂iΦ (A.35)

δ
[
∇i∇jf(φ)

]
= f ′(φ)∂i∂jδφ+

(
2aȧΦ + 2aȧΨ + a2Ψ̇

)
φ̇f ′(φ)δij

− aȧ
(
f ′′(φ)φ̇δφ+ f ′(φ) ˙δφ

)
δij (A.36)
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δ
[
∇0∇0f(φ)

]
= −

(
f ′′′(φ)φ̇2δφ+ f ′′(φ)φ̈δφ+ 2f ′′(φ)φ̇ ˙δφ+ f ′(φ)δ̈φ− f ′(φ)φ̇Φ̇

)
+ 2

(
f ′′(φ)φ̇2 + f ′(φ)φ̈

)
Φ (A.37)

δ
[
∇0∇if(φ)

]
= −f ′′(φ)φ̇∂iδφ− f ′(φ)∂i ˙δφ+Hf ′(φ)∂iδφ+ f ′(φ)φ̇∂iΦ (A.38)

δ
[
∇i∇jf(φ)

]
=

1

a2
f ′(φ)∂i∂jδφ+(

2Hf ′(φ)φ̇Φ + f ′(φ)φ̇Ψ̇−Hf ′′(φ)φ̇δφ−Hf ′(φ) ˙δφ
)
δij (A.39)

δ
[
∇µ∇µf(φ)

]
= −f ′′′(φ)φ̇2δφ− f ′′(φ)φ̈δφ− 2f ′′(φ)φ̇ ˙δφ− f ′(φ)δ̈φ+ f ′(φ)φ̇Φ̇+

2f ′′(φ)φ̇2Φ + 2f ′(φ)φ̈Φ +
f ′(φ)

a2
∇2δφ+ 6Hf ′(φ)φ̇Φ + 3f ′(φ)φ̇Ψ̇−

3Hf ′′(φ)φ̇δφ− 3Hf ′(φ) ˙δφ (A.40)

δ
[
∇0∇0f(φ)

]
= −4Φ

(
f ′′(φ)φ̇2 + f ′(φ)φ̈

)
+ f ′′′(φ)φ̇2δφ+ f ′′(φ)φ̈δφ

+ 2f ′′(φ)φ̇ ˙δφ+ f ′(φ)δ̈φ− f ′(φ)φ̇Φ̇ (A.41)

δ
[
∇0∇if(φ)

]
=

1

a2

(
−f ′′(φ)φ̇∂iδφ− f ′(φ)∂i ˙δφ+Hf ′(φ)∂iδφ+ f ′(φ)φ̇∂iΦ

)
(A.42)

δ
[
∇i∇jf(φ)

]
= − 2

a2
Hf ′(φ)φ̇Ψδij +

1

a2

(f ′(φ)

a2
∂i∂jδφ+ 2Hf ′(φ)φ̇Φδij

+ f ′(φ)φ̇Ψ̇δij −Hf ′′(φ)φ̇δφδij −Hf ′(φ) ˙δφδij

)
(A.43)

B The scalar-tensor model and the equations of motion

Using the above basic results for the fundamental geometrical quantities, we can proceed to
evaluate the fist order perturbations for the following scalar-tensor model with non-minimal
coupling to scalar curvature R, non-minimal kinetic coupling to the Ricci and scalar curvature
through the Einstein tensor Gµν and non-minimal coupling to the 4-dimensional Gauss-
Bonnet invariant G

S =

∫
d4x
√
−g
[

1

2
F (φ)R− 1

2
gµρ∂µφ∂ρφ− V (φ) + F1(φ)Gµν∂

µφ∂νφ− F2(φ)G
]

(B.1)

where

G = R2 − 4RµνR
µν +RµνλρR

µνλρ,

Gµν = Rµν −
1

2
gµνR

and

F (φ) =
1

κ2
+ f(φ).

To obtain the field equations we use the following basic variations

δgµν = −gµρgνσδgρσ, (B.2)

δ
√
−g = −1

2

√
−ggµνδgµν , (B.3)
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δR = Rµνδg
µν + gµν∇σ∇σδgµν −∇µ∇νδgµν , (B.4)

δRµν =
1

2

(
gµαgνβ∇λ∇λδgαβ + gαβ∇ν∇µδgαβ − gµβ∇α∇νδgαβ − gνα∇β∇µδgαβ

)
, (B.5)

δRαβκλ =
1

2

(
∇κ∇βδgλα +∇λ∇αδgκβ −∇κ∇αδgλβ −∇λ∇βδgκα

+Rγβκλδgγα −R
γ
ακλδgβγ

)
.

The variation of the GB term requires, additionally, the use of the following Bianchi-related
identities

∇ρRρσµν = ∇µRσν −∇νRσµ (B.6)

∇ρRρµ =
1

2
∇µR (B.7)

∇ρ∇σRσρ =
1

2
�R (B.8)

∇ρ∇σRµρνσ = ∇ρ∇ρRµν −
1

2
∇µ∇νR+RγµλνR

λγ −RγµRγν (B.9)

∇ρ∇µRρν +∇ρ∇νRρµ =
1

2
(∇µ∇νR+∇ν∇µR)− 2RλµγνR

γλ + 2RλνR
λ
µ, (B.10)

which can be obtained directly from the Bianchi identity.

