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Abstract. Density-reconstruction sharpens the baryon acoustic oscillations signal by undoing
some of the smoothing incurred by nonlinear structure formation. In this paper we present
an analytical model for reconstruction based on the Zeldovich approximation, which for the
first time includes a complete set of counterterms and bias terms up to quadratic order
and can fit real and redshift-space data pre- and post-reconstruction data in both Fourier
and configuration space over a wide range of scales. We compare our model to n-body
data at z = 0 from the DarkSky simulation [1], finding sub-percent agreement in both real
space and in the redshift-space power spectrum monopole out to k = 0.4hMpc−1, and
out to k = 0.2hMpc−1 in the quadrupole, with comparable agreement in configuration
space. We compare our model with several popular existing alternatives, updating existing
theoretical results for exponential damping in wiggle/no-wiggle splits of the BAO signal and
discuss the usually-ignored effect of higher bias contributions on the reconstructed signal.
In the appendices, we re-derive the former within our formalism, present exploratory results
on higher-order corrections due to nonlinearities inherent to reconstruction, and present
numerical techniques with which to calculate the redshift-space power spectrum of biased
tracers within the Zeldovich approximation.
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1 Introduction

Density field reconstruction [2] is a means of improving the determination of the distance-
redshift relation using baryon acoustic oscillations (BAO) [3]. The BAO method is a “stan-
dard ruler” test which seeks to measure the scale of a feature in the 2-point function whose
physical size is known. Comparison with the observed size of this feature gives the angular
diameter distance and Hubble parameter as a function of redshift. While the large size of the
BAO feature (100 Mpc) makes it relatively immune to systematic effects, nonlinear evolution
erases the oscillations on small scales, or broadens the peak in the correlation function, and
reduces the accuracy with which the scale can be measured [4–8]. However much of the peak
broadening comes from motions sourced by very long wavelength fluctuations [8] which are
well measured by surveys aiming to measure BAO. This insight led ref. [2] to propose that
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density-field reconstruction could be applied to regain much of the information lost to non-
linearities. It has been used in all recent BAO surveys to improve their constraints (e.g. see
ref. [9] and references therein).

BAO reconstruction has been studied both numerically [10–12] and analytically [2, 13–
27]. Our work builds upon these analytic calculations. Where earlier work made simpli-
fications aimed at highlighting important physical effects, neglected complications such as
redshift-space distortions, applied heuristics or otherwise simplified the calculations for ex-
planatory effect, we aim to produce a consistent dynamical theory which can be compared
directly to upcoming observational data. Hence we generalize these calculations to also con-
sider the power spectrum and extend the model to include the complete set of quadratic bias
terms. To our knowledge this is the first dynamical model with a full bias scheme that can
produce consistent real and redshift-space results in both Fourier and configuration space,
allowing it to be used for consistent fitting of upcoming data.

There has been significant theoretical work on reconstruction since the first algorithm [2]
was suggested. Most recently, a variety of iterative or alternative reconstruction approaches
have been developed [15, 20, 22–25]. Though our calculations give some insights into these
methods, for near-future experiments and for BAO scales these iterative methods do not lead
to significant improvements and so we defer consideration of these more complex algorithms
to future work.

The outline of this paper is as follows. Section 2 reviews the formalism of Lagrangian
perturbation theory within which we work. Section 3 describes the reconstruction algo-
rithm we seek to model, while section 4 gives our results in Fourier space, comparing to the
configuration-space results where appropriate (section 5). We discuss alternative statistics in
section 6. To assess the range of validity of our models we compare to N-body simulations
in section 7. A comparison with earlier work is given in section 8 before we conclude in
section 9. Some technical details are elaborated in the appendices.

2 Lagrangian perturbation theory

The Lagrangian framework [28–35] describes cosmological structure formation by tracking
the displacements Ψ(q) of infinitesimal parcels of the matter fluid from their initial (La-
grangian) positions q. In this picture the present day matter over- and underdensities are
a result of the clustering of the displaced Eulerian positions x(q, τ) = q + Ψ(q, τ). The
displacements follow the equation of motion Ψ′′(q)+HΨ′(q) = −∇xΦ(x), where Φ(x) is the
gravitational potential which is in turn sourced by the clustered matter fluid via Poisson’s
equation ∇2Φ(x, τ) = 3

2Ωm(τ)H2(τ)δ(x, τ) with τ the conformal time. This set of equations
can be solved perturbatively in terms of the linear overdensity, δ0, and the first order solution
is given by Ψ = −D(τ)∇∇−2δ0, where D(τ) is the linear growth factor [28].

The Lagrangian picture treats tracer bias and advection separately. Given a biased
tracer, a, with initial overdensity F a(q) = F a

[
∂2Φ(q), . . .

]
, the time-evolved tracer overden-

sity at conformal time τ is given by number conservation as [34]

1 + δa(x, τ) =

∫
d3q F a(q) δD (x− q−Ψ(q, τ)) . (2.1)

The cross power spectrum between two biased tracer populations a and b is then

P ab(k) =

∫
d3q eik·q 〈F a(q2)F b(q1) eik·∆

ab〉q=|q2−q1| , ∆ab = Ψa(q2)−Ψb(q1), (2.2)
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where we have used that the integrated expectation value can only depend on q = q2 − q1,
due to the translation invariance of the underlying theory. The bias functionals, F a,b, can be
Taylor expanded in terms of bias coefficients

F a(q) = 1 + ba1δ0(q) +
1

2
ba2
(
δ0(q)2 − 〈δ2

0〉
)

+ bas
(
s2(q)− 〈s2〉

)
+ ba∇2∇2

qδ0(q) + · · · , (2.3)

where s2 = sijsij is the square of the shear field, i.e. the traceless part of ∂∂Φ. Following
ref. [36], we also consider contributions from a “derivative bias” b∇2 , i.e. corrections to the
bias expansion at scales close to the halo radius Rh proportional to ∇2δ0; such contributions
will, however, be essentially degenerate with counterterms renormalizing nonlinearities in the
Zeldovich power spectrum and we will therefore not enumerate them separately in the rest
of this work unless otherwise stated.

In this work our focus will be on modelling reconstruction within the Zeldovich ap-
proximation [28, 37], which keeps only the linear order term in the dynamics of Ψ but
re-sums the effects of the displacement to all orders in a Galilean-invariant manner (this is
true for reconstruction also if we take it to mean that all displacements transform the same
way). This is specifically accomplished by evaluating the exponential in equation (2.2) via
the cumulant expansion, and evaluating the bias expansion using functional derivatives (see
e.g. refs. [34–36]). Following standard techniques, as outlined in the references above, the
resulting expression for the cross spectrum is

P ab(k) =

∫
d3q eik·q e−

1
2
kikjA

ab
ij

[
1 + α0k

2 + ibb1k · Ua + iba1k · Ua + ba1b
b
1ξL +

1

2
ba2b

b
2ξ

2
L

− 1

2
kikj (bb2U

a
i U

a
j + ba2U

b
i U

b
j + 2ba1b

b
1U

a
i U

b
j ) + iki(b

b
2b
a
1U

a
i + bb1b

a
2U

b
i ) ξL

− 1

2
kikj(b

a
sΥ

b
ij + basΥ

b
ij) + iki(b

a
1b
b
sV

ab
i + bb1b

a
sV

ba
i )

+
1

2
(ba2b

b
s + bb2b

a
s)χ

12 + basb
b
sζ + · · ·

]
(2.4)

where we have defined1 the quadratic two point functions

Aabij = 〈∆ab
i ∆ab

j 〉, U bi = 〈∆ab
i δ0(q2)〉, ξL = 〈δ0(q2)δ0(q1)〉 (2.5)

and shear correlators

ζ = 〈s2(q2)s2(q1)〉, Υb
ij = 〈∆ab

i ∆ab
j s

2(q2)〉, V ab
i = 〈∆ab

i δ0(q2)s2(q1)〉, χ12 = 〈δ2
0(q1)s2(q2)〉.

(2.6)
Note that in the above calculations we have, without loss of generality, associated tracers a
and b with Lagrangian positions q2 and q1, respectively. The quantities in equation (2.4) with
a and b swapped can also be calculated by swapping the positions q1 ↔ q2. As an example,
U b = −〈Ψb(q1)δ0(q2)〉 is the two-point function between the displacement of tracer b and
the matter overdensity. The vector and tensor two point functions defined above can be
decomposed via rotational symmetry into scalar components, e.g. Aij = X(q)δij + Y (q)q̂iq̂j
and Ui = U(q)q̂i. Formulae for these functions, expressed as Hankel transforms of power
spectra, are given in appendix A. Finally, we include the contribution α0k

2 in the square

1These are generalizations of the similar auto-spectrum quantities defined in refs. [35–37].
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brackets of equation (2.4) as the lowest-order counterterm renormalizing sensitivities to small-
scale power in Aij — in practice this simply modifies the matter contribution PZel(k) (∝ 1 in
the square brackets) to (1 +α0k

2)PZel(k) (see e.g. refs. [38, 39]). Each term in equation (2.4)
can be evaluated as Hankel transforms (see e.g. ref. [36]) using the identities given at the end
of [38], which we carry out using the mcfit package.2

The Lagrangian formalism allows a straightforward translation between real and redshift
space via a mapping of the Lagrangian displacements. In particular, assuming the plane-
parallel approximation3 and working in the Zeldovich approximation, quantities in redshift
space are given simply by substituting Ψi → ΨR

i = RijΨj [34]. Here Rij = δij + fn̂in̂j ,
where n̂ denotes the line-of-sight direction and f = d lnD/d ln a is the linear-theory growth
rate. To lowest order, transforming into redshift space requires the inclusion of a second
counterterm dependent on the line-of-sight angle ν = k̂ · n̂. We can see this explicitly, for
example, in the UV-sensitive zero-lag term in Aij , which gains an angular dependence

kikj〈(Ψi + n̂in̂lΨ̇l)(Ψj + n̂jn̂mΨ̇m)〉 ≡ k2(X(0) + (2Ẋ(0) + Ẍ(0))ν2), (2.7)

where Ψ̇ is the velocity in Hubble units equal to fΨ in the Zeldovich approximation;4 roughly
speaking, we need one angle-independent counterterm α0k

2 to absorb the UV dependence of
X(0) and another α2k

2ν2 to absorb the UV dependence of the velocities. The complete set of
counterterms in redshift space thus makes a contribution of the form (α0 + α2ν

2)k2PZA(k);
since PZA(k) is equal to (1+fν2)2PL(k) to linear order, an equivalent viewpoint — which we
will adopt in this work — is to have constant counterterms ᾱ0k

2 and ᾱ2k
2 for the monopole

and quadrupole, respectively, where the barred counterterms are linear combinations of the
unbarred quantities.

3 Reconstruction algorithm

In this section we describe two possible methods for reconstruction in redshift space, both
built around the Zeldovich approximation. The standard procedure for reconstruction was
developed in ref. [2] and involves displacing both observed galaxies and a spatially uniform
distribution by a calculated shift field, χ, then taking the relative density contrast between
the two sets of particles as the reconstructed density field. For a suitably chosen χ, this
can reduce the effect of large scale (IR) bulk flows that “blur” the BAO feature. However
there is no consensus in the community on the correct procedure for handling redshift-space
distortions: the implementation in ref. [43] chose to multiply χ by 1 + f in the line-of-sight
direction for δd but not for δs. This ‘undoes’ the supercluster infall effect [44] and reduces
the ` > 0 moments of the 2-point function on large scales. Ref. [16] suggested a symmetric
treatment of δd and δs, which recovers linear theory on large scales. This is more natural
from the point of view of perturbation theory and better behaved near the boundaries, but
is less often implemented on data. A number of other choices were explored in ref. [18] but
in this work we will restrict our attention to the two methods described above.

The reconstruction procedure consists of the following steps [2]:

1. Smooth the observed galaxy density field δg with a kernel S to filter out small scale
(high k) modes, which are difficult to model. We use a Gaussian smoothing of scale

2https://github.com/eelregit/mcfit.
3This should be an excellent approximation on BAO scales [40], but if necessary the formalism can be

modified to include “wide-angle” effects [41].
4See refs. [36, 42] for a more detailed exposition of the “dot notation.”
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Rs, specifically S(k) = exp[−(kRs)
2/2], though none of our analytic results will depend

specifically on this choice. For galaxy surveys Gaussian smoothing has been universally
adopted (though with different conventions for Rs) but in other contexts it may be
advantageous to implement a Wiener filter instead (e.g. ref. [19]).

2. Compute the shift, χ, by dividing the smoothed galaxy density field by a bias factor b
and linear RSD factor [44] and then take the inverse gradient. Assuming linear theory
with scale-independent bias and supercluster infall holds on large scales, the calculated
shift field should approximate the negative smoothed Zeldovich displacement. In a
simulation with a periodic box, these first two steps can be implemented using FFTs as

χk = − ik
k2
S(k)

(
δg(k)

b+ fν2

)
≈ −S(k)Ψ(1)(k) (3.1)

where the bias factor is related to the Lagrangian first-order bias by b = 1 + b1 and
we have defined the line-of-sight angle ν = n̂ · k̂. For non-periodic data the relevant
differential equation can be solved by multigrid5 or by linear algebra techniques [43] or
iteratively using FFTs [45].

