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Abstract—A classical model of the electron based on Maxwell’s
equations is presented in which a circulating massless electric charge
field moves in a spherical background field maintained by the
synchrotron radiation of the charge. It yields the de Broglie wave
character of the electron and the magnetic moment yields the size of
the object. Superpositions of solutions of the electromagnetic wave
equations lead to finite angular momentum and total energy. It is
the movement with speed of light which makes the electron mass
equivalent to the electric and magnetic field energies.
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I. INTRODUCTION

ELECTRICAL effects are known for several hundred
years. The electron, as particle, has been discovered

already at the end of the 19th century [1] and fascinates
since then by its properties. It plays a fundamental role in the
structure of matter, and in science like physics and chemistry.
Technical designs are dominated today by its applications.

The properties of the electron are summarized as follows:
• The electron has an elementary charge Q = −e with

a point-like structure. This is expressed by an electric
field which is described by the Coulomb field sketched
in Fig. 1.

E =
e

4πε0 · r2
. (1)

The problem of the singularity at the origin is usually
removed just by a truncation at the classical electron
radius re, by replacing the point charge by a charge
distribution with radius re, or by modifying the electric
permittivity ε0 appropriately.

• It has a magnetic dipole moment

M =
e

2me
· h̄

2
· 2.0024 (2)

which suggests a circulating charge like in Fig.2.
• The electron owns an intrinsic angular momentum, the

spin, with

Ls =
1
2
h̄ . (3)

• It has a finite rest mass

me = 9.11 · 10−31 [kg] . (4)

• It shows a wave like behavior at small distances defined
1924 by L. de Broglie [2]. Its wave length λ is related
to its momentum p by

λ =
2π h̄
p

. (5)
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Fig. 1. Classical picture of the electron. The electric field points to the charge
in the center. The Coulomb field is truncated at re, such that the energy of
the residual field corresponds to the mass.

Fig. 2. The magnetic moment of the electron suggests a current to be present

• From interactions at low and medium energies the Comp-
ton wavelength λC = h/mec emerges which may be
considered as the size of the particle.

The electron obeys the kinematic laws and it’s electro-
magnetic interactions are perfectly described by Maxwell’s
equations and its extensions to quantum mechanics. Many
models have been built to describe the nature of this particle.
The simplest ones in the classical region substitute the point
like charge by a sphere of radius re with surface charge e.
The rest mass of the particle is then attributed to the electric
field energy, the self-energy of the charge. One just defines
then the classical electron radius, with twice the self-energy
of such a charged sphere:

re =
e2

4πε0 ·mec2
= 2.8 · 10−15 [m] . (6)

Such a model needs an artificial attractive force to compen-
sate the electrostatic repulsion in the center [7].



Fig. 3. In this picture an electron-positron pair with masses me is
annihilated at high energy and creates a virtual massless charge pair.
Inside the volume VQM quantum electrodynamics decides that the
charge Q will be the elementary charge e and either an e−, µ−, or a
τ−pair will be created. Within about t = h/me c2 = 10−20 sec for
an electron pair the mass will then be formed.

The next step is to put the charge on a circular orbit or on
a spinning top to explain spin and magnetic moment [3] [4]
[5]. Special assumptions have always been necessary to cover
most of the properties of the particle.

Special relativity leads to discrepancies if one associates the
mass to the field energy of a charged sphere: The momentum
of a moving electron as well as the “kinetic energy” given by
the magnetic field of its current yield both the same value for
the mass. This is however bigger than that derived from the
self-energy of the electric field [6].

The other approach to explain the electron structure comes
from the wave mechanical side. It may be modeled by an
oscillating charge distribution [7] or by the movement of
toroidal magnetic flux loops [8]. Many more recent contribu-
tions follow this direction. They are based on a paper by Barut
and Zanghi [9] in which a closed internal field moves with
speed of light, the Zitterbewegung, on special tracks. They
are able to adjust their models with the boundary conditions
of the wave to yield the fixed angular momentum, the magnetic
moment, the charge and the mass. The stability of the tracks
have topological reasons. Knots in the trajectory e.g. should
prevent from decay [10] [11].

One is meanwhile accustomed to the view that classical
mechanics and wave mechanics describe two different worlds
perfectly described by electrodynamics and quantum electro-
dynamics with its extensions. A wide gap between both exists
which is not closed up to now by a satisfactory classical
description.

The existing classical models deal with relativistic charges
but disregard the generation of synchrotron radiation. Syn-
chrotron radiation is dominant especially if one designs an
electron by a circulating massless charge field which seems to
be a promising concept.