Variation with respect to metric gives the field equations

Rµν −
1

2
gµνR = κ2Tµν = κ2

(
T φµν + TNMµν + TKµν + TGBµν

)
, (B.11)

where

T φµν = − 2√
−g

δSφ
δgµν

, TNMµν = − 2√
−g

δSNM
δgµν

TKµν = − 2√
−g

δSK
δgµν

, TGBµν = − 2√
−g

δSGB
δgµν

,

(B.12)

with

Sφ =

∫
d4x
√
−g
[
−1

2
gµρ∂µφ∂ρφ− V (φ)

]
, (B.13)

SNM =
1

2

∫
d4x
√
−gf(φ)R, (B.14)

SK =

∫
d4x
√
−gF1(φ)Gµν∂

µφ∂νφ, (B.15)

SGB = −
∫
d4x
√
−gF2(φ)G, (B.16)
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where

T φµν = ∂µφ∂νφ−
1

2
gµν∂ρφ∂

ρφ− gµνV (φ), (B.17)

TNMµν = −f(φ)

(
Rµν −

1

2
gµνR

)
− gµν∇σ∇σf(φ) +∇µ∇νf(φ), (B.18)

TKµν = F1∂ρφ∂
ρφ

(
Rµν −

1

2
gµνR

)
+ gµν∇σ∇σ

(
F1∂ρφ∂

ρφ
)
−∇ν∇µ

(
F1∂ρφ∂

ρφ
)

+ F1R∂µφ∂νφ− 2F1

(
Rµρ∂νφ∂

ρφ+Rνρ∂µφ∂
ρφ
)

+ F1gµνRρσ∂
ρφ∂σφ

+∇ρ∇µ
(
F1∂νφ∂ρφ

)
+∇ρ∇ν

(
F1∂µφ∂ρφ

)
−∇σ∇σ

(
F1∂µφ∂νφ

)
− gµν∇ρ∇σ

(
F1∂ρφ∂σφ

)
, (B.19)

and for the variation of the GB we find the expression, valid in four dimensions

TGBµν = −4
(

[∇ν∇µF2]R− gµν [∇σ∇σF2]R− 2[∇φ∇µF2]Rφν − 2[∇φ∇νF2]Rφµ

+ 2[∇λ∇λF2]Rµν + 2gµν [∇φ∇γF2]Rφγ − 2[∇σ∇φF2]Rµφνσ

)
. (B.20)

Taking into account the variations of all the terms in the action (B.1) we can write the
generalized Einstein equations in an arbitrary background as

F (φ)Gµν = ∂µφ∂νφ−
1

2
gµν∂ρφ∂

ρφ− gµνV (φ)− gµν∇σ∇σf(φ) +∇µ∇νf(φ)

F1∂ρφ∂
ρφ

(
Rµν −

1

2
gµνR

)
+ gµν∇σ∇σ

(
F1∂ρφ∂

ρφ
)
−∇ν∇µ

(
F1∂ρφ∂

ρφ
)

+ F1R∂µφ∂νφ− 2F1

(
Rµρ∂νφ∂

ρφ+Rνρ∂µφ∂
ρφ
)

+ F1gµνRρσ∂
ρφ∂σφ

+∇ρ∇µ
(
F1∂νφ∂ρφ

)
+∇ρ∇ν

(
F1∂µφ∂ρφ

)
−∇σ∇σ

(
F1∂µφ∂νφ

)
− gµν∇ρ∇σ

(
F1∂ρφ∂σφ

)
− 4
(

[∇ν∇µF2]R− gµν [∇σ∇σF2]R− 2[∇φ∇µF2]Rφν − 2[∇φ∇νF2]Rφµ

+ 2[∇λ∇λF2]Rµν + 2gµν [∇φ∇γF2]Rφγ − 2[∇σ∇φF2]Rµφνσ

)
. (B.21)

C First order perturbations of the field equations in the Newtonian gauge

Notice that in compact notation and using the non-minimal coupling F (φ) (instead of f(φ))
as it appears in the action (B.1) we can write the field equations, after variation of (B.1)
with respect to the metric, as

TNMC
µν + T φµν + TKµν + TGBµν = 0 (C.1)

where TNMC
µν is now defined as the energy momentum tensor for the action

SNMC =

∫ √
−gF (φ)R. (C.2)
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Expanding the equation (C.1) on the perturbed metric (A.1), up to first order we find

T̃NMC
µν + T̃ φµν + T̃Kµν + T̃GBµν + δTNMC

µν + δT φµν + δTKµν + δTGBµν = 0 (C.3)

where “tilde”corresponds to the expressions evaluated on the background metric. Then the
first order perturbations of the field equations satisfy the following equation

δTµ(φ)ν + δTµ(NMC)
ν + δTµ(GB)

ν + δTµ(K)
ν = 0. (C.4)

And now we use the Newtonian gauge to write the perturbations for the energy-momentum

tensors. For δT
µ(φ)
ν we find

δT
0(φ)
0 = φ̇2Φ− φ̇δφ̇− V ′δφ

δT
0(φ)
i = ∂i

(
−φ̇δφ

)
δT

i(φ)
j − 1

3
δijδT

k(φ)
k = 0

δT
k(φ)
k − δT 0(φ)

0 = −4Φφ̇2 + 4φ̇δφ̇− 2V ′δφ. (C.5)

For δT
µ(NM)
ν

δT
0(NM)
0 = −2F

(
H(3HΦ + 3Ψ̇)− 1

a2
∇2Ψ

)
− Ḟ (3Ψ̇ + 6HΦ)