3. Move the galaxies by χd = Rχ and compute the “displaced” density field, δd.

4. Shift an initially spatially uniform distribution of particles by

• Rec-Sym: χs = Rχ, i.e. the same amount as the observed galaxies, or,

• Rec-Iso: the un-redshifted χs = χ.

to form the “shifted” density field, δs. Note that we have borrowed the nomenclature
of ref. [18] for the latter, which “isotropizes” the reconstructed field on large scales. For
the former we use “Rec-Sym” to indicate the symmetry of the treatment of δd and δs.

5. The reconstructed density field is defined as δr ≡ δd− δs with power spectrum Pr(k) ∝
〈
∣∣δ2
r

∣∣〉.
Throughout we shall assume that the fiducial cosmology and halo bias are properly known
during reconstruction (see e.g. refs. [27, 46] for relaxation of this assumption), and take the
approximation in eq. (3.1) to be exact. For further discussion of this point see refs. [17, 21].
The procedure in real space can be straightforwardly obtained by setting f = 0, in which
case Rec-Sym and Rec-Iso become equivalent. Taking the limit S → 0 or χ→ 0 returns the
‘raw’ spectrum, before reconstruction.

4 Reconstructed power spectrum

There has been significant earlier work on modeling density-field reconstruction within per-
turbation theory [2, 13–27]. In particular ref. [16] presented a calculation of the configuration-
space two-point function (the correlation function) under the assumption of Zeldovich dy-
namics and that χ = −SΨ. In this paper we generalize that calculation to a more complete
bias model (see section 5), including all terms allowed by symmetries up to quadratic order
as well as a proper set of counterterms, and we show how to implement the model in Fourier

5https://github.com/martinjameswhite/recon code.
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space. We have explicitly checked that the Hankel transform of our Fourier-space expressions
matches the direct configuration-space calculation to 1% in all terms, and we release code
which makes consistent predictions for both statistics with a common set of parameters. To
our knowledge this is the first calculation which provides self-consistent predictions in both
spaces, uses a dynamical rather than a heuristic model, works in redshift space and has a
full set of bias and counterterms.

Our focus in this section will be to model the reconstructed power spectrum using
Lagrangian perturbation theory in both real and redshift space (the expression for the ‘prop-
agator’ is given in appendix B for completeness). Following the algorithm outlined above,
the reconstructed power spectrum in real space is given by Precon = P dd+P ss−2P ds. Within
the Lagrangian framework we can write the displaced density field as

1 + δd(r) =

∫
d3x (1 + δ(x)) δD [r− x− χd(x)]

=

∫
d3x

∫
d3q F (q) δD [x− q−Ψ(q)] δD [r− x− χd(x)]

=

∫
d3q F (q) δD [r− q−Ψ(q)− χd(q + Ψ(q))] , (4.1)

where we performed the x integral using the first δ-function to go from the second to third
lines. Importantly while the fluid displacement, Ψ, is evaluated at the Lagrangian position,
q, the shift field is evaluated at the shifted Eulerian position, q + Ψ. The above equalities
hold both when the pre-reconstruction coordinate, x, is in real or redshift space, with the
implicit substitution of Ψ→ RΨ in the latter case, as long as the appropriate shift field χd
is chosen. The expression for the shifted density can be similarly derived or found by setting
Ψ(q) = 0 and χd → χs in the above expression. In Fourier space this translates to

(2π)3δD(k) + δd(k) =

∫
d3q e−ik·q F (q) e−ik·

[
Ψ(q)+χd(q+Ψ(q))

]
(2π)3δD(k) + δs(k) =

∫
d3q e−ik·q e−ik·χs(q). (4.2)

Below we will make the approximation χ(q + Ψ) ≈ χ(q). The nonlinearities from the
Lagrangian-to-Eulerian mapping can be understood as a perturbation series in Ψ/R, where R
is the smoothing scale, and we explore their consequences in appendix E (see also refs. [17, 21]
and the discussion in ref. [16]). Within this approximation we can treat the displaced and
shifted field as tracers with displacements

Ψd = Ψ + χd, Ψs = χs, (4.3)

where the Zeldovich displacements should be understood as being in redshift space for the
displaced field and in either redshift or real space for the shifted field depending on the
method used. In this picture the “displaced” tracer has the same bias functional as the
original galaxies (F d ≡ F g) while the “shifted” tracer is unbiased (F s ≡ 1). A straightforward
consequence of the reconstruction procedure is that, like that of any discrete tracer, the shift
field autospectrum will contain an independent shot noise term P ssSN = 1/ns, where ns is
the number density of the uniform random particles. The full shot noise contribution to the
reconstructed spectrum is the sum of the galaxy and random particle shot noises.
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Figure 1. Lagrangian space two point functions used to compute reconstructed power spectra.
Dashed quantities have been multiplied by an overall negative sign, and reflect that the shifted field
is defined to be negatively correlated with the underlying matter field. Roughly speaking, the shifted
and displaced correlators reproduce the general trend for the total matter correlators, shown in black,
on large and small scales, respectively. An exception is Xds, whose non-vanishing value on small
scales reflect that the point values of Ψd and Ψs differ exactly by the Zeldovich displacement. Note
also the small but visible features around q = 100h−1 Mpc, i.e. the BAO scale.

4.1 Real space

In real space both the displaced and shifted fields are moved by the same, smoothed negative
Zeldovich displacement, χd = χs = −S ?Ψ, such that in Fourier space

Ψd(k) = [1− S(k)] Ψ(k), Ψs(k) = −S(k)Ψ(k). (4.4)

and the auto- and cross-spectra can be calculated using equation (2.4) and the correlators in
appendix A, using linear theory spectra

P ddL (k) = [1− S(k)]2 PL(k), P dsL (k) = −S(k) [1− S(k)]PL(k), P ssL (k) = S(k)2PL(k)
(4.5)

as well as tracer-matter power spectra

P dm
L (k) = [1− S(k)]PL(k) , P sm

L (k) = −S(k)PL(k). (4.6)

Note that the shifted field is negatively correlated with both the matter and displaced fields
by-construction, since the random particles are displaced in the opposite direction of the
(smoothed) Zeldovich displacement.

The Lagrangian space two-point correlation functions required to calculate the pre-
and post-reconstruction power spectra, normalized to their present-day values, are shown
in figure 1. For simplicity we have excluded the shear correlators and refer readers to ap-
pendix A for further details. The components X and Y describe correlation functions of
two displacements, while the U ’s involve those with only one displacement, such that the
former are Hankel transforms of the linear tracer-tracer spectra, while the latter involve the
linear tracer-matter spectra. As expected, the Y ’s and U ’s for the displaced and shifted fields
contain the behavior of the full matter contribution and small and large scales, respectively,
and cross correlations between the shifted field and the displaced or matter fields is negative.
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The X(q) components however, especially the cross-correlation Xds, display more subtle
behavior. In particular, we have

Adsij (q)
q→0
= 〈Ψd

iΨ
d
j 〉+ 〈Ψs

iΨ
s
j〉 − 2〈Ψd

iΨ
s
j〉 ≡ Σ2δij , (4.7)

such that Xds(q)→ Σ2 as q → 0. This is because, when evaluated at the same point, Ψd −
Ψs = Ψ, i.e. the difference between the displaced the shifted displacements is none other than
the original Zeldovich displacement. This in turn implies that the cross spectrum is damped
at small scales ∝ exp[−k2Σ2/2] due to the nonzero displacement between the displaced
and shifted fields. Similar behavior is seen in the evaluation of unequal-time correlation
functions [47] and the baryon-cold dark matter cross-correlation [48, 49], though the physical
mechanisms are of course different. At large scales, we similarly have

Adsij (q)
q→∞

= 〈Ψd
iΨ

d
j 〉+ 〈Ψs

iΨ
s
j〉 ≡

(
Σ2
dd + Σ2

ss

)
δij , (4.8)

such that Xds asymptotes to the average of Xdd and Xss at large separations. For complete-
ness, we give explicit expressions for the displaced and shifted Xab here:

Xdd(q) =
2

3

∫
dk

2π2

[
1−

(
j0(kq) + j2(kq)

)] (
1− S(k)

)2
PL(k)

Xds(q) =
2

3

∫
dk

2π2

[
1

2

(
(1− S(k))2 + S(k)2

)
+ S(k)

(
1− S(k)

)(
j0(kq) + j2(kq)

)]
PL(k)

Xss(q) =
2

3

∫
dk

2π2

[
1−

(
j0(kq) + j2(kq)

)]
S2(k)PL(k). (4.9)

The corresponding expressions for Y ab can be directly obtained by calculating −3 times the
j2 components. As we shall discuss further in section 8, the signs for the Bessel function
coefficients in our expression for Xds differ from those in ref. [26]. We note also, as has been
emphasized before [13], each of the three contributions to Precon has a different damping
factor which can only be roughly approximated by a single Gaussian term.

The lowest-order bias terms in the reconstructed real-space power spectrum at z = 0
are shown figure 2. The pure-matter piece (i.e. the “1” in equation (2.4)) is the only term
that includes contributions from all three combinations of d and s, while the b21 piece consists
of only the dd contribution. While each piece individually differs from the linear power
spectrum, compared to the pre-reconstruction power spectrum, the Zeldovich approximation
predicts that the post-reconstruction power spectrum largely recovers the oscillatory features
in the linear spectrum, as seen in the lower panels of figure 2. We note that the structure of
the breakdown into P dd, P ds and P ss shown in figure 2 proceeds similarly in the higher-order
bias contributions: bias terms like b21, that are products of two bias parameters (e.g. b1b2, b2bs,
. . . ), do not involve any displacements (Ψ) and can thus only enter in the autospectrum of
the biased “d” tracer P dd, while those like b1 that involve only one bias parameter (e.g. b2, bs)
involve two-point functions with one displacement contracted and thus contribute to the cross
spectrum P ds as only one of the constituent tracers needs to be biased. The autospectrum
P ss does not contain any bias terms.

Figure 3 shows all the contributions to the reconstructed galaxy power spectrum and
correlation function, up to the quadratic bias and shear terms. As seen in the top panel, the
reduced damping in the lowest-order bias term “wiggles,” barely visible in log-log plots of the
reconstructed power spectrum, translate to significantly sharper and less shifted BAO features
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Figure 2. (Top) Real-space power spectra contributions, displaced-displaced, displaced-shifted and
shifted-shifted, for the lowest order bias terms 1, b1, b21, and their sum, compared to linear theory at
z = 0. The pure matter piece is the only term that receives contributions from all three combinations of
d and s, and the b21 term consists only of the dd contribution. All three bias terms tend to linear theory
on large scales but exhibit somewhat different broadband behavior at high k. (Bottom) The ratio of
the above bias terms with the linear theory power spectrum, compared with the pre-reconstruction
Zeldovich power spectrum. While both the pre- and post-reconstruction Zeldovich spectra differ with
the linear spectrum in the broadband at small scales, the Zeldovich approximation predicts that the
oscillatory features in the reconstructed spectrum are almost identical to those in the linear spectrum,
such that the wiggles are almost completely normalized out for the reconstructed spectrum.

(right column). In the quadratic bias contributions (middle panels), reconstruction can be
seen to dampen the amplitude of the BAO feature in the b2 and b1b2 contributions, which
“wiggle” in Fourier space, while leaving the spectrally smooth b22 contribution essentially
intact. Since the BAO feature in the quadratic bias contributions will tend to smear and
shift the observed BAO peak from its linear theory position, reconstruction serves to remove
these confounding nonlinearities as expected. The shear terms have less pronounced (i.e.
smoother) features at the BAO scale — which we will show in section 8 as being essentially
in-phase with the linear theory oscillations — that are less affected by reconstruction.

Finally, as noted in the discussion below equation (2.4), the exponentiated Aij in Zel-
dovich power spectra are assumed to be long wavelength, IR modes which can be resummed
while contributions from the rest of the shorter modes are perturbatively expanded. These
expanded modes thus carry also a UV (small-scale) sensitivity that should be renormalized
by adding the appropriate counterterms, quadratic in wavenumber and proportional to the
Zeldovich power spectrum: αabk

2P abZel. In principle, we expect such counterterms in all three
pieces of our reconstructed power spectrum, however given that the P ss consists of mostly
IR modes we expect its counterterm contribution to be suppressed relative to similar terms
in P dd and P ds, though it could still be non-vanishing due to contributions we neglected in
approximating equation (3.1). While the counterterms αdd and αds are highly nondegenerate
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Figure 3. Contributions to the pre- and post-reconstruction (dashed and solid) power spectra and
correlations functions (left and right columns) in real space from linear through quadratic bias terms
at z = 0. Note that the matter (blue) and b21 (green) curves in the top right panel are essentially
degenerate, especially at the large scales shown.

due to the different supports of P dd and P ds (see figure 2) in k-space, in this work we will also
explore modelling the reconstructed power spectrum using only one counterterm, ∝ k2PZel,
for both P dd and P ds contributions, since such a contribution would also be degenerate with
any potential derivative biases (see e.g. ref. [36]). We will return to the difference between
these options in section 7.