It is the purpose of this paper to find out if the classical
view can be extended by this picture to close the gap between
classical electrodynamics and the wave description of the
electron by considering the emission of synchrotron radiation.

The creation of massless charge fields e.g. by an annihilation
of an electron-positron pair is visualized by the Feynman graph
in Fig. 3. One expects that the high energy density at the
interaction point leads immediately to quantum mechanical
processes which generate the elementary charge e and decide
the particle family such as electron, muon or tau. There is still
time of the order of h/mec

2 = 10−20 sec for the electron to
generate its mass.

In this picture a massless charge field exists in the meantime.
It moves with speed of light and may lead to a stable
configuration if the path is bent e.g. by scattering processes
or by electromagnetic background fields.

• First a massless charge field is considered which moves
with speed of light on the most simple, a circular orbit
to investigate its radiation. (Such orbits are possible in
spherical radiation fields discussed below.)

• The synchrotron radiation of this charge is described
by the inhomogeneous wave equation which is solved
numerically in the near and far zone.

• The resulting properties give a first opportunity to com-
pare these with the properties of the real electron.

• The solutions of the homogeneous equation describe how
any radiation i.e. also the synchrotron radiation propa-
gates in space. A special solution in spherical coordinates
yields a background field which rotates in azimuthal
direction.

• The electric field lines of the spherical background field
are investigated. They are smooth and may lead to stable
paths of the massless charge field.

• It will be shown that a finite total energy of the back-
ground field is possible which can be attributed to the
radiation energy of the electron.

• The relation of the electromagnetic field energy and the
mass are discussed.

II. THE SYNCHROTRON RADIATION OF THE CIRCULATING
CHARGE

In the Feynman diagram in Fig. 3 it is assumed that a
massless charge pair was created. It moves with speed of light
β = v/c = 1 and will immediately be deflected from its path
by radiation processes. The simplest assumption is that the
charge fields move on circular paths in a central field deflected
by radiation processes. Such a central field may exist as will
be shown in sections III to V.

The synchrotron radiation of a charge is described by the
solutions of the inhomogeneous wave equations for the electric
potentials of the charge ~A and Φ e.g. expressed in Cartesian
coordinates [12]:

∆ ~A− 1
c2
∂2 ~A

∂t2
= −µ0

~j ; (7)

∆Φ− 1
c2
∂2Φ
∂t2

= − ρ

ε0
.

The solution of the homogeneous wave equation describe
the propagation of the radiation (Φ = 0 may be chosen):



Fig. 4. An observer at position P (~r, t) looks at the fields of a charge
traveling on a circular orbit with velocity ~v. He detects the fields which
have been emitted at Q at an earlier time tQ − t. For |~v| = c the
distance R equals to the length of the arc (Q(tQ), Q0(t))

∆ ~A− 1
c2
∂2 ~A

∂t2
= 0 . (8)

This equation is discussed in section III.

Solutions of the inhomogeneous equations are the retarded
Liénard-Wiechert potentials [12]

Φ(~r, t, ~rQ, tQ) =
e

4πε0
1

R− ~R~v
c

(9)

~A(~r, t, ~rQ, tQ) =
µ0e

4π
~v

R− ~R~v
c

. (10)

An Observer P (~r, t) receives the fields from the circulating
charge Q from an earlier position Q( ~rQ, tQ) sketched in Fig. 4.
The vector ~R is given by ~R = ~r− ~rQ(tQ) and ~v is the velocity
of the charge at the emission point. If the charge reaches Q0

at time t the length R is as long as the arc (Q,Q0) for β = 1.
One computes the distance R between P (r, ϑ, ϕ, t) and the

charge for each position of Q, ϕQ, ϑQ = π/2 by

R2 = r2 + r2Q − 2rrQ sinϑ cos(ϕ− ϕQ) , (11)

with ϕQ = ω · tQ, tQ = t − R/c and ω = βc/rQ one gets
ϕ − ϕQ = ϕ − ωt + βR/rQ. This is φ + βR/rQ, if one
substitutes φ = ϕ− ωt. One obtains

R2

r2Q
=
r2

r2Q
+ 1− 2

r

rQ
cos(φ+ β

R

rQ
). (12)

The component of ~R along the velocity ~v is then given by

Rv = ~R~v/v = r sin(φ+ β
R

rQ
) . (13)

The electric and magnetic fields are

~E = −~∇Φ− ∂ ~A

∂t
; ~H =

1
µ0

~curl ~A . (14)

They lead to the equations [12]

~E =
e

4πε0

 (1− β2)
~R−R~v

c

(R−βRv)3

−
~R×((~R−R~v

c )× ~̇v)
c2(R−βRv)3

 (15)

~H = ε0 c ·
1
R

[~R× ~E ] . (16)

The first term within the brackets of equation (15) describes
the field connected to the moving charge and the second term
which contains the acceleration yields the radiation.