+ 3H2δF + 3HδḞ − 1

a2
∇2δF, (C.6)

δT
0(NM)
i = ∂i

(
2F (HΦ + Ψ̇) + ḞΦ− δḞ +HδF

)
, (C.7)

δT
i(NM)
j − 1

3
δijδT

k(NM)
k =

1

a2

(
∂i∂j −

1

3
δij∇2

)
(F (−Ψ + Φ) + δF ) . (C.8)

δT
k(NM)
k − δT 0(NM)

0 = −2F

(
(3HΦ̇ + 3Ψ̈) + 2H(3HΦ + 3Ψ̇) + 6ḢΦ +

1

a2
∇2Φ

)
− Ḟ (3Ψ̇ + 6HΦ)− 3Ḟ Φ̇− 6F̈Φ + 6(Ḣ +H2)δF + 3δF̈

+ 3HδḞ − 1

a2
∇2δF. (C.9)

For δT
µ(K)
ν

δT
0(K)
0 = −2φ̇

(
−F1φ̇

(
− 1

a2
∇2Ψ + 18ΦH2 + 9HΨ̇)

)
− 2

a2
F1H∇2δφ

+9H2F1δφ̇+
9

2
H2φ̇δF1

)
, (C.10)

δT
0(K)
i = ∂i

[
−2φ̇

(
−2HF1δφ̇+3H2F1δφ−Hφ̇δF1+F1φ̇

(
Ψ̇+3HΦ

))]
, (C.11)

δT
i(K)
j − 1

3
δijδT

k(K)
k =

1

a2

(
∂i∂j−

1

3
δij∇2

)
[−φ̇2δF1−2(F1φ̈+HF1φ̇)δφ+ F1φ̇

2(−Ψ− Φ)],

(C.12)
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δT
k(K)
k − δT 0(K)

0 = −12HḞ1φ̇δφ̇− 12ḢF1φ̇δφ̇− 12HF1φ̇δφ̈+
2

a2
F1φ̇

2∇2Φ +
2

a2
φ̇2∇2δF1

+
4

a2
F1φ̇

2∇2Ψ− 6Ḣφ̇2δF1 − 6Hφ̇2δḞ1 + 2Ḟ1φ̇
2(12HΦ + 3Ψ̇)

+ 2F1φ̇
2(12ḢΦ + 9HΦ̇ + 3Ψ̈) +

4

a2
F1φ̈∇2δφ− 12F1Hφ̈δφ̇

− 12Hφ̇φ̈δF1 + 4F1φ̇φ̈(12HΦ + 3Ψ̇) (C.13)

For δT
µ(GB)
ν

The perturbations of the GB energy momentum tensor from (B.20) are given by

δTµGBν = 4
(
δ [∇µ∇νf(φ)]R+ [∇µ∇νf(φ)] δR− δ [∇ρ∇ρf(φ)] δµνR− [∇ρ∇ρf(φ)] δµν δR

− 2δ [∇µ∇ρf(φ)]Rνρ−2 [∇µ∇ρf(φ)]δRνρ − 2δ [∇ρ∇νf(φ)]Rµρ − 2 [∇ρ∇νf(φ)] δRµρ

+ 2δ [∇ρ∇ρf(φ)]Rµν + 2 [∇ρ∇ρf(φ)] δRµν + 2δ [∇ρ∇σf(φ)] δµνRρσ+

2 [∇ρ∇σf(φ)] δµν δRρσ − 2δ [∇ρ∇σf(φ)]Rµρνσ − 2 [∇ρ∇σf(φ)] δRµρνσ

)
. (C.14)

Then using (A.33) and the components (A.34)–(A.43) we find after the corresponding sim-
plifications

δT 0GB
0 = 24H3 ˙δf(φ)−96H3 ˙f(φ)Φ−72H2 ˙f(φ)Ψ̇− 8

a2
H2∇2δf(φ)+

16

a2
H ˙f(φ)∇2Ψ, (C.15)

δT iGBj =
8

a2
∂i∂j

[
−
(
f ′′(φ)φ̇2 + f ′(φ)φ̈

)
Ψ +Hf ′(φ)φ̇Φ +

(
H2 + Ḣ

)
f ′(φ)δφ

]
+ 8
[
H2 ¨δf(φ)− 1

a2
H2f ′(φ)∇2δφ− 1

a2
Ḣf ′(φ)∇2δφ+ 2H3 ˙δf(φ) + 2HḢ ˙δf(φ)

− 1

a2
H ˙f(φ)∇2Φ− 8H3 ˙f(φ)Φ− 8HḢ ˙f(φ)Φ +

1

a2
¨f(φ)∇2Ψ− 4H2 ¨f(φ)Φ

− 3H2 ˙f(φ)Φ̇− 6H2 ˙f(φ)Ψ̇− 2Ḣ ˙f(φ)Ψ̇− 2H ¨f(φ)Ψ̇− 2H ˙f(φ)Ψ̈
]
δij , (C.16)

δT kGBk =
16

a2
¨f(φ)∇2Ψ− 16

a2
H ˙f(φ)∇2Φ− 16

a2

(
H2 + Ḣ

)
∇2δf(φ) + 24H2 ¨δf(φ)+

48H3 ˙δf(φ) + 48HḢ ˙δf(φ)− 192H3 ˙f(φ)Φ− 192HḢ ˙f(φ)Φ− 96H2 ¨f(φ)Φ

− 72H2 ˙f(φ)Φ̇− 144H2 ˙f(φ)Ψ̇− 48Ḣ ˙f(φ)Ψ̇− 48H ¨f(φ)Ψ̇− 48H ˙f(φ)Ψ̈, (C.17)