4.2 Redshift space

In this section we develop analytic expressions for the redshift-space reconstructed power
spectrum in both Rec-Sym and Rec-Iso. Methods recently developed in ref. [50] allow us to
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extend the LPT redshift-space power spectrum calculation to include bias and the specifics of
reconstruction, which we summarise here and present in detail in appendix C. As we will show
shortly, Rec-Sym and Rec-Iso are not equivalent even to linear order. Specifically, we have

Psym(k) = (b+ fν2)2PL(k) +O(P 2
L) (4.10)

Piso(k) =
[
(b+ fν2)(1− S) + S

]2
PL(k) +O(P 2

L), (4.11)

i.e. while Rec-Sym restores supercluster infall at linear order, Rec-Iso removes redshift-
space distortions at large scales while keeping them at small scales. As we will see, this
produces a smooth modulation in the broadband power nondegenerate with the BAO wiggles.

Since both the smoothed and displaced fields are uniformly multiplied by Rij in Rec-
Sym, it is straightforward to calculate the reconstructed power spectrum using equation (2.4)
with

Ψd(k) = [1− S(k)] RΨ(k) , Ψs(k) = −S(k)RΨ(k) . (4.12)

In particular the angular structure of the q integral follows as in the calculation of the galaxy
power spectrum without further modifications, and the set of bias terms in the dd, ds and
ss spectra are identical to the real space case. The reconstructed power spectrum can then
be calculated as one would the unreconstructed redshift space power spectrum. We develop
the formalism to do the latter in appendix C.3 and comment on the changes required to go
to the reconstructed case therein.

The cross spectrum in Rec-Iso is slightly different since only the displaced field is
multiplied by the redshift space transformation, Rij . The displaced and shift fields in this
case are thus instead

Ψd(k) = [1− S(k)] ΨR(k) = [1− S(k)] RΨ(k) , Ψs(k) = −S(k)Ψ(k). (4.13)

Since the displaced and shift moves thus lie in redshift and real space, respectively, their auto
spectra can also respectively be calculated as in Rec-Sym and real space reconstruction;
however, the cross spectrum is only “half transformed” into redshift space and thus requires
special attention. The exponentiated two-points displacements are given by

Ads,Isoij = 〈Ψd
iΨ

d
j 〉+ 〈Ψs

iΨ
s
j〉 − 2〈Ψd

i (q2)Ψs
j(q1)〉 (4.14)

= RinRjm〈Ψd
nΨ

d
m〉RealSpace + 〈Ψs

iΨ
s
j〉RealSpace − 2Rin〈Ψd

n(q2)Ψs
j(q1)〉RealSpace,

such that the zero-lag piece due to the displaced-displaced correlation is fully transformed into
redshift space, the zero-lag piece due to the shifted-shifted correlation is untransformed, and
the coordinate dependent displaced-shifted correlation is“half transformed.” In particular,
defining as usual q = q q̂ and k̂ · q̂ = µ, the last piece is

kikj〈Ψd
i (q2)Ψs

j(q1)〉 = kikj(δik + fn̂in̂k)(X̃
dsδkj + Ỹ dsq̂kq̂j)

= k2(1 + fν2)X̃ds + k2(µ2 + fµν(q̂ · n̂))Ỹ ds, (4.15)

where we have defined the tilded quantities without the usual zero lag piece6

〈Ψd(q2)Ψs(q1)〉Real Space = X̃ds(q) δij + Ỹ ds(q) q̂iq̂j .

6For notational simplificity, the functions X and Y are always defined in real space.
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Note that 2Ỹ = −Y since Y does not posess a zero-lag piece. The azimuthal-angle depen-
dence in q̂ · n̂ will require us to do the integral (appendix C.2)∫

dφ

2π
eAµ
√

1−µ2 cosφ =

∞∑
`=0

H
(0)
` (A) (Aµ2)`,

where we have defined

H
(0)
` (A) =

∑̀
m=0

(−1)`−mA2m−`Γ(m+ 1
2)

√
πΓ(2m+ 1)Γ(2m− `+ 1)Γ(`−m+ 1)

.

Note that the Γ functions in the denominator will kill any terms in the sum for which 2m− `
is negative, such that the sum really only contains `/2 terms and is always convergent in A.
The full cross spectrum is then given by

P (ds)(k) = e−
1
2
k2(α0Σ(dd)2+Σ(ss)2 )

∫
d3q eikqµ+k2(1+fν2)(X̃(ds)+µ2Ỹ (ds))

×
∞∑
`=0

H
(0)
` (A)A`µ2`

(
1 + ib1kµU

(d)(q)− 1

2
b2k

2µ2U (d)(q)2 + . . .

)
(4.16)

where A = k2fν
√

1− ν2Ỹ (ds) and we have defined Σ2 = X̃(0) and α0 = 1 + f(f + 2)ν2. The
remaining integrals can then be performed using the usual tricks for powers of µ using the
series described in appendix C.1, and are explicitly given at the end of appendix C.2.

Figures 4 and 5 show the various bias contributions to the reconstructed redshift space
power spectrum monopoles and quadrupoles within Rec-Sym and Rec-Iso, respectively. A
significant difference between the two methods can be seen by comparing the matter (i.e. “1”)
pieces in the top panels of the two figures. While all three linear bias contributions to the
reconstructed power spectrum monopole (∝ 1, b1, b21) approach the Zeldovich monopole in
the large scale limit in Rec-Sym, the matter contribution to the Rec-Iso monopole instead
approaches the b21 contribution, which does not receive redshift space distortions in the linear
theory limit. This is because the power spectrum at the largest scales is dominated by the
autospectrum of the un-redshifted shift field, P ss. While the matter and b1 contributions to
the reconstructed quadrupole approach linear theory in Rec-Sym, they vanish on large scales
in Rec-Iso. On the other hand, the majority of the higher bias contributions (excluding b2
and bs) are sourced only by P dd and are thus identical between the two methods, as can be
seen by comparing the lower two rows of figures 4 and 5. This corresponds to our intuition
that redshift-space distortions are less prominent for highly biased tracers, and that the
differences between Rec-Iso and Rec-Sym disappear if we remove RSD. In addition, the
contributions enumerated above are supplemented by counterterms (α`dd, α

`
ds, α

`
ss), where we

need a separate counterterm for each pair and multipole as discussed below equation (2.7),
though as in the real space case we also explore the possibility of only fitting one counterterm
each for the net reconstructed monopole and quadrupole.

5 Reconstructed correlation function

The configuration space two-point function (the correlation function) can be obtained from
our Fourier-space results by Hankel transform. It is also possible to rewrite the q-dependent
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Figure 4. Bias contributions to the pre- and post-reconstruction (dashed and solid) z = 0 redshift
space power spectra monopole and quadrupoles in the Rec-Sym scheme. The color scheme and
line styles follow those in figure 3. The lowest-order contributions to the reconstructed monopole
and quadrupole due to the linear bias b1 tend to the Kaiser approximation at large scales. Note the
different y-axis ranges on different panels.

integrals to compute ξ(r, νr) directly, where νr = n̂ · r̂. Here we reprise the calculation of
ref. [16], extending it to include the additional bias terms and commenting explicitly on
several numerical issues which arise. We have checked that our Fourier and configuration
space results agree numerically to significantly sub-percent levels in both real and redshift
space for both Rec-Sym and Rec-Iso.
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Figure 5. Same as figure 4, but for Rec-Iso at z = 0. Unlike in Rec-Sym, the linear bias
contributions to the monopole and quadrupole do not tend to the Kaiser limit on large scales but to
the real space linear power spectrum, as evidenced by reduced power in the monopole compared to the
pre-reconstruction Zeldovich power spectrum, and contributions to the quadrupole vanishing on large
scales. However, many of the higher bias contributions are identical to those in Rec-Sym (figure 4).

The general formula for the cross spectrum of two tracers a and b given in equation (2.4)
can be Fourier transformed to give [36–38, 42]

1 + ξab(r) =

∫
d3q

(2π)3/2|Aab|1/2
e−(1/2)(qi−ri)(A−1

ab )ij(qj−rj)

×
{

1− (bb1U
a
i + ba1U

b
i )gi + ba1b

b
1ξL +

1

2
ba2b

b
2ξ

2
L
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−1

2
[bb2U

a
i U

a
j + ba2U

b
i U

b
j + 2ba1b

b
1U

a
i U

b
j ] Gij − [ba1b

b
2U

a
i + bb1b

a
2U

b
i ] ξLgi

−1

2
[basΥ

b
ij + bbsΥ

a
ij ] Gij − [ba1b

b
sV

ab
i + bb1b

a
sV

ba
i ] gi

+
1

2
(ba2b

b
s + bb2b

a
s)χ

12 + basb
b
sζ + αabtrG+ . . .

}
, (5.1)

where we have defined

gi = (A−1
ab )ij(qj − rj), Gij = (A−1

ab )ij − gigj (5.2)

and placed the superscript ab in Aab into the subscript for notational convenience. In the
configuration space calculation above, the Lagrangian two-point functions (e.g. Aij , Ui, Υij)
can be computed using the formulae provided in appendix A. The above formula can be
translated into redshift space by multiplying the Lagrangian two-point functions with vector
indices by the appropriate factors of Rij = δij + fn̂in̂j . Taking the line-of-sight to be in
the z direction without any loss of generality, this is equivalent to multiplying by the matrix
diag(1, 1, 1 + f). When calculating the un-reconstructed redshift space correlation function,
this multiplication is equivalent to multiplying each z component index of vector and tensor
quantities (e.g. Uaz or Aabyz) by 1+f , and dividing the corresponding components in the matrix

inverse, A−1
ab , by the same factor. The redshift-space counterterm α2k

2ν2 can be included in
the correlation function by adding α2n̂in̂jGij , which similarly is equivalent to α2Gzz when
picking z as the line-of-sight direction.

The reconstructed correlation function in real and redshift space can be calculated
using equation (5.1) by defining “displaced” and “shifted” tracers as in the case of the power
spectrum (sections 4.1 and 4.2) and calculating the combined quantity ξrecon = ξdd+ξss−2ξds.
For reconstruction using Rec-Sym, the same shortcuts of multiplying by factors of 1 + f
in lieu of matrix multiplication and inversion apply, since all vector and tensor quantities
undergo the same transformation by Rij . The calculation for Rec-Iso is more complicated.
As was the case in Fourier space, the displaced-displaced and shifted-shifted auto-correlation
functions are equal to their counterparts in Rec-Sym and real-space reconstruction, while the
displaced-shifted cross-correlation function contains a mix of real and redshift space factors.
In particular, from equation (4.14) we see that the two zero-lag pieces and one q-dependent
piece of Adsij in Rec-Iso are independently transformed by different numbers of Rij ’s. For

this reason, when calculating the correlation function in Rec-Iso, the matrix inverse of Ads

in redshift space cannot be simply obtained by dividing the real space inverse by factors of
1 + f ; rather, the uninverted matrix must be redshifted piece by piece as in equation (4.14)
and then inverted numerically (we use Cholesky decomposition).

6 Other statistics

While the correlation function and power spectrum are the most frequently considered 2-point
functions, there are other variants that have some advantages. Since these can all be written
in terms of the correlation function or power spectrum, our model provides a consistent
prediction for them as well. Of particular interest for BAO is the ω` statistic of ref. [51],
which combines the scale-localization of the Fourier-space methods with the compactness
and easy treatment of masks of the configuration-space methods.

In principle ω` can be calculated from either the configuration-space or Fourier-space
expressions given above, but we have found it more convenient to start from the Fourier
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lgM Redshift n̄ b

12.0− 12.5 0.0 3.45 0.87

12.5− 13.0 0.0 1.18 1.05

13.0− 13.5 0.0 0.38 1.30

Table 1. Number densities and bias values for the halo samples we use. Halo masses are log10 of the
mass in h−1M�, number densities are times 10−3 h3Mpc−3.

expressions. Since these are computed using FFTlog they naturally cover a very wide range
of k, making the transforms to ω` easy to implement. For example

ω0(rs) =

∫
k2 dk

2π2
P0(k)W̃0(k rs) (6.1)

with W̃0 given in ref. [51] (see their figure 1 and appendix A). At large scales W̃0 ∝ k2 while

at small scales W̃0 ∝ k−4. Our formalism naturally provides predictions for ω` using the
same set of bias and nuisance parameters as for ξ` and P`.

7 Comparison to N-body

To look at the domain of validity of our analytic results we compare to the DarkSky N-body
simulation suite,7 specifically simulation ds14 a [1]. This simulation used the 2HOT code [52]
to evolve 102403 particles in an (8h−1Gpc)3 volume to model the growth of structure in a
ΛCDM cosmology with ΩM = 1−ΩΛ = 0.295, h = 0.688, ns = 0.968 and σ8 = 0.835. Initial
conditions were generated from a glass using 2nd order Lagrangian perturbation theory at
z = 93. Halos were found using the Rockstar code [53]. We extracted the positions, velocities
and masses of halos more massive than M200b = 1012 h−1M� from the publicly available data
at z = 0 (data at higher z, which would have been a more relevant comparison, were not
available). We computed the halo correlation functions and power spectra, in real and redshift
space. For the redshift-space quantities we assumed the plane-parallel approximation with
the line-of-sight being the z-axis. We also obtained the linear theory power spectrum used
to generate the initial conditions, which we take as the input to our model.