The denominators of both parts become zero for β = 1 if ~R
is tangential to the orbit. For a circular track in the horizontal
plane (ϑ = π/2) all singularities are located on this plane
at R =

√
(r/rQ)2 − 1 i.e. at r > rQ. Thus a small region

around this singularity is dominated by quantum mechanical
phenomena because of the huge energies. This region at ϑ =
π/2 has to be excluded in classical considerations.

It is interesting to note that the first term vanishes outside
the quantum mechanical volume for β = 1. It represents an
uncharged object which can only consist of electromagnetic
waves. Only the second part describes the properties of the
charge and its synchrotron radiation as well.

The evaluation of the radiation parts of the equations (15)
and (16) in spherical coordinates yield the spherical compo-
nents of the fields:

with fE =
e

4πε0
β2

4rr2Q(R− βRv)3
(17)

Er = − fE

 [(R+ rQ)2 − r2]·
[(R− rQ)2 − r2]
+ 4βr2QRRv]

 (18)

Eϑ = − fE
cosϑ
sinϑ

[
4βr2QRRv − r4

+ (R2 − r2Q)2

]
(19)

Eϕ = fE
2rQ
sinϑ

 βR[R2 − r2Q
+ r2(1− 2 cosϑ2)]
−Rv(+R2 − r2Q + r2)

 (20)

and with fH =
e c

4π
β2

2rQ(R− βRv)3
(21)

Hr = fH cosϑβ(R2 − r2 + r2Q) (22)

Hϑ = fH
1

sinϑ

[
β(R2 + r2 + r2Q) cosϑ2

− 2R(βR−Rv)

]
(23)

Hϕ = fH
cosϑ
sinϑ

[
r2Q(2Rv −R)

+R(R2 − r2)

]
(24)

With these fields the following results are obtained.



Fig. 5. The size of the magnetic field of a charge e circulating at a
radius rQ with speed of light is shown as full line as a function of r. It
was computed from the current according Biot-Savart’s law. The mean
magnetic field of eq.(23) at ϑ = π/2 inside the circle are inserted as
x-symbols and are on top of the curve.

A. Comparison with Experimental Results

1) The magnetic moment and the extension of the electron:
A classical circulating charge is expected to generate a mag-
netic moment. Here the charge is a massless charge field which
travels on a circular path as the simplest assumption. The mean
magnetic field of the circulating charge field is compared in
Fig. 5 with the magnetic field of a classical circular current I =
ec/2πrQ with radius rQ. The magnetic fields are determined
in the mid plane (ϑ = π/2) for r < rQ. The crosses from the
charge field are on top of the curve from the current. Both
descriptions are equivalent. From the experimental value of
the magnetic moment µe = 1.00116(eh̄/2me) and µ = Ir2Qπ
the radius of the circular path in the present model results in

rQ = 2µe/ec = 3.87 · 10−13 [m] (25)

which determines the size of the electron. The inverse we need
later is calculated to

k = 2.59 · 1012 [m−1] , (26)

and the fundamental frequency is

ω = c/rQ = 7.75 · 1020 [s−1] . (27)

The length of the circular path can be associated to a wave-
length belonging to the fundamental frequency ω

λe = 2πrQ = 1.00116 · h/mec [m] . (28)

This is just the Compton wavelength of the electron.
Quantum mechanics predicts the energy according to

E = h̄ω = 8.18 · 10−14 [J ] , (29)

which is consistent with the electron mass of mec
2 = 8.187 ·

10−14[J ].
From the reproduction of the experimental values with these

simple assumptions one must conclude that higher harmonics
are negligible.

2) The electric field of the radiation part: It should be
emphasized again that there is no static electric field connected
to the charge moving with β = 1. The only electric field is
that of the radiating part. It should be equal to the Coulomb
field when averaged over the surface of a sphere surrounding
the charge.

The electric field of a charge e computed by Coulomb’s
law is plotted as full line in Fig. 6 as a function of the
distance r/rQ. The +-signs on top of the curve display the
radial components of the field of eq.(18) at the respective
distances. The field was averaged over the surface of the
sphere with radius r over the intervals [−π ≤ ∆φ ≤ −10−4],
[10−4 ≤ ∆φ ≤ π] with ∆φ the deviation of φ from the
singularity, and over [0.001 ≤ ϑ ≤ 0.824π/2] (and symmetric
to the mid plane).

The field is not spherical symmetric like in Coulomb’s law.
The field now averaged over ∆φ shown in Fig. 7 as a function
of ϑ dominates close to the mid plane.