δT 0GB
i = 8∂i

[
H3δf(φ)−H2 ˙δf(φ) + 2H ˙f(φ)Ψ̇ + 3H2 ˙f(φ)Φ

]
, (C.18)

δT iGB0 =
8

a2
∂i

[
H2 ˙δf(φ)−H3δf(φ)− 2H ˙f(φ)Ψ̇− 3H2 ˙f(φ)Φ

]
. (C.19)

D First order perturbations for the scalar field equation of motion

From the action (B.1) we find the equation of motion for the scalar field as

1

2
F ′(φ)R+∇µ∇µφ− V ′(φ)− F1

′(φ)Gµν∇µφ∇νφ− 2F1(φ)Gµν∇µ∇νφ− F2
′(φ)G = 0 (D.1)
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In order to calculate the perturbation of this equation we need the perturbation of the GB
invariant, which can be evaluated as follows

δG =2RδR− 8δgµρgνσRµνRρσ − 8gµρgνσδRµνRρσ − 4δgµαgσδRναγδR
γ
σµν

+ 2gνβgργgσδδgαηR
η
βγδR

α
νρσ − 2gργgσδδRµβγδR

β
µρσ.

(D.2)

Using the expressions for the perturbation of the metric (A.13) and of the curvatures (A.19)–
(A.23) and (A.24)–(A.30) in the Newtonian gauge, and after some algebra we find

δG =− 8

a2
H2∇2Φ +

16

a2
H2∇2Ψ +

16

a2
Ḣ∇2Ψ− 96H4Φ− 96H2ḢΦ− 24H3Φ̇

− 96H3Ψ̇− 48HḢΨ̇− 24H2Ψ̈
(D.3)

The perturbations of the Einstein tensor, using (A.27)–(A.30), are given by

δG0
0 = 6HΨ̇ + 6H2Φ− 2

a2
∇2Ψ (D.4)

δG0
i = −2∂i

(
Ψ̇ +HΦ

)
(D.5)

δGij =

(
2Ψ̈ + 4ḢΦ + 2HΦ̇ + 6HΨ̇ + 6H2Φ +

1

a2
∇2 (Φ−Ψ)

)
− 1

a2
∂i∂j (Φ−Ψ) (D.6)

Using the above results, the first-order perturbation for the equation of motion of the
scalar field (D.1), in the Newtonian gauge takes the form

3Hδφ̇+18F1H
3δφ̇+12F1HḢδφ̇+δφ̈+6F1H

2δφ̈−6Hφ̇Φ−72F1H
3φ̇Φ

−48F1HḢφ̇Φ−2φ̈Φ−24F1H
2φ̈Φ− φ̇Φ̇−18F1H

2φ̇Φ̇−3φ̇Ψ̇−54F1H
2φ̇Ψ̇

−12F1Ḣφ̇Ψ̇−12F1Hφ̈Ψ̇−12F1Hφ̇Ψ̈− 1

a2
∇2δφ− 6

a2
F1H

2∇2δφ− 4

a2
F1Ḣ∇2δφ

− 4

a2
F1Hφ̇∇2Φ+

4

a2
F1Hφ̇∇2Ψ+

4

a2
F1φ̈∇2Ψ+12H2ΦF ′+6ḢΦF ′+3HΦ̇F ′

+12HΨ̇F ′+3Ψ̈F ′+
1

a2
∇2ΦF ′− 2

a2
∇2ΨF ′+18H3φ̇δφF1

′+12HḢφ̇δφF1
′

+6H2φ̈δφF1
′+6H2φ̇δφ̇F1

′−12H2φ̇2ΦF1
′−6Hφ̇2Ψ̇F1

′+
2

a2
φ̇2∇2ΨF1

′−96H4ΦF2
′

−96H2ḢΦF2
′−24H3Φ̇F2

′−96H3Ψ̇F2
′−48HḢΨ̇F2

′−24H2Ψ̈F2
′− 8

a2
H2∇2ΦF2

′

+
16

a2
H2∇2ΨF2

′+
16

a2
Ḣ∇2ΨF2

′−6H2δφF ′′−3ḢδφF ′′+3H2φ̇2δφF1
′′

+24H4δφF2
′′+24H2ḢδφF2

′′+δφV ′′= 0

(D.7)

E Second order action for the cosmological perturbations

In this section we briefly show the use of the tool Xpand [86, 90, 91] to verify the results
of the second-order action as presented in [57] and apply this tool to find the second order
action for the model (2.1) . We use the gauge of the uniform field and the expression for the
perturbed metric

ds2 = −N2dt2 + γij(dx
i +N idt)(dxj +N jdt)
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where

N = 1 +A, N i = ∂iB, γij = a2(t)e2ξ
(
δij + hij +

1

2
hikhkj

)

with A, B and ξ scalar perturbations and hij the tensor perturbation satisfying hii = 0,
hij = hji y ∂ihij = 0. Let us first focus in the scalar case (hij = 0). The above metric can
be implemented in Xpand [86] as follows: << xAct̀xPand̀;

DefManifold[ M, 4, {α, β, γ, µ, ν, λ, σ} ];