We implemented the algorithm described in section 3 using the periodicity of the box
and FFTs to perform the smoothing and computation of the shifts. As for the power spectrum
and correlation function, the plane-parallel approximation with line-of-sight the z-axis was
assumed for the redshift-space quantities. The code takes as input an assumed large-scale
bias, b, and growth parameter, f , in addition to a Gaussian smoothing length, R. We used
the b obtained from the ratio of the linear theory and real-space halo power spectra at low
k (see table 1), and f ' 0.508 appropriate to the simulation cosmology at z = 0, and note
in passing that the goodness-of-fit of our results did not seem to be greatly improved by
substituting the linear bias thus obtained with the value of 1 + b1 obtained by fitting the
pre-reconstruction data with our model up to quasi-nonlinear scales.

We computed the reconstructed field in both real and redshift space. In each case
the shifted and displaced positions were computed using a 20483 FFT, which resolves the
(Gaussian) smoothing length by 2.5− 5 grid cells for R ' 10− 20h−1Mpc. We used as many

7http://darksky.slac.stanford.edu.
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“random” positions as halos in each case, for simplicity, and computed the power spectra
and correlation functions for dd, ds and ss assuming periodic boundary conditions. The
reconstructed power spectrum or correlation function can then be computed as dd−2ds+ss,
and we can look at each of the contributions separately. Note that our choice of equal numbers
of randoms and data points means the shot noise on the reconstructed power spectrum is
twice that of the pre-reconstructed field.

We compare the N-body results to our model with b1 and b2 and include the minimal
set of counterterms as described in the preceding sections (one and three pre- and post-
reconstruction, respectively, in real space) as well as a constant shot noise component fit
to the data. For brevity our discussion will focus on halos with masses between 12.5 <
log10(M/h−1M�) < 13.0., though we obtained qualitatively similar results in the lower and
higher mass bin as well, and show fits of the reconstructed redshift space power spectrum in
the latter at the end of this section. We have checked that including nonzero shear bias bs
does not visibly improve the goodness-of-fit. The top-left pair of panels of figure 6 compares
the unreconstructed real-space power spectrum in our model with (b1, b2) = (0.02,−0.8) with
that in DarkSky. The quadratic bias, b2, accounts for a non-negligible fraction of the total
power at essentially all scales and significantly reduces the constant shot noise term in the
fit. We find that with a counterterm α ≈ 11 h−2Mpc2 our model agrees with the data at the
percent level out to k ' 0.4hMpc−1. The counterterm accounts for roughly a 10% correction
at k = 0.1hMpc−1, and it is worth noting that even in its absence our model accurately
captures the BAO features in the power spectrum, as evidenced by the lack of oscillatory
features in the fit residuals.

The remaining panels of figure 6 show the fit for the reconstructed power spectra at
three smoothing scales R = 10, 15, 20h−1Mpc. We have tested whether the data could
be reproduced using only one counterterm, α (shown in orange), or equivalently from one
derivative bias b∇2 , and find that such a choice dramatically reduces the range-of-validity
of the model compared to three counter terms. While we adopted a rather conservative
approach in fitting these data, prioritizing the accuracy of our predictions at low k rather
than producing reasonable-looking fits to smaller scales, our model with three counterterms
(αdd, αds, αss) nonetheless reproduces both the broadband power and oscillatory features of
the reconstructed power spectrum out to k = 0.2hMpc−1 at the percent level for R = 15
and 20h−1 Mpc. That each of the three constituent spectra in P recon = P dd + P ss − 2P ds

has distinct short-wavelength behavior and k-space supports underlies the success of our
model with three counterterms — each of which has highly nondegenerate scale dependence
— versus the one-counterterm alternative. We have found that setting αss = 0 does not
qualitatively alter the degree to which our model fits the data; we have made this choice in
all of our fits below, but note that as αssk

2 vanishes quadratically towards low k, the data
are also naturally rather insensitive to it. Indeed, since nonlinear corrections are typically of
order k2Σ2, and the smoothing scale is chosen such that (Σ/R)2 � 1, the insensitivity of P ss

to these corrections follows almost by construction. However, a bump-like feature around
k = 0.1hMpc−1 is persistent across all the fits, peaking at less than half a percent when
R = 20h−1Mpc and growing to a full percent at R = 10h−1Mpc. The appearance of such a
feature, growing towards smaller smoothing scales, is consistent with our neglect of nonlinear
corrections to the smoothed displacements, which should increase towards smaller smoothing
scales roughly as Ψ/R; we discuss one such nonlinearity in appendix E. For sufficiently
small smoothing scales, even the assumption that the smoothing of the BAO feature can be
essentially captured with resummed linear displacements Ψd,s will break down, and indeed
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our fit residuals begin to show noticeable oscillatory behavior at the smallest smoothing scale
shown (R = 10h−1Mpc). At R = 15h−1Mpc and in the sample variance limit with Gaussian
errors, the feature at k = 0.1hMpc−1 should be detectable with χ2 = Vobs/(2h

−3 Gpc3),
where Vobs is the total observed volume. If we were to instead smooth using the larger
R = 20h−1Mpc, the χ2 is roughly halved. For such a smoothing this feature represents a
χ2-penalty of 0.2 for a sample variance limited survey of 14 000 deg2 covering 0 ≤ z ≤ 0.3,
and would be slightly smaller for finite number density.

The pre- and post-reconstruction real-space correlation functions can be directly com-
pared by computing the Fourier transforms of the above fits. However, in comparing our
theory with DarkSky we found that the z = 0, pre-reconstruction halo power spectra all have
significant excess power at low k compared to the predictions of linear theory with scale-
independent bias. The origin of this excess is unclear, and is not addressed in ref. [1]. It
appears to arise from a significant number of low k modes, and so is unlikely to be simply a
statistical fluctuation in the initial conditions. It shows up in all of our halo samples, and is
highly correlated among mass bins. This excess power is small for modes to the right of the
power spectrum peak and probably has only a small impact on the dynamics on BAO scales.
In Fourier space we simply confine our fitting and modeling to k > 0.01hMpc−1. In config-
uration space, however, the additional long-wavelength power slightly distorts the shape of
the BAO peak, and to enable a fair comparison we have added appropriate long-wavelength
modes to our theoretical predictions assuming linear theory; specifically, we find that the
fitting form Plw(k) = A (k/k0)n, where A = 3.5 × 104h−3 Mpc3, k0 = 10−3 hMpc−1 and
n = −1.7, describes well both the long-wavelength excess seen in the power spectrum below
k < 0.01hMpc−1 and dramatically improves the agreement between the unreconstructed cor-
relation function in theory and DarkSky. The contribution to the pre- and post-reconstruction
power spectra and correlation function of these long wavelength modes is shown in figure 7.
Without the long-wavelength correction, the DarkSky results do not agree with theory on the
large scales to the right of the BAO peak, which should be well-described within linear theory,
nor in the BAO “dip,” both pre- and post-reconstruction. Due to the ad-hoc nature of our
correction, in the remainder of this section we will focus our comparisons on Fourier space,
wherein long-wavelength modes must decouple. However, we caution that small, localized
features in Fourier space can cause extended distortions in configuration space where data
points are highly correlated. In figure 8, we show the effect of the k = 0.1hMpc−1 bump
described in the previous section by additively “filling” it with a small, localized Gaussian
profile, as shown in the left panel. The effects of this bump, Fourier-transformed, are shown
in the right panel: while sub-percent in Fourier space, the k ' 0.1hMpc−1 feature gives rise
to visible distortions to the BAO feature in configuration space.

Finally, fits for the pre- and post-reconstruction power spectra in redshift space are
shown in figure 9. We have chosen to summarize the angular dependence of the redshift-space
power spectrum in terms of its monopole and quadrupole, though our model predicts the full
P (k, µ) and higher multipoles as well. As in real space, we have fitted for the bias parameters
(b1, b2) using the unreconstructed data and applied the same set of bias parameters to predict
the power spectra in both Rec-Sym and Rec-Iso. We adopt the full set of six counterterms,
three each α`dd, α

`
ds, α

`
ss for the monopole (` = 0) and quadrupole (` = 2), but also explore the

possibility of utilizing only one counterterm α` per multipole (corresponding to a derivative
bias for both the halo density and velocity). In all cases, our base model with six counterterms
fits the data at the percent level or below past k = 0.2hMpc−1 in both the monopole
and quadrupole moments. Notably the Zeldovich approximation produces oscillation-free
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Figure 6. Fits to the pre- and post-reconstruction real-space halo power spectra in DarkSky for halos
of mass between 12.5 < log10(M/h−1M�) < 13.0 at three smoothing scales (R = 10, 15, 20hMpc−1),
assuming Zeldovich power spectra with biases (b1, b2) and one counterterm per spectrum (three total
for the reconstructed case). The upper plot of each vertical pair of panels shows the product of the
wavevector magnitude and power spectrum k P (k) while the lower plot shows the fit residuals as a
fraction of measure power ∆P/P = (Pfit − Pnbody)/Pnbody. In the top-left pair of panels we show
the incremental contributions from b2 and the counterterm α (which contributes close to 10% of the
power at k = 0.1hMpc−1) to the fit, which agrees with the simulation at the percent level (dotted
line in the lower plots) at all scales shown. In the remaining panels we use the same bias parameters
to fit the reconstructed power spectrum, allowing only counterterms to vary. Our model with three
counterterms can fit the data at the percent level out to k = 0.2hMpc−1, though a bump-like feature
at k = 0.1hMpc−1 becomes more prominent at smaller smoothing scales, where nonlinear corrections
beyond the Zeldovich approximation presumably become more important (see text). Also shown in
orange are fits using one counterterm — or equivanlently one derivative bias — which fit less well past
k = 0.1hMpc−1. We fined that setting the counterterm αss to zero does not materially affect our
fits. Note that there is excess power in the data at the largest scales shown, as discussed in the text.

residuals even in the absence of counterterms (green), with the counterterms providing a
physics-based broadband model (∼ α`abk

2P`,ab) that reproduces the N-body results at the
percent level. Our fits do not explicitly include nonlinear redshift space distortions such as
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Figure 7. Halos in DarkSky exhibit significant excess power compared to theory at large scales in
Fourier space which should be well-described by linear theory. (Left) Fits to the real-space power
spectrum with and without our ad hoc correction Plw = A (k/k0)n, shown in blue and orange re-
spectively. At the largest scales shown, the excess power is significantly larger than the scatter. The
fits prefer slighly different, though qualitatively similar, bias values. (Right) The same fits in config-
uration space. The uncorrected data systematically trends below the data at separataions above the
BAO peak and in the BAO “dip,” while the fit with Plw added goes through all the data points.

fingers-of-god, though such effects are perturbatively accounted for by velocity counterterms
to lowest order. For completeness, in figure 10 we show the same fits for the mass bin
13.0 < log(M/h−1M�) < 13.5, where our model fits the data at percent level over a similar
range of scales using the parameters (b1, b2) = (0.23,−1.0).

Lastly, let us comment on the comparison fits in pre- and post- reconstructed cases.
Given that our shift field, χ, is constructed only from long-wavelength modes explicitly iso-
lated from observed field, δ, by filtering out the nonlinear scales larger than k & 1/R, we have
no reason to suppose that the perturbative structure of our results will significantly change.
In other words, by performing the mapping in equation (4.1), we have reconstructed only the
long modes, thereby reducing nonlinear smoothing due to large scale (infrared) modes, while
the bulk of the small-scale nonlinear modes, as well as FoG effects, should remain unreduced.
In addition, Lagrangian perturbation theory (PT) conveniently separates nonlinearities due
to long and short modes, exponentially resumming the former while expanding the latter
order-by-order [38, 39]. Because of this, we do not expect dramatically different PT behavior
in the pre- and post-reconstructed results. These arguments are also supported by figures 9
and 10, which show our model exhibits quantitatively similar degrees of fit pre- and post
reconstruction.

8 Comparison to earlier work

There has been significant theoretical activity in modeling post-reconstruction clustering (see
references in the introduction). Our framework encompasses most of these previous pertur-
bation theory expressions when appropriate approximations and phenomenological choices
are accounted for. To the best of our knowledge, the framework presented here captures
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Figure 8. A sub-percent level feature in the power spectrum near k = 0.1hMpc−1 can lead to visible
distortions in the BAO feature in ξ(r). (Left) Residuals for the fit as a fraction of total measured
power in the simulations, as defined in the caption of figure 6. The orange curve shows the residuals
when our theory is corrected using a Gaussian profile localized at k = 0.1hMpc−1 compared to the
fiducial fit (blue), whose residuals exhibit a dip centered at k = 0.1hMpc−1. (Right) The fiducial
and corrected correlation functions. The bump in the left panel, whose Fourier transform is shown
magnified in the green curve, induces distortions in the BAO feature across a range of separations
r ∼ 60− 120h−1Mpc.

for the first time all of the relevant post-reconstruction effects and is unique in accurately
handling both Fourier and configuration space results, in real and redshift space and includes
all the bias operators to quadratic order.