B. The Poynting vector

Both the electric and the magnetic field of the synchrotron
radiation are combined in the Poynting Vector, which yields
the power density of the radiation

~S = ~E × ~H. (30)

The Poynting vector close to the circulating charge is
directed into a narrow cone in forward direction [12]. It has
a strong azimuthal component which is responsible for the
angular momentum of the object.

The azimuthal component is transformed in the far region
into a radial component and may be used to determine the
total radiated power. This will be discussed first.

1) The radial component of the Poynting vector in the far
zone: The radial component of the synchrotron radiation dom-
inates in the region far from the circulating charge. Approx-
imations in this region allow for analytic evaluations which
is normally done by Fourier decomposition [15] [16] [17].
In the present paper the Poynting vector is evaluated without
these approximations by numerical methods.

The radial component of the Poynting vector Sr at r =
105 rQ is plotted in Fig. 8 in the interval ∆φ = [−π, π]
around its singularity discussed with eqs. (18) - (24). Curves
for different ϑ-values are shown. Sr increases exponentially
at small distances ∆φ from the singularity where one expects
dominating quantum electrodynamic properties. This strong
increase at small distances from the singularity at ϑ = π/2
is also seen in Fig. 10 in the power Pr radiated through
the surface of the sphere with radius r = 105 rQ when the
integration interval in ϑ (0, ϑmax) approaches ϑ = π/2.

The total radial radiation power as a function of r is plotted
in Fig. 11. The power saturates at large distances when Sϕ
transforms more and more into Sr.

The energy loss of the permanently circulating charge seems
to be in contradiction to a stable electron model. This problem
will be addressed in sections III and IV.



Fig. 6. Electric field Er of a point charge Q = +e according to Coulomb’s
law as a function of the distance r/rQ. The +-signs on top of the curve
represent the radial field given by eq.(18) averaged over the surface of the
respective spheres.

Fig. 7. Radial electric field given by eq.(18) averaged over φ, the azimuthal
position of the observer, as a function of the polar angle ϑ.

Fig. 8. Radial component of the Poynting vector Sr at r = 105 rQ
for different ϑ values as function of the azimuthal deviation from the
maximum. The plot is in a double logarithmic scale to expand the
singularity of eq. (30).

Fig. 9. Azimuthal component of the Poynting vector Sϕ for the second
last circulation as function of the azimuthal deviation from the maximum.
Different ϑ-values were chosen.

2) The azimuthal component of the Poynting vector: The
azimuthal component of the Poynting vector is better viewed
from the responsible position of the charge ϕQ. The fields
from the charges moving in the range of −2π ≤ ϕQ ≤ 0
reach observers P (r, ϑ = π/2, ϕ = 0) at radii between r =
(1 + 2π)rQ and rQ, former circulations between −n2π ≤
ϕQ ≤ −(n − 1)2π arrive between r = (1 + n2π)rQ and
r = (1 + (n − 1)2π)rQ respectively. These values change
slightly for observers at different polar angles ϑ. A smaller
range of the first circulation is responsible for the fields of the
inner volume.

The azimuthal component of the Poynting vector generated
e.g. by the second last circulation n = 2 from r = (1+2π)rQ
to r = (1+4π)rQ is shown in Fig. 9 for various ϑ-values as a
function of ϕQ. The horizontal axes is centered at the forward
maximum where R is tangential to the circular track.

3) The angular momentum of the synchrotron radiation:
The azimuthal component of the Poynting vector is responsible
for an angular momentum around the vertical axis of the
object. It is computed by

L =
1
c2

∫
Sϕ(r, ϑ, φ)r3dr sin2 ϑ dϑdφ. (31)

Since the field of the charge at rQ reaches an observer
P (r, ϑ, φ) only at a specific r-value r will be substituted by
r = r(ϕQ), dr by dr/dϕQ and the integration is performed
over one circulation of the charge.

The path of the charge field is further on assumed to be
circular. The angular moment in units of h̄ for the last but
one circulation is plotted in Fig. 12. It is strongly dependent
on the interval of integration in ϕQ and ϑ because of the
presence of the singularity. Curves with different excluded
regions of ±∆ϕQ around the centered singularity are plotted



Fig. 10. Emitted radiation power in radial direction Pr at r = 105 rQ
integrated between ϑ = 0.01 and ϑmax.

Fig. 11. Emitted radiation power in radial direction Pr integrated between
ϑ = 0.01 and ϑmax as function of the relative distance r/rQ.