DefMetric[ -1, g[-α,-β], CD, PrintAs → ‘‘g’’ ];

SetSlicing[ g, n, h, cd, {"|’’, ‘‘D’’}, ‘‘FLFlat’’ ];

DefMetricFields[ g, dg, h ];

DefMatterFields[u, du, h ];

$ConformalTime = False;

MyMetricRules = {dg[LI[1],−µ ,−ν ] :> - 2n[−µ]n[−ν]φh[LI[1]]
-ah[](n[−ν]cd[−µ]@Bsh[LI[1]]+n[−µ]cd[−ν]@Bsh[LI[1]])
+2h[−µ,−ν]ψh[LI[1]], dg[LI[2],−µ ,−ν ] :> - 2n[−µ]n[−ν]φh[LI[1]]^2
+2ah[]^2 Module[{α}, n[−µ]n[−ν]cd[−α]@Bsh[LI[1]]cd[α]@Bsh[LI[1]]]
-4ah[]φh[LI[1]](n[−ν]cd[−µ]@Bsh[LI[1]]+n[−µ]cd[−ν]@Bsh[LI[1]])
+4h[−µ,−ν]ψh[LI[1]]^2};
kill1[expr ]:=expr /.xAct̀xPand̀ϕ[xAct̀xTensor̀LI[1], xAct̀xTensor̀LI[ ]]:>0;

kill2[expr ]:=expr /.xAct̀xPand̀ϕ[xAct̀xTensor̀LI[2], xAct̀xTensor̀LI[ ]]:>0;

where the scalar perturbations A, B and ξ are implemented with φh, Bsh y ψh, respectively,
and the scalar field φ is implemented with ϕ. The set of rules MyMetricRules allows the
reconstruction of metric perturbations and the functions kill1 y kill2 cancel the scalar field
fluctuations (uniform field gauge). The Lagrangian density is found in the following way:

DefScalarFunction[V];

DefScalarFunction[F];

DefScalarFunction[F1];

DefScalarFunction[F2];

Lag = kill2[kill1[ExpandPerturbation@Perturbed[Conformal[g, gah2][
Sqrt[-Detg[]]

(
(1/2)F[ϕ[]]RicciScalarCD[] - (1/2)CD[−µ][ϕ[]]CD[µ][ϕ[]]

- V[ϕ[]] + F1[ϕ[]]EinsteinCD[−µ,−ν]CD[µ][ϕ[]]CD[ν][ϕ[]] - F2[ϕ[]](

RicciScalarCD[]^2 - 4 RicciCD[-α,-β] RicciCD[α,β]

+ RiemannCD[-α,-β, -γ,-λ] RiemannCD[α,β, γ,λ])
)]
, 2]]];

ExtractOrder[ExtractComponents[SplitPerturbations[Lag, MyMetricRules, h]

, h], 2]//Expand;

canceling a large number of the boundary terms and using eqs. (2.5) y (2.6), the result
obtained with Xpand can be reduced to:

δS2
s =

∫
dtd3xa3

[
− 3GT ξ̇

2 +
FT
a2
∂iξ∂iξ + ΣA2 − 2ΘA

∂i∂iB

a2
+ 2GT ξ̇

∂i∂iB

a2

+ 6ΘAξ̇ − 2GTA
∂i∂iξ

a2

]
(E.1)
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where

GT = F − F1φ̇
2 − 8HḞ2. (E.2)

FT = F + F1φ̇
2 − 8F̈2 (E.3)

Θ = FH +
1

2
Ḟ − 3HF1φ̇

2 − 12H2Ḟ2 (E.4)

Σ = −3FH2 − 3HḞ +
1

2
φ̇2 + 18H2F1φ̇

2 + 48H3Ḟ2 (E.5)

From (E.1) it is easy to obtain the equations of motion for A and B, which are given by

ΣA+ 3Θξ̇ −Θ
∂i∂iB

a2
−GT

∂i∂iξ

a2
= 0 (E.6)

A =
GT
Θ
ξ̇ (E.7)

By replacing the equation (E.7) in (E.6) it is obtained

∂i∂iB

a2
=

Σ

Θ2
GT ξ̇ + 3ξ̇ − GT

Θ

∂i∂iξ

a2
(E.8)

Replacing eqs. (E.7) and (E.8) in (E.1) after simplifying it is obtained:

δS2
s =

∫
dtd3xa3

[(
3GT + Σ

(
GT
Θ

)2
)
ξ̇2 +

FT
a2
∂iξ∂iξ − 2

G2
T

Θ
ξ̇
∂i∂iξ

a2

]
Omitting total spatial derivatives in the last term, the previous expression can be rewritten as

δS2
s =

∫
dtd3xa3

[(
3GT + Σ

(
GT
Θ

)2
)
ξ̇2 +

FT
a2
∂iξ∂iξ + 2

G2
T

Θ

∂iξ̇∂iξ

a2

]
(E.9)

From
d

dt

[
a
G2
T

Θ
∂iξ∂iξ

]
=

d

dt

[
a
G2
T

Θ

]
∂iξ∂iξ + 2a

G2
T

Θ
∂iξ̇∂iξ,

it follows that the last tern of (E.9) can be rewritten by using the previous expression (omit-
ting total derivative). In this manner one obtains:

δS2
s =

∫
dtd3x

[
a3

((
3GT + Σ

(
GT
Θ

)2
)
ξ̇2 +

FT
a2
∂iξ∂iξ

)
− d

dt

(
a
G2
T

Θ

)
∂iξ∂iξ

]
Organizing terms this expression takes the form

[δS2
s =

∫
dtd3xa3

[(
3GT + Σ

(
GT
Θ

)2
)
ξ̇2 − 1

a2

(
1

a

d

dt

(
a
G2
T

Θ

)
− FT

)
∂iξ∂iξ

]
Defining the quantities

Fs =
1

a

d

dt

(
a
G2
T

Θ

)
− FT

Gs = 3GT + Σ

(
GT
Θ

)2

,
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The expression for the second order action takes the form

δS2
s =

∫
dtd3xa3

[
Gsξ̇

2 − Fs
a2
∂iξ∂iξ

]
=

∫
dtd3xa3Gs

[
ξ̇2 − c2s

a2
∂iξ∂iξ

]
where

c2s =
Fs
Gs

In order to implement the tensor perturbations hij in the Xpand algorithm, the
function MyMetricRules must be modified as follows:

MyMetricRules = {dg[LI[1],−µ ,−ν ] :> Eth[LI[1],−µ,−ν],
dg[LI[2],−µ ,−ν ] :> Module[{α}, Eth[LI[1],−µ,α]Eth[LI[1],−ν,−α]]};

where the fluctuations hij are implemented with Eth. The explicit expression obtained from
the algorithm for the second-order action is:

δS2
T =

∫
dtd3x

[
a3ḣij ḣijF

8
+ 2a3ḣij ḧijF2H + 3a3ḣij ḣijF2H

2 + a3ḣij ḣijF2Ḣ

− a3ḣij ḣijF1φ̇
2

8
− 2aḧijF2∂k∂khij − 4aḣijF2H∂k∂khij −

a∂khij∂khijF

8

+ aF2H
2∂khij∂khij + aF2Ḣ∂khij∂khij −

a∂khij∂khijF1φ̇
2

8
− 2aF2∂j ḣik∂kḣij

+ 2aF2∂kḣij∂kḣij +
F2∂k∂khij∂l∂lhij

a
− F2∂j∂ihkl∂l∂khij

a
+

2F2∂l∂jhik∂l∂khij
a

− F2∂l∂khij∂l∂khij
a

]

Notice that the terms 12◦, 15◦ and 16◦ are zero since ∂ihij = 0 (omitting surface terms). In
addition, the terms 14◦ y 17◦ cancel each other (omitting surface terms). In this manner it
is obtained

δS2
T =

∫
dtd3x

[
a3ḣij ḣijF

8
+2a3ḣij ḧijF2H+3a3ḣij ḣijF2H

2+a3ḣij ḣijF2Ḣ

− a
3ḣij ḣijF1φ̇

2

8
−2aḧijF2∂k∂khij−4aḣijF2H∂k∂khij−

a∂khij∂khijF

8

+aF2H
2∂khij∂khij +aF2Ḣ∂khij∂khij−

a∂khij∂khijF1φ̇
2

8
+2aF2∂kḣij∂kḣij

]
(E.10)

Since

d

dt

(
a3ḣij ḣijF2H

)
= 3a3H2ḣij ḣijF2 + 2a3ḣij ḧijF2H + a3ḣij ḣijḞ2H + a3ḣij ḣijF2Ḣ

then, the fourth term of (E.10) can be rewritten by using the previous expression (up to total
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derivatives). In this way it is found:

δS2
T =

∫
dtd3x

[
a3

(
F

8
− Ḟ2H −

F1φ̇
2

8

)
ḣij ḣij − 2aḧijF2∂k∂khij − 4aḣijF2H∂k∂khij

− a∂khij∂khijF

8
+ aF2H

2∂khij∂khij + aF2Ḣ∂khij∂khij −
a∂khij∂khijF1φ̇

2

8

+ 2aF2∂kḣij∂kḣij

]
(E.11)

The third and sixth terms can be expressed, taking into account the following expressions

∂k

(
4aḣijF2H∂khij

)
= 4aF2H∂kḣij∂khij + 4aḣijF2H∂k∂khij (E.12)

d

dt
(aF2H∂khij∂khij) = aF2H

2∂khij∂khij + aḞ2H∂khij∂khij + aF2Ḣ∂khij∂khij

+ 2aF2H∂kḣij∂khij (E.13)

Omitting surface terms and total derivatives, the eq. (E.11) takes the form

δS2
T =

∫
dtd3x

[
a3

(
F

8
− Ḟ2H −

F1φ̇
2

8

)
ḣij ḣij − 2aḧijF2∂k∂khij + 2aF2H∂kḣij∂khij

− a∂khij∂khijF

8
− aḞ2H∂khij∂khij −

a∂khij∂khijF1φ̇
2

8
+ 2aF2∂kḣij∂kḣij

]
(E.14)

The second term can be rewritten if taking into account the following expressions

∂k

(
2aḧijF2∂khij

)
= 2a∂kḧijF2∂khij + 2aḧijF2∂k∂khij

d

dt

(
a∂kḣijF2∂khij

)
= aH∂kḣijF2∂khij + a∂kḧijF2∂khij + a∂kḣijḞ2∂khij

+ a∂kḣijF2∂kḣij

After which, the action (E.14) becomes

δS2
T =

∫
dtd3x

[
a3

(
F

8
− Ḟ2H −

F1φ̇
2

8

)
ḣij ḣij − 2a∂kḣijḞ2∂khij −

a∂khij∂khijF

8

− aḞ2H∂khij∂khij −
a∂khij∂khijF1φ̇

2

8

]
(E.15)