Not all models are based on perturbation theory calculations however, and many phe-
nomenological models have been introduced in order to describe the post-reconstruction
statistics. Restricting ourselves just to models of the ‘standard’ reconstruction algorithm [2],
section 3.1 of ref. [10] discusses early models (which were of the form P (k) = B(k)Plin(k) +
A(k) with B(k) and A(k) smooth functions). Starting with the first applications to data in
ref. [10] the form used to fit reconstructed power spectra is based upon a split between a
“smooth” and “wiggle” contribution to P (k) = Pnw(k) + ∆Pw(k), with a phenomenological
damping of the wiggle component motivated by perturbation theory [8]. In ref. [10] the pa-
rameters of the model were fit to N-body simulations, and this has become common. This
approach has dominated the modeling of observations to date (e.g. refs. [54–56] for recent
examples) though ref. [57] is an example of an analysis that did not take this approach.
However, we note that the choice of the wiggle/no-wiggle split exhibits a certain amount of
freedom in the separation of the wiggle and broadband part. This of course implies that,
in order to extract accurate information from the e.g. BAO, either both wiggle and broad-
band part have to be modeled to the same level of accuracy, or the extracted wiggle part
from the data needs to exactly correspond to the model (see also refs. [58, 59] for related
discussion). The latter requirement, even though implicitly assumed in most of the current
BAO treatments, is rarely subject to performance checks and scrutiny. In this context, it
is also worth noting that the common choice of Pnw derived in ref. [60] does not fully cap-
ture the broadband linear power spectrum at the precision attained by modern Boltzmann
codes. Figure 11 shows three possible linear wiggle power spectra, based on no-wiggle spectra
computed using the fitting formula from ref. [60], B-splines [61] or a Savitsky-Golay filter;
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Figure 9. Fits for the pre- and post-reconstruction redshift-space power spectrum monopole (left)
and quadrupole (right) for halos in the mass range 12.5 < log10(M/h−1M�) < 13.0. The fractional
residuals ∆P/P are defined in figure 6. All spectra were fit using a consistent set of bias parameters
(b1, b2) = (0.02,−0.8), whose independent contributions are shown in the top row, determined by
fitting the pre-reconstruction data, such that only the counterterms were fitted in constructing the
curves in the bottom two rows. Our model with the full set of six counterterms — three each for
the monopole and quadrupole respectively — fits both the reconstructed monopole and quadrupole
in both schemes out to k = 0.2hMpc−1 to a few percent and reproduce the phase and amplitude of
the oscillatory BAO wiggles.

even the latter two, which agree asymptotically with the full linear theory power spectrum,
exhibit noticeably different oscillatory behavior. This indicates that extracting the corre-
sponding wiggle spectra from the data is a challenging and sensitive step which can, on the
other hand, be avoided if the broadband is included in the theoretical framework. Models
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Figure 10. Like figure 9, but for halos in the mass bin 13.0 < log(M/h−1M�) < 13.5. Here, our
model prefers the bias parameters (b1, b2) = (0.23,−1.0) and accurately fits the data over a similar
range of scales.

phenomenologically relying on a wide separation of scale, assuming scale-independent bias or
sufficient smoothness that could be accounted for by nuisance parameters such as A(k) above,
might suffer from overall systematic offsets. Finally, it is also often the case that the nuisance
parameters and BAO scaling parameters are not consistent between the configuration-space
and Fourier-space analyses (i.e. the two do not form a Fourier transform pair) which could
prove problematic if fits in both spaces are combined.

By contrast the Zeldovich calculation above gives a consistent framework for understand-
ing the nonlinear smoothing of the BAO feature, both pre- and post-reconstruction, in both
configuration and Fourier space. Roughly speaking, the Gaussian smoothing kernel in the em-
pirical model is replaced by a Lagrangian coordinate-dependent kernel exp[−kikjAij(q)/2].
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Figure 11. The linear wiggle power spectrum for three choices of Pnw. The conventional choice
(EH98 [60]) does not accurately capture the large scale power, and we have investigated two possible
methods to mitigate this discrepancy: one based on B-splines, described in ref. [61] and another based
on a Savitsky-Golay filter in ln(k). The wiggle power spectra isolated using these three methods exhibit
visibly different oscillatory behavior.

One might thus hope to formally extract the model for wiggle-only part as an approximation
to the calculation presented in the main body of this paper; indeed, such a calculation was per-
formed in ref. [61] and extended to terms involving linear bias, redshift space distortions and
reconstruction in ref. [26].8 Figure 12 compares the results of our full Zeldovich calculation
in the Rec-Sym scheme, with the broadband subtracted out by calculating the corresponding
Zeldovich power spectrum using the no-wiggle power spectrum, versus the resummed linear
wiggle power spectrum (RWiggle; using the proper exponential damping dependencies given
in appendix D), for the same linear bias values and with all higher bias terms set to zero. The
two are in excellent agreement, especially in the case of the reconstructed power spectrum,
with RWiggle slighly underdamping the BAO wiggles towards small scales compared with
the full Zeldovich calculation for the unreconstructed power spectrum.

However, even though RWiggle and the full Zeldovich calculation exhibit a high level
of agreement on the shape of the wiggle component, the RWiggle method depends on the
separation procedure of the wiggle and broadband components while the full Zeldovich cal-
culation requires no such steps. Specifically, the Zeldovich calculation deals only with the
combination PZel

w +PZel
nw , which is obviously invariant under the split, while RWiggle models

only the split-dependent PZel
w . This implies that in order to use RWiggle in practical analyses

either the broadband part needs to be modeled to equally high accuracy or a highly accurate
wiggle extraction procedure is needed in order to guarantee feasible comparison of theoretical
model and the data. The latter seems to be a challenging task, potentially subject to sys-
tematic offsets and bias. On the other hand, the resulting differences in the wiggle spectrum

8We note that redshift-space reconstruction model presented in ref. [26] contains phenomenological damping
factors that do not capture the exact behaviour of Xds term given by in equation (4.9). We repeat this
calculation and derive the proper damping factors for the wiggle component in appendix D.

– 24 –



J
C
A
P
0
9
(
2
0
1
9
)
0
1
7

should still be broadband and could be fit away using nuisance parameters using sufficiently
general broadband models.

Finally, our model differs from most in the literature in taking into account higher
bias terms such as b2 and bs, allowing us to assess systematic effects introduced by assum-
ing scale-independent bias. These higher biases can contribute both significant broadband
power (e.g. the top-left panel of figure 9) and modulate the phase and amplitude of BAO
oscillations through mode-coupling effects [13]. However, explicit calculation shows that the
latter effect is only noticeable at very high values of bias. Figure 13 shows the effects on the
wiggle component of adding nonzero quadratic density and shear biases b2, bs, for bias values
(b1, b2) ≈ (5, 20) chosen according to the peak-background split (PBS) on a Press-Schechter
mass function [62], and assuming bs ≈ b2, as compared to RWiggle. The quadratic density
bias, b2, induces an apparent phase shift towards large k, and can be seen to be essentially
out-of-phase with the linear BAO wiggles; however, these out-of-phase contributions are dra-
matically reduced by reconstruction. By contrast the shear bias, bs, produces oscillatory
features roughly in-phase with the linear theory contributions and is largely unaffected by
reconstruction. For completeness, we have also plotted the potential oscillatory contribution
of a derivative bias, b∇2 , which modulates the overall amplitude of the power spectrum and
is degenerate with the various counterterms, αab.

To investigate the extent to which the broadband and oscillatory contributions of higher
bias terms can be mitigated by a suitable broadband model, we conducted an exploratory
“fit” of the redshift-space monopole and quadrupole pre- and post-reconstruction in the case
where the truth is given by the Zeldovich approximation including nonzero b2 and bs but fit
by an empirical model with only b1, an isotropic BAO scale paramter αBAO and polynomial
broadband contributions of the form employed in ref. [63] before reconstruction. Specifically,
we assume an empirical model of the form

Pl,fit(k) = α−3
BAOPl,b1

(
k

αBAO

)
+
a1,l

k3
+
a2,l

k2
+
a3,l

k
+ a4,l + a5,lk, (8.1)

both pre- and post-reconstruction, where Pl,b1 denotes redshift-space multipoles in the Zel-
dovich approximation with all higher biases set to zero. For this exercise we assumed a
sample variance limited survey at z = 0 and z = 1.2 with Gaussian covariances between
the monopole and quadrupole, fit up to kmax = 0.25hMpc−1 and note that the results are
independent of survey volume. In figure 14 we have plotted the resulting shifts in the BAO
scale assuming PBS values for b1 and b2, taking values for bs as a function of b1 from ref. [64].
At z = 0, we find that neglecting higher biases in favor of the empirical model induces shifts
of less than half a percent in the BAO scale over a wide range of halo masses both pre-
and post-reconstruction, though reconstruction more than halves the forecasted shift for es-
sentially all values of bias surveyed (figure 14). At z = 1.2 the shifts are further reduced,
amounting to less than a tenth of a percent across a wide range of bias values prior to re-
construction and essentially vanishing post reconstruction. These shifts would be well-within
the margin of error of both current and next-generation surveys like DESI [65], especially
post-reconstruction, suggesting that nonlinearities (e.g. higher bias) in the power spectrum
should not hinder accurate recovery of the BAO signal. On the other hand, the value of the
linear bias, b1, was significantly affected by the choice of broadband model, with fits from
the empirical model deviating from the true value by more than five percent in many cases.
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Figure 12. Comparison of Zeldovich with IR-resummed linear theory (RWiggle) for reconstructed
and unreconstructed spectra at z = 0 and ν = 0 and 0.5 with b1 = 0.5 using Rec-Sym with higher
biases set to zero. RWiggle slightly under-predicts damping at high k (but see footnote 14), especially
for the unreconstructed power spectra.

9 Conclusions

Baryon acoustic oscillations (BAO) are an important probe of fundamental physics and a
prime focus of upcoming surveys such as DESI [65] and EUCLID [66]. The BAO features act
as a “standard ruler” whose cosmological evolution is largely immune to astrophysical effects
but whose signal-to-noise ratio is lowered by nonlinear structure formation. BAO recon-
struction attempts to sharpen the BAO signal by removing some of the nonlinear smearing
due to large scale displacements [2]. In this paper we develop an analytical model, within
the Lagrangian perturbation theory framework, to study the algorithm for density-field re-
construction proposed in ref. [2]. Linear Lagrangian perturbation theory (the Zeldovich
approximation) provides an excellent description of these nearly linear displacements and
BAO smoothing pre-reconstruction [28, 37], making LPT a promising arena within which to
model the effects of reconstruction.

We develop a self-consistent framework with which to calculate the two-point statistics of
galaxies, employing a consistent set of parameters to fit the power spectrum and correlation
functions, pre- and post-reconstruction in real and redshift space. The broad validity of
such LPT models allows for joint fits to the pre- and post-reconstruction two-point statistics
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Figure 13. The z = 0 Zeldovich power spectrum at ν = 0.5, before and after reconstruction using
Rec-Sym, shown with and without contributions from the quadratic bias and shear biases when
(b1, b2, bs) = (5, 20, 10). For comparison, the RWiggle prediction is shown in the diamond points, and
the isolated b2 contributions are shown as a black dot-dashed line multiplied by a factor of five. For
the unreconstructed spectrum, the b2 contributions (with shear bias set to zero) can be seen to be
essentially out-of-phase with the linear theory wiggles and induce a phase shift in the power spectrum.
These contributions are greatly reduced in the reconstructed spectrum. The shear contributions, on
the other hand, are more-or-less in phase with linear theory and unchanged by reconstruction. For
completeness, we have also plotted contributions from a possible derivative bias b∇2 , which modulate
the amplitude of the wiggles in a manner growing with wave number.

enabling e.g. a fit for redshift-space distortions and the linear growth rate, fσ8, simultaneously
with Alcock-Paczynski distortions constrained by BAO analyses [16]. Based on ref. [50], we
derive explicit formulae, to calculate the redshift-space power spectrum within the Zeldovich
approximation, both pre- and post-reconstruction, as an infinite series of spherical Bessel
transforms. Our model updates the developments for the reconstructed correlation function
in ref. [16], and is — as far as we are aware — the first model of reconstruction to include
a consistent set of bias terms up to quadratic order, including shear and derivative biases.
We show that the oscillatory behavior induced by the quadratic density bias, b2, are out
of phase with the linear BAO feature and greatly reduced post-reconstruction, while those
due to the quadratic shear bias, bs, are in-phase and essentially unchanged. In addition, we
show that each multipole moment of the reconstructed power spectrum should be, to lowest
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Figure 14. Shifts in the recovered isotropic BAO scale, αBAO, in redshift space fit using a model
with only b1 nonzero and polynomial broadband contributions in both the monopole and quadrpole,
when truth is given by the Zeldovich approximation with nonzero quadratic bias. Values of b1 and
b2 were chosen according to the peak-background split, while values for bs were taken from ref. [64].
(Left) Shifts in the BAO scale at z = 0. Fitting with the empirical model results in only sub-percent
shifts across a wide range of halo masses, which are further more than halved after reconstruction.
The solid and dashed lines show the shift with and without the quadratic shear bias bs, whose effect
is subdominant to b2. (Right) The same shifts calculated at z = 1.2. Even prior to reconstruction,
fitting with the empirical model results in less than a tenth of a percent shift in the BAO scale over
a wide range of biases; after reconstruction the shift due to nonlinear bias becomes essentially zero.

order, corrected for by a set of three counterterms each, which perturbatively correct both
nonlinear smoothing and broadband power.