Fig. 12. Angular momentum of the synchrotron radiation in units of
h̄ when integrated from ϑ = 0 to ϑmax (and symmetric to the mid
plane). Different regions ±∆ϕQ were cut out around the singularity.

as a function of ϑmax the upper limit of the integration
interval. The values symmetric to the mid plane have been
added. The present circulation gives slightly different values,
but averages out. The angular moments of former circulations
which feed higher distances are almost identical.

One sees that it is possible by reasonable cuts ∆ϕQ and
ϑmax to receive angular momenta in the right order of
magnitude.

III. THE SOLUTION OF THE HOMOGENEOUS
DIFFERENTIAL EQUATION

The next step is to solve the homogeneous differential
equation, the wave equation (8). It describes the propagation
of any radiation in space. Usually it is solved in Carte-
sian coordinates in which the components separate and the
subsequent transformation to cylindrical components allows
for the investigation of multipole properties [18]. One is

interested here in spherical components as obtained with the
inhomogeneous equations in section II.

The relation

~curl ~curl( ~A) = ∇(∇ ~A)−∆ ~A (32)

which is used with Cartesian coordinates is not valid in a
spherical coordinate system. The wave equation in vacuum for
the vector field ~A in spherical coordinates and with spherical
components has therefore the form

~curl ~curl( ~A)− 1
c2
∂2 ~A

∂t2
= 0 (33)

The same equation is also valid for ~H and ~E .
If one writes ~A as a product in spherical coordinates, e.g.

for the space component

Ar = Rr(x) ·Θr(ϑ) · Φr(ϕ) · T (t) (34)

and with

T (t) = e±iωt and (35)
Φ(ϕ) = e±imϕ, k = ω/c, kr = x

the wave equation separates in the coordinates, and one obtains
2 solutions which are dependent via Maxwell’s equations, if
attributed to ~H and ~E respectively. Special solutions, periodic
in ϕ, finite and smooth at the origin with waves in ϕ-direction
have standing waves in r and ϑ :

Hr = 0
Hϑ = − CkCmeck2(2m− 1)Pm−1

m−1 (ϑ) (36)
· jm(x) cos(mϕ− kct)

Hϕ = CkCmeck
2Pm−1

m (ϑ) (37)
· jm(x) sin(mϕ− kct)



Er = − CkCmek
2

ε0
(m+ 1)Pmm (ϑ) (38)

· jm(x)
x

cos(mϕ− kct)

Eϑ = − CkCmek
2

ε0

Pm−1
m (ϑ)
2m+ 1

(39)

· [(m+ 1)jm−1(x)−mjm+1(x)]
· cos(mϕ− kct)

Eϕ =
CkCmek

2

ε0

2m− 1
2m+ 1

Pm−1
m−1 (ϑ) (40)

· [(m+ 1)jm−1(x)−mjm+1(x)])
· sin(mϕ− kct) .

The Pmn (ϑ) are the Associated Legendre Functions, jn(x)
are Spherical Bessel Functions [13] [14], and the factors in
front are chosen to give the right dimensions. Ck and Cm are
normalization constants. The wave functions are unambiguous
for m = 1, 2, 3, . . ., and the separation constant k determines
the size of the whole object. More details may be found in
appendix A.

The general solution of this central wave is then a sum
over all the harmonics m and over the wave numbers k, with
the coefficients Cm and Ck, chosen to satisfy the boundary
conditions. If the central wave should describe the propagation
of the synchrotron radiation of a charge on the special circle
assumed in chapter II then k is already fixed by eq.(26).

The Bessel functions subdivide the fields into shells with
alternating field directions from one to the next. It is shown
in Fig. 13(a) for j1(x), and the logarithmic plot in Fig. 13(b)
demonstrate the decrease of the amplitude like 1/x at high x.
This is true for all n. Only Er decreases with 1/x2.

A sketch of the fields ~H and ~E for m = 1 for the innermost
shells is displayed in Fig. 14.

IV. THE SYNCHROTRON RADIATION AND THE CENTRAL
WAVE.

The eqs.(36) and (38) can describe the propagation of
any radiation in space: the strong radiation generated in the
annihilation process as well as the synchrotron radiation of
the circulating charge. If the electron would exist as a stable
radiation object the current of the charge and the radiation
would influence each other: the emission of synchrotron
radiation would generate a permanent central electromagnetic
background field which on the other hand would be absorbed
again by the charge and compensates the energy loss.

To simplify the discussion it is still assumed that the charge
moves on a circular track and the scattering by the radiation
processes is neglected. For the central wave also the lowest
mode m = 1 is considered for the moment.