The fourth term can be rewritten if taking into account that

d

dt

(
aḞ2∂khij∂khij

)
= aḞ2H∂khij∂khij + aF̈2∂khij∂khij + 2aḞ2∂kḣij∂khij

using this expression and simplifying, it follows that

δS2
T =

1

8

∫
dtd3xa3

[(
F − 8Ḟ2H − F1φ̇

2
)
ḣij ḣij −

1

a2

(
F − 8F̈2 + F1φ̇

2
)
∂khij∂khij

]
,
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and using the definitions (E.2) y (E.3), the final expression for the second-order action takes
the form

δS2
T =

1

8

∫
dtd3xa3

[
GT ḣij ḣij −

FT
a2
∂khij∂khij

]
(E.16)

which gives the velocity of the tensor perturbations as

c2T =
FT
GT

(E.17)

F The slow-roll inflation for the minimally coupled scalar field

In general for a second order action

S(2) =

∫
dtd3xa3Gs

[
ξ̇2 − c2s

a2
(∇ξ)2

]
(F.1)

one finds the equation of motion of the scalar perturbation as

d

dt

(
a3Gs

)
ξ̇ + a3Gsξ̈ − ac2sGs∇2ξ = 0 (F.2)

which can be written as

ξ̈ +
1

a3Gs
d

dt

(
a3Gs

)
ξ̇ − c2s

a2
∇2ξ = 0 (F.3)

or in Fourier modes (∇2 → −k2)

ξ̈k +
1

a3Gs
d

dt

(
a3Gs

)
ξ̇k +

c2s
a2
k2ξk = 0 (F.4)

where k is the wave number k = 2π/λ. For small k beyond the horizon, i.e. csk � aH one
can neglect the third term and write

a3Gsξ̈k +
d

dt

(
a3Gs

)
ξ̇k =

d

dt

(
a3Gsξ̇k

)
= 0 (F.5)

which gives

ξ̇k =
ck
a3Gs

, → ξk = dk + ck

∫
dt

a3Gs
(F.6)

where ck and dk are integration constants. Note that dk corresponds to the constant (ob-
servable) mode and the integral gives the decaying mode, under the assumption that during
inflation Gs is slowly varying. To canonical normalize the curvature perturbations (F.1) we
make the following change of variables

vk = zξk, z = a
√

2Gs, dt = adτ (F.7)

then,

ξ̇ =
dξ

dτ

dτ

dt
=

1

a
ξ′ =

1

a
(
v

z
)′ =

1

az

(
v′ − z′

z
v

)
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where ′ denotes derivative w.r.t. τ . The second order action (F.1) transforms as

S(2) =

∫
dτd3xa4

[
Gs
a2z2

(
v′ − z′

z
v

)2

− c2sGs
a2z2

(∇v)2

]

=

∫
dτd3x

1

2

[(
v′ − z′

z
v

)2

− c2s(∇V )2

]

which finally gives after integration by parts

S(2) =

∫
dτd3x

1

2

[
v′2 +

z′′

z
v2 − c2s(∇v)2

]
(F.8)

The equation of motion for v that follows from the above action is

v′′ − c2s∇2v − z′′

z
v = 0 (F.9)

which is the Mukhanov equation. One can also define the Fourier expansion of the field v as

v(x, τ) =

∫
d3k

(2π)3
vk(τ)ei

~k.~x, (F.10)

leading to

v′′k +

(
c2Sk

2 − z′′

z

)
vk = 0. (F.11)

The difficulty in solving this equation lies in the function z′′/z and the velocity of the scalar
perturbations cS which encode the dynamics of the model on the given inflationary back-
ground. Nevertheless, appropriate analytical solutions can be obtained in the de Sitter limit
and under the slow-roll approximation.

The minimally coupled scalar field. For the canonical scalar field the Friedman and
field equations can be reduced to

H2 =
1

3M2
p

(
1

2
φ̇2 + V (φ)

)
(F.12)

Ḣ = − 1

2M2
p

φ̇2 (F.13)

To analyze the second order action in this case we set F = 1/κ2 = M2
p , F1 = F2 = 0

in (E.2)–(E.5), which gives

Σ = −3FH2 +
1

2
φ̇2, Θ = M2

pH, FT = M2
p , GT = M2

p . (F.14)

Therefore

Gs =
φ̇2

2H2
(F.15)

and

Fs =
M2
p

a

d

dt

( a
H

)
−M2

p = −M2
p

Ḣ

H2
, (F.16)
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giving c2s = 1. The second order action for this simplified case takes the form

S(2) =

∫
dtd3xa3

φ̇2

2H2

[
ξ̇2 − 1

a2
(∇ξ)2

]
(F.17)

which in the Mukhanov variables becomes

S(2) =

∫
dτd3x

1

2

[
v′2 +

z′′

z
v2 − (∇v)2

]
(F.18)

The Mukhanov equation (F.9) for the case of canonical scalar field simplifies taking into
account (F.15) and

z = a
φ̇

H
. (F.19)

Then,

z′ =
dz

dτ
= a

dz

dt
= a

(
ȧ
φ̇

H
+ a

φ̈

H
− aφ̇Ḣ

H2

)
.