We compare our analytic predictions with N-body data from the DarkSky simulation [1]
at z = 0, focusing on halos between 12.5 < log10(M/M�) < 13.0. Our base model, involving
only b1 and b2 and appropriate counterterms, jointly fits the pre-reconstruction real-space
power spectrum and redshift-space monopole out to k = 0.4hMpc−1, and the quadrupole
out to k = 0.2hMpc−1, reproducing the oscillatory BAO wiggles in the data with high
fidelity. Our model with the same bias parameters performs equally well in configuration
space around the BAO scale, though we found it necessary to correct for a large excess in
large-scale power encountered in the DarkSky data. Utilizing the same values for the bias
parameters but allowing counterterms to vary, we find that our model performs similarly
in real space post-reconstruction for smoothing scales R = 15 and 20h−1Mpc, reproducing
both the oscillatory features and broadband past k = 0.2hMpc−1, but fails to reproduce
the oscillatory features when R = 10h−1Mpc, likely due to the fact that we have worked
to lowest order and at z = 0 displacements on that scale are significantly nonlinear. We
point out a less severe feature in the residuals at k = 0.1hMpc−1 that diminishes with larger
smoothing scales which we believe arise from higher order terms and caution that neither
our calculation nor the standard reconstruction algorithm take these into account. A more
complete, iterative reconstruction scheme (e.g. ref. [20]) may reduce these features. The
modeling of these nonlinearities, and possible remedies, are beyond the scope of this paper,
but as an exploratory example we calculate the effects of one possible nonlinearity due to the
mapping between Eulerian and Lagrangian coordinates in appendix E.
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Our model also predicts the multipole moments of the redshift-space power spectrum
and correlation functions in both of the redshift-space schemes (Rec-Sym and Rec-Iso) we
consider. This is critical in order for it to be applied to data, since the most constraining
BAO measurements are performed in redshift space. The model provides a good fit to the
monopole and quadruople moments of P (k) measured in DarkSky in both the Rec-Sym and
Rec-Iso schemes for smoothing scales of R = 15h−1Mpc or larger (at z = 0). Again, for
smaller smoothing scales the Zeldovich model differs from the N-body results (as expected).
These effects would be smaller at higher redshift, where the theory is more likely to be applied.

Finally, there exists an extensive literature studying the modeling of reconstruction and
the BAO signal, and we compare our model to several existing alternatives. One popular tech-
nique, based on ref. [8], is to separate the power spectrum into a smooth “no wiggle” compo-
nent and an oscillatory “wiggle component,” and to damp the latter by an exponential factor
fit to simulations while supplementing the former with a polynomial in wavenumber to fit the
broadband power. This technique can be more rigorously derived as a particular resummation
of the nonlinear contribution of long-wavelength modes much like our Zeldovich calculation
itself [26, 61], in which case the damping parameters can be derived theoretically. When
the “wiggle” components are isolated we find that the latter is in excellent agreement with
our Zeldovich calculation, particularly after reconstruction. In appendix D we re-derive the
IR-resummed “wiggle” power spectrum (RWiggle) directly within our Zeldovich framework,
updating the exponential damping for the cross term P ds. We highlight that our Zeldovich
framework naturally encompasses broadband effects, while methods depending on wiggle/no-
wiggle splitting might be subject to additional systematic offsets and biases. These could
originate from the fact that the wiggle/no-wiggle splitting is not unique, and thus relies on
correctly predicting the broadband or extracting the corresponding wiggle part from the data
to high accuracy. On the other hand, the Zeldovich framework correctly captures broadband
power over a large range of scales in addition to reproducing the oscillatory features in the
reconstructed power spectrum. In fits to N-body data, we show how counterterms correct the
sharpness of the BAO feature and broadband power simultaneously and consistently. More-
over, our model goes beyond linear bias to include quadratic density and shear bias, which we
show contribute oscillatory terms to P (k) that vary independently in amplitude and phase.

We close by noting a few avenues for future work. An obvious extension of our model
is to include nonlinearities arising both from gravitational clustering and the reconstruction
itself (e.g. appendix E). The former may be most easily included in the context streaming
models [36, 50], wherein the real-space modifications due to reconstruction and those pro-
portional to the growth rate f can be separately treated as modifications to the statistics of
the galaxy density and galaxy density-weighted velocities, respectively, and which in addition
have the advantage of resumming biased contributions to redshift-space distortions as well as
nonlinear redshift-space phenomena like fingers-of-god. It is, however, not a-priori obvious
which type of nonlinearity will present the most significant corrections. Other fruitful avenues
would be to investigate the impact of wrong parameters on reconstruction (e.g. refs. [27, 46])
or to update the present treatment to newer reconstruction techniques. Finally, one could
investigate the utility of our model for upcoming surveys like DESI [65] or Euclid [66]. These
surveys will operate at higher redshifts where our calculations should perform even better,
and our model will be a natural arena in which to understand the effects of highly biased trac-
ers and the effects of cosmic evolution (e.g. evolving b and σ8) on the BAO feature measured
in broad redshift bins.
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We have publicly released our codes for configuration9 and Fourier10 space reconstruc-
tion, with the hope that they will be useful to other researchers. We have checked that the
Hankel transform of the Fourier space code agrees, term by term, with the configuration
space code to better than 1%, except very close to zero crossings.
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A Cross-spectra correlators

In this appendix we give analytic expressions for the two-point functions required to calculate
cross-spectra, which are slightly different from those required to calculate the auto-spectra
more commonly seen in the literature.

The two-point function for the Lagrangian displacement between two species separated
by Lagrangian distance q is given by

Aabij (q) = 〈Ψa
iΨ

a
j 〉+ 〈Ψb

iΨ
b
j〉 − 2〈Ψa

i (q2)Ψa
j (q1)〉 ≡ Xab(q) δij + Y ab(q) q̂iq̂j (A.1)

where

Xab(q) =
2

3

∫
dk

2π2

[
1

2

(
P aaL (k) + P bbL (k)

)
−
(
j0(kq) + j2(kq)

)
P abL (k)

]
Y ab(q) = 2

∫
dk

2π2
j2(kq)P abL (k). (A.2)

Note that for cross spectra Xab(q) does not in general vanish as q → 0. Similarly we have

U bi = 〈∆ab
i δ0(q2)〉 ≡ U b(q)q̂i, Uai = 〈∆ab

i δ0(q1)〉 ≡ Ua(q)q̂i (A.3)

where

Ua(q) = −
∫
dk k

2π2
j1(kq)P amL (k) (A.4)

and P am is the linear theory cross spectrum between tracer a and matter, and the corre-
sponding expression for U b follows by direct substitution.

Finally, the non-scalar shear correlators are given by

V ab
i = V a(q)q̂i, Υa

ij = Xa
s2(q)δij + Y a

s2(q)q̂iq̂j (A.5)

9https://github.com/martinjameswhite/ZeldovichRecon.
10https://github.com/sfschen/ZeldovichReconPk.
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where the functions of q are given by

V a(q) = 2

∫
dk k

2π2
P amL (k)

[
4

15
j1(kq)− 2

5
j3(kq)

] ∫
dk k2

2π2
PmmL (k) j2(kq) (A.6)

and

Xs2(q) = 4(J a3 )2, Ys2(q) = 6(J a2 )2 + 8J a2 J a3 + 4J a2 J a4 + 4(J a3 )2 + 8J a3 J a4 + 2(J a4 )2 (A.7)

where following refs. [36, 37] we have defined

J a2 =

∫
dk k

2π2
P amL (k)

[
2

15
j1(kq)− 1

5
j3(kq)

]
(A.8)

J a3 =

∫
dk k

2π2
P amL (k)

[
− 1

5
j1(kq)− 1

5
j3(kq)

]
(A.9)

J a4 =

∫
dk k

2π2
P amL (k) j3(kq). (A.10)

The remaining scalar shear correlators, ζ and χ12, are identical to those found in evaluating
the auto-spectrum, and we refer readers to refs. [36, 37].

B The pre- and post-reconstruction Zeldovich propagator

In this appendix we give expressions for the normalized cross-spectrum between the initial
and final or reconstructed field. This is essentially a correlation coefficient, though it is also re-
ferred to as the propagator [67]. Specifically we define Ga(k) = 〈δ0(−k)δa(k)〉/〈δ0(−k)δ0(k)〉,
within the Zeldovich approximation, which quantifies the extent to which a tracer field a is
(de)correlated with the initial density δ0, and apply our results to derive the reconstructed
field. Our results generalize those in ref. [14] to include halo bias.

As defined, the propagator Ga is a special case of the cross spectrum and can be evalu-
ated using equation (2.4) by assuming that the linear field δ0 is a tracer b with displacement
Ψb = 0 and bias functional F b = δ0, such that any Lagrangian two-point functions involving
the displacement Ψb (e.g. U b) or higher biases (e.g. bb2) vanish identically. Unlike in the
conventional case, however, F b does not have a zero order piece equal to unity — we can
thus compute our result directly by taking the derivative of equation (2.4) with respect to bb1
with the above assumptions. This gives

PL(k)Ga(k) =

∫
d3q eik·q e−k

2Σ2
aa/4

[
ikiU

a
i + ba1ξL

]
= e−k

2Σ2
aa/4

(
P am(k) + ba1P

mm(k)
)
,

(B.1)
where we have used that

Aa0
ij (q) = 〈Ψa

iΨ
a
j 〉 ≡

1

2
Σ2
aaδij , (B.2)

only receives “half” of the zero-point contribution cf. the power spectrum (where 〈ΨbΨb〉 6=
0). Note that all higher bias contributions vanish. The generalization to the redshift space
field can be straightforwardly accomplished by multiplying by appropriate factors of Rij in
the numerator, though we will focus on real space in this appendix as RSD introduce an
equally important but parallel form of decorrelation into the problem.
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From the above results, the reconstructed-field (δrec = δd−δs) propagator can be written
as Grec = Gd −Gs, where

Gd(k) =
e−k

2Σ2
dd/4
(
P dm(k) + b1P

mm(k)
)

PL(k)
, Gs(k) =

e−k
2Σ2

ss/4P sm(k)

PL(k)
, (B.3)

where the various linear spectra are defined as in equation (4.6). The real-space post-
reconstruction propagator is then

Grec(k) = e−k
2Σ2

dd/4 [(1− S(k) + b1] + S(k)e−k
2Σ2

ss/4. (B.4)

The expression for Grec helps to quantify how much of the decorrelation between the initial
conditions and the final field arises due to bulk motions, and the manner in which this can
be restored by the standard reconstruction algorithm. Roughly speaking, reconstruction
reduces the decorrelation from the full matter Σ2 to Σ2

dd past the smoothing scale for the
matter piece, with the correlation at low k close to unity assuming that the damping due to
Σ2
ss there is negligible.

C Integrals for redshift space distortions via direct Lagrangian expansion

In this section we describe how to perform the three-dimensional integrals that occur when
calculating redshift space power spectra in the Lagrangian formalism.

C.1 Angular integrals

Calculations in Lagrangian perturbation theory frequently require evaluating integrals of the
form

I
(n)
` (A,B) =

1

2

∫ 1

−1
dµ µ2`+neiAµ+Bµ2 . (C.1)

These integrals can be conveniently expressed as infinite sums of spherical Bessel func-
tions [50, 68], e.g.

I
(0)
` =

(−1)`eB

B`

∞∑
n=0

U(−`, n− `+ 1,−B)

(
−2B

A

)n
jn(A)

I
(1)
` = i

(−1)`eB

B`

∞∑
n=0

U(−`, n− `+ 1,−B)

(
−2B

A

)n
jn+1(A)

I
(2)
` =

(−1)`eB

B`

∞∑
n=0

[
U(−`, n− `+ 1,−B) +

n

B
U(−`, n− `,−B)

] (
−2B

A

)n
jn(A), (C.2)

where U(a, b, z) denotes the confluent hypergeometric function of the second kind.

C.2 Direct Lagrangian expansion: Mi

Calculating the power spectrum in redshift space within the Zeldovich approximation requires
a few extra steps when compared to the calculation in real space due to the line-of-sight
dependence of RSD. In the following two sections we extend the two methods presented
in ref. [50], Mi and Mii, to include bias terms up to quadratic order. These two methods
correspond, roughly speaking, to active and passive transformations in Fourier space via
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Rij = δij + fn̂in̂j , respectively. For the general case, we found Mii to be somewhat more
convenient, and will therefore offer only a cursory description of Mi, except for a special case
involving the displaced-shifted field cross spectrum in Rec-Iso.

In Mi, the (halo auto-) power spectrum in redshift space is given by

Ps(k) =

∫
d3q eik·q−

1
2
kikjA

s
ij

[
1 + 2ib1kiU

s
i + b21ξL + . . .