The power of the synchrotron radiation in ϕ-direction and
the azimuthal power of the central wave must be the same in a
complete solution and are compared in Fig. 15. The horizontal
axis displays the distance x which is equivalent to r/rQ. The
synchrotron radiation is integrated up to ϑ = 0.9π/2 and
the narrow peaks of the synchrotron radiation demonstrate the
large content of higher harmonics. The Fourier analysis of the
azimuthal component of the Poynting vector of Fig. 9 with

Fig. 15. Azimuthal power distribution dPϕ/dx of the synchrotron
radiation and of the central wave with m = 1 and m = 3 as a function
of x (≡ r/rQ). The functions are arbitrarily scaled.

ϑ = 0.9π/2 yields e.g. a frequency distribution with a width
at half height of about 100 times the fundamental frequency.

The overlap of the radiation with the central wave is
best with the fundamental frequency (m = 1). The higher
harmonics of the central background with higher m-values
start all at higher x. This is a hint that the synchrotron radiation
is described with waves close to the fundamental frequency.

The standing wave in x-direction is governed by the slow
decrease of the Bessel functions. This contradicts the finite
angular momentum and the finite total energy of a finite radi-
ation cloud if the central wave should describe the radiation
content of a real electron.

The angular momentum of the circulating wave integrated
up to xmax is displayed in Fig. 16. The scale of the angular
momentum is arbitrary because the coefficients Ck and Cm
for m = 1 were just chosen to be 1. The angular momentum
increases with xmax to infinity for a solution when m =
1 only is used. A Fourier like expansion in ϕ is needed to
yield a finite result. Already the addition of a counter rotating
contribution with m = 3 and the coefficients C3/C1 = 0.056
leads to a constant but still oscillating result. An inclusion of
terms with m = 2 and m = 4 had a minor effect. Higher
terms could not be tested because of the limited accuracy of
the computing program.

The electric and the magnetic energy of the central wave
sum up to a constant energy density dE/dx respective to x
as displayed in Fig. 17. This would lead to an infinite total
energy.

Again an expansion is needed to obtain a finite value. The
functions (36) etc. may be considered as members of a Fourier-
Bessel expansion [19] [20]:

f(r) =
∑
i

Aijm(ki r) =
∑
i

Bijm(λi x) (41)

This may obviously be applied at t = 0. If e.g. for m = 1
j1(x) in Hθ(x) is substituted by the truncated function shown
in Fig. 18 and expanded in the region 0 ≤ x ≤ 40 the
sum contains 12 terms. But this replacement is not valid in



Fig. 13. The space parts for Hϑ,ϕ, Er and Eϕ given by the respective jn(x) are shown for m = 1 (a) in linear and (b) in logarithmic plots. The amplitudes
decrease with 1/x.

Fig. 14. Sketch of the H- and the E-field for m = 1. The spheres in a) on which H is located are also shown in b).

Fig. 16. Angular momentum of the central wave in units of h̄
integrated up to xmax. The label ”m=1” assigns the contribution
of the special solution with m = 1 only. In ”m-1 - m-3” a
special solution with m = 3 is subtracted. C1 = 1 was used.

Fig. 17. Energy density dE/dx of the electric (· · ·) and the
magnetic field (−−) of the central wave, and the sum of both
(solid line) as a function of x (vertical axes unscaled).



Fig. 18. j1(x) and the truncated function which were expanded
in a Fourier-Bessel series.

Fig. 19. Total energy density dE/dx after the replacement
of k in the central wave by λik and summed with coefficients
obtained by the Fourier-Bessel expansion obtained by the
truncation like in Fig. 18 .

general for the whole set of wave functions. These equations
are only satisfied if all occurrences of k are replaced by λik.
Nevertheless one finds that the expansion leads also to a good
approximation for the wave functions which is proven by the
finite total energy shown in Fig. 19.

V. THE MASSLESS CHARGE IN THE CENTRAL WAVE

It has been shown that the synchrotron radiation of a
relativistic circulating charge generates a circulating electro-
magnetic background field. The question is if on the other hand
the background field guides the charge on a circular path and
both form an object even a finite one which can be called an
electron.

The simplest configurations have been assumed up to now:
a charge moving on a circular track and a background field
with m = 1 and a single k-value. The discussions in section
IV already showed that a superposition of waves should be
present. It will be shown in this section how a charge may
move in such a central background field.

A charge moving in the central wave with velocity v sees an
effective electric field (~E +µ0~v× ~H) which forces the charge
to follow the field lines. This is possible by emitting radiation
to balance the momentum, and the statistical emission and
absorption of radiation will result in deviations.

To trace the field lines a massless charge probe which moves
with speed of light and which just follows the effective field
was inserted. Its track under different conditions was recorded.

The various harmonics differ in the symmetry regarding ϕ
which results in different phase velocities. This velocity is c
at the radius x = m.