On the other hand, the standard slow roll parameters for this case are defined as

ε = − Ḣ

H2
=

φ̇2

2M2
pH

2
(F.20)

and

η =
ε̇

Hε
=

2φ̈

φ̇H
− Ḣ

H2
= 2 (ε− δ) (F.21)

where

δ = − φ̈

φ̇H
(F.22)

so, if ε, δ � 1 then η � 1.
Then z′/z may be written as

z′

z
= aH

(
1 +

φ̈

Hφ̇
− Ḣ

H2

)
= aH (1− δ + ε) (F.23)

Taking the derivative with respect to τ one finds

d

dτ

(
z′

z

)
=
z′′

z2
−
(
z′

z

)2

= a
d

dt
[aH (1− δ + ε)]

= a2H2

[
1− δ + ε− ε (1− δ + ε) +

ε̇

H
− δ̇

H

]

' a2H2

[
1− δ + ε− ε (1− δ + ε) +

ε̇

H

]
where we have used ȧ = aH and in the last equality we have neglected δ̇. Then, using (F.23),
up to first order in slow roll parameters one can write

z′′

z2
' a2H2 (2 + 2ε− 3δ) . (F.24)
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Note that form the equality
d

dτ
(aH)−1 = ε− 1,

if we consider that ε varies very slowly with time, i.e. is quasi constant, then one finds

(aH)−1 = (ε− 1) τ ⇒ τ =
1

aH

1

(ε− 1)
(F.25)

which is the conformal time. Note that in de Sitter ε = 0 and one has

τdS = − 1

aH

so the comovil horizon is equal to the conformal time, and then neglecting the slow roll
parameters, the following approximation

z′′

z
' 2a2H2

(
1 + ε− 3

2
δ

)
' 2a2H2 =

2

τ2dS

takes place in de Sitter. But taking into account the slow roll parameters and using (F.25)
we find

z′′

z
' 1

τ2
2 + 2ε− 3δ

(1− ε)2
=

1

τ2

(
µ2 − 1

4

)
(F.26)

where

µ2 =
1

4
+

2 + 2ε− 3δ

(1− ε)2
' 9

4
+ 6ε− 3δ.

Then

µ ' 3

2
+ 2ε− δ

Using (F.26) in the Mukhanov equation (F.11) with c2s = 1 we find in the Fourier modes

v′′k + k2vk −
1

τ2

(
µ2 − 1

4

)
vk = 0. (F.27)

First note that deep inside the horizon, when the condition k � aH or τ → −∞ is fulfilled,
the mode equation becomes

v′′k + k2vk = 0 (F.28)

which allows the quantization of the mode function in complete analogy with the quantization
of (massless) scalar field on Minkowski background. Then, the choice of vacuum as the
minimum energy state and the positivity of the normalization condition for the fluctuations
vk [10, 12, 92, 93] leads to the unique plane-wave solution

vk =
1√
2k
e−ikτ . (F.29)

This solution can be used as a boundary condition (at k � aH) for the general solution
of eq. (F.27). Assuming µ2 constant for slowly varying slow-roll parameters, the general
solution to the equation (F.27) is given by

vk =
√
−τ
[
c1kH

(1)
µ (−kτ) + c2kH

(2)
µ (−kτ)

]
(F.30)
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where H
(1)
µ and H

(2)
µ are the Hankel functions of the first and second kind respectively. These

functions have the following asymptotic behavior

H(1)
µ (x� 1) '

√
2

πx
ei(x−

π
2
µ−π

4
) (F.31)

H(2)
µ (x� 1) '

√
2

πx
e−i(x−

π
2
µ−π

4
) (F.32)

Taking x = −kτ , if x � 1 then k � aH which corresponds to sub horizon scales. Then
imposing (F.29) as the boundary condition at −kτ � 1, it is found that

c1k =

√
π

2
ei
π
2
(µ+ 1

2
), c2k = 0

and the general solution takes the form

vk =

√
π

2
ei
π
2
(µ+ 1

2
)
√
−τH(1)

µ (−kτ) (F.33)

On the other hand, on super horizon scales where k � aH (x� 1), the Hankel function has
the following asymptotic behavior

H(1)
µ (x) =

√
2

π
e−i

π
2 2µ−

3
2

Γ(µ)

Γ(32)
x−µ (F.34)

and replacing in (F.33) we find the solution

vk = ei
π
2
(µ− 1

2
)2µ−

3
2

Γ(µ)

Γ(32)

1√
2

√
−τ (−kτ)−µ (F.35)

To evaluate the power spectra we find from (F.23) and (F.25)

z′

z
=

(1− δ + ε)

ε− 1

1

τ
(F.36)

for slowly varying slow roll parameters one finds

z ∝ τ
1
2
−µ (F.37)

where

µ =
3

2
+ 2ε− δ.

Assuming µ ' 3/2 in 2µ−
3
2 and Γ(µ) in (F.35) gives

vk =
1√
2
eiπ/2

√
−τ (−kτ)−µ . (F.38)

Then in the super horizon regime

ξk =
vk
z
∝ τ0k−µ = k−

3
2
−2ε+δ (F.39)
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depending only on k, which agrees with the solution ξk = const. on super horizon scales
(see (F.6)). Then for the power spectra we find

Pξ =
k3

(2π)2
|ξk|2 ∝ k2δ−4ε (F.40)

and the scalar spectral index is given by

ns − 1 =
d lnP (ξ)

d ln k
= 2δ − 4ε (F.41)

where the scale invariance corresponds to ns = 1.
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