]
, (C.3)

where the superscript s denotes tensor quantities transformed by Rij , e.g. U si = RijUj . Each
quantity in the above integral can be written in terms of scalar functions and dot products
between three unit vectors (q̂, k̂ and n̂) whose angular structure underlies redshift space
distortions; these are, in particular,

n̂ · k̂ = ν, q̂ · k̂ = µ, q̂ · n̂ = µν +
√

1− µ2
√

1− ν2 cosφ, (C.4)

where φ is the azimuthal angle in a polar coordinate system where the zenith is given by k̂
and the plane φ = 0 is spanned by k̂ and q̂. The effect of the transformation R can then be
captured by how the usual tensor basis q̂i, δij , etc. is affected:

kikjδij → kikjRinRjn = k2
[
1 + f(2 + f)ν2

]
(C.5)

kiq̂i → kiRij q̂j = kµ
[
1 + fν2 + fν2γ(µ, ν) cosφ

]
, (C.6)

where we have defined γ(µ, ν) =
√

1− µ2
√

1− ν2/µν. The azimuthal dependence of Asij
requires us to calculate polar-coordinate integrals of the form [50]

In(f, µ, ν) =

∫ 2π

0

dφ

2π
e−

1
2
k2Y (α2γ cosφ+α3γ2 cos2 φ)µ2(γ cosφ)n (C.7)

where α2 = 2fν2(1 + fν2) and α3 = f2ν4. These can be calculated as analytic power series
in µ by taking derivatives of the identity

Iφ (α, β, µ) =

∫ 2π

0

dφ

2π
eαµ
√

1−µ2 cosφ+β(1−µ2) cos2 φ =

∞∑
`=0

F`(α, β)
(
α2µ2/β

)`
(C.8)

where

F`(α, β) =
∑̀
m=0

Γ(m+ 1
2)

π1/2Γ(m+ 1)Γ(1 + 2m− `)Γ(2`− 2m+ 1)

(
−β

2

α2

)m
×M

(
`− 2m; `−m+

1

2
;
α2

4β

)
M

(
m+

1

2
;m+ 1;β

)
and M(a, b, z) are hypergeometric functions of the first kind. Each term proportional to µn

can in turn be evaluated as a spherical Bessel transform as in equation (C.2).
A simplified but demonstrative example of this calculation can be found in the calcu-

lation of the displaced-shifted cross spectrum in redshift space reconstruction via Rec-Iso.
The H0

` expansion in equation (4.16) is essentially equation (C.8) in the limit where β → 0.
To proceed from equation (4.16), we can use the identities in C.1 and refactor the resulting
double sum over n and ` to get

P (ds)(k) = e−
1
2
k2(α0Σ(dd)2+Σ(ss)2 ) 4π

∞∑
n=0

∫
dq q2ek

2(1+fν2)(X̃ds+Ỹ ds)

(
−2kỸ ds

q

)n
(1+fν2)n

×
[
K(0)
n (q)jn(kq)−b1kUd(q)K(0)

n (q)jn+1(kq)− 1

2
b2k

2Ud(q)2K(2)
n (q)jn(kq)+ · · ·

]
(C.9)
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where the redshift-space kernels are given by

K(0)
n (q) =

∞∑
`=0

(
− fν

√
1− ν2

1 + fν2

)`
H`(A) U(−`, n− `+ 1,−B)

K(2)
n (q) =

∞∑
`=0

(
− fν

√
1− ν2

1 + fν2

)`
H`(A)

[
U(−`, n− `+ 1,−B) +

n

B
U(−`, n− `,−B)

]

and, as before, A = k2fν
√

1− ν2 Ỹ ds and B = k2(1 + fν2) Ỹ ds. Deriving these kernels for
the other terms is entirely analagous.11

C.3 Direct Lagrangian expansion: Mii

An equivalent approach to rotating each Lagrangian displacement Ψ by R is to instead
passively transform the Fourier basis by RT, such that the wavenumber is given by Ki ≡
Rijkj . Defining µ = K̂ · q̂ as the angle between the transformed wave vector and Lagrangian
separation q, we have the dot products

K ·K = k2
(
1 + f(2 + f)ν2

)
K̂ · n̂ = kν(1 + f)

n̂ · q̂ =
µν(1 + f)√

1 + f(2 + f)ν2
+
√

1− µ2

√
1−

(
ν2(1 + f)2

1 + f(2 + f)ν2

)
cosφ

k · q = kq
(
cµ− s

√
1− µ2 cosφ

)
, c =

1 + fν2√
1 + f(2 + f)ν2

, s =
fν
√

1− ν2√
1 + f(2 + f)ν2

. (C.10)

The power spectrum in this frame is then simply given by substituting K for k in the real
space expression; e.g. the term in the exponential can be written in terms of the vector K as

− 1

2
kikjA

s
ij = −1

2
kikjRilRjmAlm = −1

2
K`KmA`m. (C.11)

In redshift space, unlike in real space, the Fourier product k · q requires azimuthal angle
integrals due to the appearance of cosφ in the final line of (C.10); however, in Mii the
azimuthal dependence is factored entirely into the Fourier factor ik · q such that the φ
integral can be performed analytically:

Ps(k) =

∫
dq dµ q2 eikqcµ−

1
2
K2(X+Y µ2)

(∫
dφ e−ikqs

√
1−µ2 cosφ

) [
1+2ib1KiUi(q)+ . . .

]
= 2π

∫
dq dµ q2 eikqcµ−

1
2
K2(X+Y µ2) J0(kqs

√
1−µ2)

[
1+2iµ b1KU(q)+ . . .

]
. (C.12)

The remaining q and µ integrals can then be calculated using the usual combination of
spherical-Bessel decompositions and Hankel transforms with the help of the identity [50]:∫

dµ eiµA+µ2BJ0(C
√

1− µ2) = 2eB
∞∑
`=0

(
−2

ρ

)m
G̃

(0)
` (A,B, ρ)j`(ρ) , (C.13)

11The mater contribution was given in ref. [50].

– 34 –



J
C
A
P
0
9
(
2
0
1
9
)
0
1
7

where ρ =
√
A2 + C2 and the function G̃m(A,B, ρ) is given by

G̃(0)
m (A,B, ρ) =

∞∑
n=m

fnm

(
BA2

ρ2

)n
2F1

(
1

2
− n,−n;

1

2
−m− n;

ρ2

A2

)
,

2F1 is the ordinary hypergeometric function, and we have defined

fnm =
Γ(m+ n+ 1

2)

Γ(m+ 1)Γ(n+ 1
2)Γ(1−m+ n)

. (C.14)

In our specific case, ρ = kq, B = −K2Y/2 and A = kqc. Defining

In =

∫
dµ (iµ)neiAµ+µ2BJ0(C

√
1− µ2) ≡ 2eB

∞∑
l=0

(
−2

ρ

)l
G̃

(n)
l (A,B, ρ)j`(ρ) (C.15)

such that In = I
(n)
0 (A) is the nth full derivative of I0 with respect to A, we have recursively

G̃
(n)
l =

dG̃
(n−1)
l

dA
+
A

2
G̃

(n−1)
l−1 . (C.16)

The first two derivatives of G̃(0) are given by

dG̃
(0)
m

dA
=

∞∑
n=m

(
BA2

ρ2

)n
fnm

[(
2n

A
− 2nA

ρ2

)
2F1

(
1

2
−n,−n;

1

2
−m−n;

ρ2

A2

)
(C.17)

+

(
− 2ρ2

A3
+

2

A

)
(1

2−n)(−n)

(1
2−m−n)

2F1

(
3

2
−n,1−n;

3

2
−m−n;

ρ2

A2

)]
d2G̃

(0)
m

dA2
=

∞∑
n=m

(
BA2

ρ2

)n
fnm

(
ρ2−A2

ρ4

)[
(2m−1−4n(m+1)) 2F1

(
1

2
−n,−n;

1

2
−m−n;

ρ2

A2

)

+(1−4n2 +m(4n−2)) 2F1

(
3

2
−n,−n;

1

2
−m−n;

ρ2

A2

)]
. (C.18)

These are sufficient to calculate all terms up to quadratic order in the bias expansion. In our
fiducial cosmology at z = 0 and along the line of sight (ν = 1) we find that the sums in G̃m
converge at the sub-percent level within thirty summands.

From the above, contributions to the redshift-space Zeldovich power spectrum can be
calculated using spherical Bessel transforms of the specific form

Ps(k) 3 4π
∞∑
`=0

∫
dq q2 e−

1
2
K2(X+Y )

(
−2

kq

)`
G̃

(n)
` (kqc,−1

2
K2Y, kq) An(q) j`(kq), (C.19)

where the scalar function An are tabulated in table 2.

D Wiggle/no-wiggle split

Most analyses of BAO data to date have employed empirical models for the post-
reconstruction power spectrum or correlation function often motivated by theoretical cal-
culations and calibrated to N-body simulations. Refs. [26, 61] showed that the analytic form
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An n = 0 n = 1 n = 2 ...

1 1 0 0

b1 0 2KU(q) 0

b21 ξL(q) 0 K2U(q)2

b2 0 0 K2U(q)2

b1b2 0 KU(q)ξL(q) 0

b22
1
2ξL(q)2 0 0

bs −K2Xs2(q) 0 K2Ys2(q)

b1bs 0 2KV (q) 0

b2bs χ12(q) 0 0

b2s ζ(q) 0 0

Table 2. Table of power spectrum contributions in Mii.

of these empirical models can be interpreted within perturbation theory as a resummation
of bulk displacements at the BAO scale. In this appendix we re-derive their results within
our Zeldovich calculation, updating the scale dependences and redshift-space factors where
appropriate.

Let us first examine the displaced-displaced cross spectrum in redshift space. Following
refs. [26, 61] we split the displacement two-point function into Addij = Add,nw

ij + ∆Add,wij ,
where the no-wiggle and wiggle pieces are calculated by substituting Pnw and ∆Pw into
equation (A.2). Making the assumption that the latter, ∆Add,wij , is small enough as to be

perturbative,12 we can Taylor expand the exponential in the Zeldovich integrand to get

P dd(k) =

∫
d3q e−ik·q−

1
2
KiKjA

dd,nw
ij

(
1− 1

2
KiKj∆A

dd,w
ij +O(k4Σ4)

)(
1+2ib1KiU

d
i (q)+ . . .

)
,

where we have used the transformed Ki = Rijkj to encode redshift-space effects. Given
that the no-wiggle spectrum reproduces the broadband scale dependence of the linear theory
power spectrum, we can think of the no-wiggle exponential as resumming the non-BAO
component of large scale bulk flows. Since the wiggle component contributes negligibly to
the displacement power in the perturbative limit, keeping only one power of the wiggle power
spectrum in our calculations serves to distinguish the effect of the IR bulk flows from BAO
phenomena. The two-point functions entering the bias terms can likewise be split into no-
wiggle and wiggle pieces, e.g. U(q) = Unw +∆Uw, where again, roughly speaking, the former
will contribute only to the broadband power while the latter will give rise to oscillatory
behavior. Keeping the above expression to order13 O(k2Σ2), and discarding terms that don’t

12Taking the nonlinear scale to be given by k2nlΣ
2(z) ∼ 1, we have knl ∝ D−1(z), such that the peak

magnitude of kikj∆A
w
ij is roughly in the few tenths of a percent range for our reference cosmology independent

of redshift.
13Note, however, that terms involving more powers of the wiggle displacement will be more suppressed than

those involving no-wiggle displacements.
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contain any no-wiggle pieces, we then have

P dd(k)3
∫
d3q e−ik·q−

1
2
KiKjA

dd,nw
ij

(
− 1

2
KiKj∆A

dd,w
ij +2ib1Ki∆U

d,w
i (q)+b21ξ

w
L (q)+ . . .

)
≈ e−

1
2
KiKjĀ

dd,nw
ij

∫
d3q e−ik·q

(
− 1

2
KiKj∆A

dd,w
ij +2ib1Ki∆U

d,w
i (q)+b21ξ

w
L (q)+ . . .

)
where in the final line we have used the fact that the wiggle contributions will be confined
in support around the BAO scale (q ∼ 100 Mpc) and the non-wiggle pieces vary smoothly
at this Lagrangian separation, so we can pull the exponentiated no-wiggle contribution out
of the integral as an average. Following ref. [61], we have defined the quantity Ādd,nw

ij as
the “average” of the un-barred quantity over the support of the wiggle component; to zeroth
order in the approximation this is equivalent to evaluating Aij at the peak qmax of the support

of the wiggle feature. Neglecting any angular effects in ν = q̂ · k̂, which will enter at higher
order in the wave number, we further have that Ādd,nw

ij ' (Xdd,nw + 1
3Y

dd,nw)δij .
14 Plugging

in for the expression of K = RTk, with K2 = (1 + f(f + 2)ν2)k2, the wiggle contribution to
the power spectrum is then approximately

P dd(k)wiggle ≈ e−
1
2
K2Σ2

dd

[(
K̂ · k̂

)2
P dd,w(k) + 2b1

(
K̂ · k̂

)
P dm,w(k) + b21P

mm,w(k)
]

= e−
1
2
K2Σ2

dd
[
(1 + fν2)2(1− S(k))2 + 2b1(1 + fν2)(1− S(k)) + b21

]
Pw(k)

= e−
1
2
K2Σ2

dd
[
(1 + fν2)(1− S(k)) + b1

]2
Pw(k) (D.2)

where in the penultimate equality we have used the definition of the displaced field and defined
Σ2
dd = (Xdd,nw + 1

3Y
dd,nw)(qmax) to be evaluated at the peak of the wiggle displacements.