Field lines have been traced for waves with m = 1, m = 2,
and m = 3 and for many starting points. A smooth field line
has always been found for each condition in the mid plane
ϑ = π/2 and the field lines stayed in the mid plane if started
there.

Four special field lines in the mid plane (ϑ = π/2) seen by
a charge with |~v| = c are drawn for m = 1 in Fig. 20. The axes
are the Cartesian coordinates (ξ, ψ) of x. There is the circular
field line with a radius of x = m = 1, the next one oscillates
towards the center, and the next oscillates around x = 2. The
one oscillating around x = 3 shows counter rotating loops.
The small loops become more and more flat for field lines
further outward. The field lines can cross each other because
they are functions of the coordinates and of the velocities as
well.

The field lines for m = 2 and higher are similar but are
modified according to the different symmetry. A probe with
opposite charge moves just at the same distance but opposite
to the origin.

Smooth field lines have also been obtained outside the mid
plain. They are similar to the ones already discussed but oscil-
late vertically. The field line e.g. corresponding to the circular
one in Fig. 20 is shown in Fig. 21(a) in a top view and in (b)
in a side view as function of ϕ. The line starts horizontally
at the Cartesian coordinates of x (ξ, ψ, ζ) = (0,−0.98, 0.41)
and oscillates down to ζ = 0.23. For comparison: field lines
in the mid plane show oscillations in ζ of only 10−16 given
by the numerical accuracy.

Field lines below the mid plane are vertically mirror sym-
metric.

One further example which corresponds to the innermost
field line in Fig. 20 is shown in Fig. 22. The line starts
horizontally here at (ξ, ψ, ζ) = (0,−1.3, 1.3). A toroid is also
drawn into the top view for better visualization.

4) Summation over harmonics and wave number : The
pictures in the previous section show that field lines with
different shape already exist in a wave with constant k and
m = 1. A charge in this field will therefore also generate
synchrotron radiation of higher harmonics. On the other hand
higher harmonics are also necessary if the total angular mo-
mentum of the system should be finite and a superposition



Fig. 20. Four selected closed effective electric field lines in the central
wave with m = 1 seen by a charge moving with |~v| = c. The circular
one has a radius of x = 1. The innermost oscillates towards the center,
one oscillates around x = 2, and the outer one at x = 3 shows
counter rotating loops. Shown is the mid plane ϑ = π/2 in Cartesian
coordinates of x (ξ, ψ).

Fig. 21. Effective field line drawn by a massless test charge in the central wave with m = 1 above the mid plane. The line starts horizontally at the Cartesian
coordinates (ξ, ψ, ζ) = (0,−0.98, 0.41). Fig.(a) shows the line in the top view, and Fig.(b) displays the vertical oscillation as a function of ϕ. Field lines
below the mid plane are vertically mirror symmetric.

Fig. 22. Effective field line above the mid plane corresponding to the innermost field line of Fig. 20. It starts horizontally at (ξ, ψ, ζ) = (0,−1.3, 1.3). A
toroid is inserted in the top view for better visualization.



with different wave numbers ki = λik is necessary for a finite
energy as discussed in section IV.

The field lines in a wave with m = 1 and m = 3 which
lead to a finite angular momentum (Fig. 16) are unchanged
below x = 2 but are deformed at higher distances from the
center but they are all still smooth.

Field lines in a wave described by the example of a Fourier-
Bessel expansion in Fig. 18 are also still smooth but radially
oscillating.

It is the description of the synchrotron radiation by the
central wave with finite solutions which will finally select the
proper superposition.

VI. ON THE MASS OF THE ELECTRON

The electric field of a moving electron transports energy
as well as momentum. The energy of the rest mass mec

2 is
generally assumed to equal the self-energy of a suitable charge
distribution. The kinetic energy of a moving charge, on the
other hand, yields different mass energies via the momentum
calculated with the Poynting vector and via the energy of the
magnetic field of the current. This is in contradiction to special
relativity [6].

One may expect that under Lorentz transformation e.g.
in the x1-direction the energy transforms like Ē = γE
and the momentum like (p̄1, p̄2, p̄3) = (βγp1, p2, p3) and
Ē2 − (p̄c)2 = E2 − (pc)2 = (mc2)2 should yield the mass
of the object. This is not true in general because energy and
momentum of the field don’t form a 4-vector. They belong to
an energy-momentum tensor Tµν [21] [22] [23]. With

T00 = ρE =
ε0
2
~E2 +

µ0

2
~H2; (42)

T0i = −ρP0i c = −Si/c ;

Tik = ε0(
1
2
~E2δik − EiEk)

+µ0(
1
2
~H2δik −HiHk) ;

i, k = 1 . . . 3, and Tµν = Tνµ

ρE , ρP0i are the energy and momentum densities of the field,
~S the Poynting vector, and Tik Maxwell’s tension tensor. The
trace of the tensor vanishes in the rest system of the fields.