This recovers the form of the empirical model in ref. [26] when we take the Eulerian bias to
be bE1 = 1 + b1, and stick to the damping expansion approximation introduced in ref. [61].
Explicit expressions for X and Y are given in equation (4.9). Taking S → 0 in the above
expression gives the unreconstructed power spectrum within this approximation.

We can now derive the analytical form of the reconstructed power spectrum for Rec-
Sym in this approximation. Explicitly, we have

P dswiggle(k) = −e−
1
2
K2Σ2

ds

(
(1 + fν2)(1− S(k)) + b1

)
(1 + fν2)S(k)Pw(k) (D.3)

P sswiggle(k) = e−
1
2
K2Σ2

ds(1 + fν2)2S(k)2Pw(k). (D.4)

The Σ2
ab are defined as in the dd case. These are the same expressions as derived in ref. [26],

though we differ on the expressions for the Σ2
ab that are involved. Our expressions also agree

with those in refs. [19, 27] in the limit that qmax →∞, though we note that this limit doesn’t
as accurately capture the damping of the feature since it resums the IR displacements at

14The factor of a third, included also in ref. [61] but not in ref. [26], comes from the angular average
〈q̂iq̂j〉 = δij/3. This can be justified by noting that the integral

1

2

∫
dµ eikqµ−

1
2
k2µ2Y/2 = e−k

2Y/6j0(kq) +O(k4Σ4) (D.1)

We note, however, that this prescription is only approximate; for example, the same integral with an additional
factor of µ in the integrand, relevant for the b1 contribution, would instead yield exp[−3k2Y/10] j1(kq) at
leading order. In general, bias contributions with more angular dependence will be damped more. This effect
is automatically included in the full Zeldovich calculation.
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q beyond the BAO scale. Adding the three spectra together, we recover the Kaiser limit
as k → 0, with different damping factors entering at different scales via Σ2

ab. Note that in
Rec-Sym the angular dependence of the damping is identical in each piece and is encoded
within the ν dependence of K2.

The reconstructed power spectrum with Rec-Iso requires a few additional modifica-
tions. The displaced-displaced auto spectrum is unchanged, and the shifted-shifted auto
spectrum can be calculated by setting f = 0 in all formulae, as noted in the main body of
the text. However, the ds cross spectrum requires more care, since the zero lag pieces do not
transform equally. In particular, direct inspection of the exact expression in equation (4.16)
shows that we should instead define

− 1

2
k2Σ2

ds,iso = −1

2
k2

[
(1 + f(f + 2)ν2)Σ(dd) + Σ(ss) − 2(1 + fν2)

(
X̃ds +

1

3
Ỹ ds

)]
q=qmax

.

(D.5)
Note this expression differs in detail from that in ref. [26]. The cross spectrum is then instead

P ds,isowiggle(k) = −e−
1
2
k2Σ2

ds,iso
[
(1 + fν2)(1− S(k)) + b1

]
S(k)Pw(k), (D.6)

where the angular dependence is subsumed into the defintion of Σds,iso. Unlike Rec-Sym,
the damping factor in Rec-Iso is not captured by a single angular dependence.

We end this section with a discussion of the inclusion of higher bias terms and other cor-
rections. As seen in the main body of the text, higher bias terms b2 and bs, incorporated in our
Zeldovich calculation, contribute not only to the broadband but also serve to shift and smear
the BAO feature itself. It might thus be of interest to extend the above approximation to in-
clude also these higher bias contributions. A potential avenue has been highlighted in ref. [26],
although an approach closer to our perturbative bias expansion could also be explored.

Finally, the calculation in ref. [26] included a derivative bias, b∇2∇2δ, as a proxy to
estimate the contributions of the higher bias operators. These derivative bias terms can
easily be included in the above expressions by substituting b1 → b1 + k2b∇2 . However, there
is another context in which such a term might arise in which it would differ across the three
pieces dd, ds and ss: if the smoothing due to the Σ2

ab’s as defined above do not accurately
capture the IR bulk flows — for example if the broadband properities of Pnw are slightly off
— but differ by some perturbatively small k2δΣ2

ab, the resulting correction could be corrected
for by terms of the form c2

abk
2P ab,w(k), where c2

ab would constants fit individually to dd, ds
and ss. Such corrections are essentially identical to the EFT corrections described in the
text for the full Zeldovich calculation.

E Nonlinearities from the Lagrangian to Eulerian mapping

In standard density field reconstruction, each galaxy is shifted by a smoothed displacement
field χ evaluated at the galaxy’s current Eulerian position x = q+Ψ(q) (equation (4.2)). In
the main body of the text, we worked in the approximation that χ(x) ≈ χ(q), with the un-
derstanding that nonlinear corrections would be suppressed by the smoothing scale ∼ Ψ/R.
The goal of this appendix is to flesh out this statement by explicitly computing the leading
order corrections to the reconstructed matter power spectrum due to the mapping nonlinear-
ity in real space. For the sake of brevity we will defer the effects of other nonlinearities, such
as those arising from dynamics or from translating between displacements and densities, to
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future work. Earlier treatments of such effects in Eulerian perturbation theory can be found
in refs. [17, 21].

Assuming that the shift field χ(q) defined in Lagrangian space is Gaussian, the displaced
field with mapping nonlinearities unsuppressed is given by

Ψ̃
d
i (q) = Ψd

i (q) + Ψn∂nχi(q) +
1

2
ΨnΨm∂n∂mχi(q) + . . . ≡ Ψd

i + Ψ
(d,2)
i + Ψ

(d,3)
i + . . . (E.1)

where we have kept the convention used in the main text to refer to the linear piece as

Ψd = (1 − S) ∗ Ψ, referring to the nonlinear field as Ψ̃
d

= Ψ(q) + χ(q + Ψ). For the
remainder of this appendix we will focus on corrections due to Ψ(d,2).15

From the above,we can write the nonlinear displaced-displaced autospectrum as

P dd(k)−P ddZel(k) =

∫
d3q eik·q−

1
2
kikjA

dd
ij

(
exp

[
−1

2
kikjA

dd,1−loop
ij − i

6
kikjkkW

dd
ijk

]
−1

)
+O(P 3

L)

where we have defined

Add,1−loop
ij =

〈
∆

(dd,2)
i ∆

(dd,2)
j

〉
c

+ 2
〈

∆
(dd,1)
i ∆

(dd,3)
j

〉
c

W dd
ijk =

〈
∆

(dd,1)
i ∆

(dd,1)
j ∆

(dd,2)
k

〉
c

+ (121) + (211). (E.3)

as in the case of the nonlinear matter power spectrum (e.g. [38]). To calculate these we note
that

〈Ψ(d,2)
i (q2)Ψ

(d,2)
j (q1)〉c =

〈 (
Ψn∂nχi

)
(q2)

(
Ψm∂mχj

)
(q1)

〉
c

= 〈Ψn(q2)Ψm(q1) 〉 〈 ∂nχi(q2)∂mχj(q1) 〉+ 〈Ψn(q2)∂mχj(q1) 〉 〈Ψm(q1)∂nχi(q2) 〉

and
W dd,112
ijk = 2

〈
Ψd

1,iΨ2,n −Ψd
iΨn

〉〈
Ψd

1,j∂nχ2,k

〉
+
(
i↔ j

)
(E.4)

where numerical subscripts refer to coordinates q1,2 as usual.

The mapping corrections to the cross spectrum P ds can be similarly calculated. In this
case we need the displacement correlators

Ads,22
ij =

〈
Ψ

(d,2)
i Ψ

(d,2)
j

〉
= 〈ΨnΨm 〉 〈 ∂nχi∂mχj 〉 (E.5)

where all expectation values are evaluated at a point since Ψs receives no nonlinear corrections
from the Eulerian-Lagrangian mapping and similarly

W ds,112
ijk =

〈
Ψs
i,1Ψ

s
j,1Ψ

(d,2)
k,2

〉
−
〈

Ψd
i,2Ψ

s
j,1Ψ

(d,2)
k,2

〉
−
〈

Ψs
i,1Ψ

d
j,2Ψ

(d,2)
k,2

〉
=
( 〈

Ψs
1,iΨ2,n

〉
−
〈

Ψd
iΨn

〉) 〈
Ψs

1,j∂nχ2,k

〉
+
(
i↔ j

)
(E.6)

to one loop order.

15At one loop order all corrections due to Ψ(d,3) are degenerate with the counterterms in our model. To see
this, note that such corrections contractions with linear displacements, e.g.

〈Ψa
1,iΨ

(d,3)
2,j 〉 = 〈Ψm∂m∂nχj〉〈Ψa

1,iΨ2,n〉+
1

2
〈ΨnΨm〉〈Ψa

1,i∂n∂mχ2,j〉, a = d, s. (E.2)

Multiplied by the appropriate factor of − 1
2
kikj , the two pieces on the right hand side Fourier transform into

∼ k2P amL (k) and ∼ k2P asL (k), respectively, thus taking the form of our counterterms ∼ k2P ab(k).
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Figure 15. Nonlinear corrections to the reconstructed matter power spectrum due to the Lagrangian-
to-Eulerian mapping at one loop order, for z = 0 and R = 15 h−1 Mpc. The left and right panels
show contributions to the ds and dd power spectra, respectively. Even for the worst case of z = 0,
the corrections are never more than a few percent of the total reconstructed power spectrum, though
they can become larger than the constituent dd, ds spectra at large or small scales.

As might have been expected, the mapping corrections above all take the form of prod-
ucts of displacement two point functions and their derivatives. Roughly speaking these
corrections each have amplitudes given by powers of the Zeldovich displacement Σ2 and
wavenumber k capped at R−1 by the smoothing filter; we can thus expect the corrections to
enter at order (Σ/R)4. For a 15h Mpc−1 filter at z = 0 this amounts to a percent-level effect,
with smaller effects at higher z. Concretely, these two point functions can be calculated using

〈 ∂nχi(q2)∂mχj(q1) 〉 = Ass(q)(δijδnm + . . . ) + Bss(q)(q̂iq̂jδnm + . . . ) + Css(q)q̂iq̂j q̂nq̂m
〈Ψn(q2)∂mχi(q1) 〉 = Dsm(q)(q̂iδnm + . . . ) + Esm(q)q̂iq̂nq̂m

〈Ψa
n(q2)∂mχi(q1) 〉 = Das(q)(q̂iδnm + . . . ) + Eas(q)q̂iq̂nq̂m

where the ellipses denote all distinct permutations and the scalar functions are given by

Ass(q) =
1

105

∫
dk k2

2π2

(
7j0(kq) + 10j2(kq) + 3j4(kq)

)
P ssL (k)

Bss(q) = −1

7

∫
dk k2

2π2

(
j2(kq) + j4(kq)

)
P ssL (k)

Css(q) =

∫
dk k2

2π2
j4(kq)P ssL (k)

Dab(q) =
1

5

∫
dk k

2π2

(
j1(kq) + j3(kq)

)
P abL (k)

Eab(q) = −
∫
dk k

2π2
j3(kq)P abL (k) (E.7)

where we have used the identification χ = Ψs. The remaining correlator 〈Ψ2,iΨ1,j 〉 is simply
minus the non-zero lag piece of Aij . Finally, when some or all of the displacement correlators
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in each product are contracted at the same point, as for example in the first term in equa-
tion (E.4) and equation (E.5), the resulting contribution becomes proportional to k2Pab,Zel

and degenerate with the counterterms included in our model. The above corrections from
the nonlinear Eulerian-Lagrangian mapping are plotted at z = 0 for the smoothing scale
R = 15h−1 Mpc in figure 15. As expected, even at z = 0 they are never more than a few
percent of the total reconstructed power, though interestingly they can become comparable
or larger than the Zeldovich P dd and P ds individually on scales where the Zeldovich spectra
lose support. We caution that these curves do not include comparable corrections due to
bias or dynamical nonlinearities.

We close with some general comments about nonlinearities in reconstruction. Firstly, the
mapping corrections enumerated above are not the only ones at one-loop order; by focusing
only on corrections due to Ψ(d,2) we have explicitly avoided the (13) contributions due to
third-order mapping corrections. Moreover, as this was an exploratory exercise with which
to evaluate the magnitude of mapping nonlinearities, we chose not to include the effects of

bias, which would require the inclusion of terms such as 〈δ2
1Ψ

(d,2)
i 〉, though these will be in

general decomposable into components much like those in equation (E.7). Finally, in addition
to mapping nonlinearities, by approximating the shift vector χ with the smoothed Zeldovich
displacement we have ignored nonlinearities induced by translating between the density field
and displacements. We expect these will be of similar importance to the mapping corrections
but defer their evaluation for future work, noting that only that both nonlinearities can be
trivially reduced by pushing the smoothing scale R deeper into the linear regime. That these
effects are expansions in Σ/R distinguishes them from nonlinear bias or dynamics.
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