Lorentz transformation yields then the energy and momen-
tum of a conventional charge moving with velocity v/c = β

Eβ =
∫
ρEβd3xβ (43)

=
1
γ

∫
(γ2T00 + (γ2 − 1)T11)d3x ,

pβ1 c =
∫
ρPβ1 d3xβ

= −βγ
∫

(T00 + T11)d3x ,

pβ2,3 =
∫
ρPβ2,3d

3xβ

= −β
∫

(T12,3)d3x = 0 ,

and for the rest mass from the field squared

Eβ
2 − ~pβ

2
c2 (44)

= γ2

[∫
(T00 + β2T11)d3x

]2
− β2γ2

[∫
(T00 + T11)d3x

]2
.

Variables without the superscript β indicate that they are in
the rest frame.

Neither the field energy nor its momentum show the proper
dependence on γ and the rest mass is not constant. The
reason is that with this concept one has to introduce a charge
distribution at the origin of the electron to avoid the singularity
of Coulomb’s law [23]. Inner forces result which have to be
somehow compensated. One must require T11 = 0 if eq.(44)
should be valid at any particle speed.

The situation in the present model is different: there exists
a charged radiation bucket which moves with β = 1. The field
energies are again the self energies with the singularity cut out.
If one takes a differential section of the circular path where
the charge moves in the 1-direction eq.(44) becomes now

Eβ
2 − ~pβ

2
c2 = γ2

[∫
(T00 + T11)d3x

]2
(45)

− β2γ2

[∫
(T00 + T11)d3x

]2
=
[∫

(T00 + T11)d3x

]2
.

This is constant and may be defined as the mass energy of the
charge mq c

2.

mq c
2 =

2
3
ε0

∫
~E2d3x (46)

In addition there is the energy of the standing wave of the
central wave background and of the quantum mechanic center
mw c

2. Both add then to the total mass energy of the electron

me c
2 = mq c

2 +mw c
2 . (47)

VII. CONCLUSION

The presented investigations suggest that the classical elec-
tron can be described by a circulating massless charge field.

The comparison with the experimental properties of the
electron show that already a movement on a circular track
results in a good consistency. The radius of the circulation
results from the experimental value of the magnetic moment
and is obtained to rQ = 3.81 10−13 [m]. It represents also the
size of the object.

The values for the circulation frequency and the Compton
wavelength follow directly, and with Planck’s constant h̄ the
mass of the electron is reproduced.

A small volume around the singularity of the charge field is
required in which strong radiation processes lead to quantum
mechanical effects. This volume has to be cut out in the present
classical considerations.



The circulating charge emits synchrotron radiation and when
moving with speed of light it is totally embedded in this
radiation. The static field around the quantum mechanical
volume vanishes and this part becomes neutral.

The angular momentum L/h̄ of the synchrotron radiation of
this charge moving on a circle with radius rQ yields reasonable
values of the order of 1 as expected from the spin of the
electron. Its value depends on the cuts by which the quantum
mechanical region is removed and finally on the real path on
which the charge is moving.

The mean electric field of the synchrotron radiation repro-
duces the Coulomb field. The field is however not spherical
symmetric but it dominates close to the plane of circulation.

The solution of the homogeneous wave equation describes
the propagation of the electromagnetic waves in vacuum. This
background field may be formed during the creation process of
the charge and be maintained by the synchrotron radiation of
the charge. When evaluated in a spherical coordinate system it
leads to a central radiation background with a special solution
which moves in ϕ-direction but with standing waves in ϑ and
r.

The central wave field can carry the massless charge on
tracks around the origin. It generates smooth electric field
lines e.g. a circular one but in general these are oscillating in
space. The charge tries to follow these field lines by emitting
synchrotron radiation and this radiation is guided back by the
central wave and forms a feed back system which compensates
the energy loss in ϕ-direction. Fast oscillations will be damped
and the interaction will select the configuration with the lowest
energy.

The standing wave of the background field in r-direction for
the special solution of m = 1 extents to infinity and leads to
an infinite total angular momentum and an infinite total energy
of the central wave. A 2-dimensional Fourier like expansion
of the wave functions in ϕ and x may form a finite solution.
An admixture of an m = 3 contribution leads already to a
finite angular momentum and an example of a Fourier-Bessel
like expansion in x lead to a finite energy too.

The synchrotron radiation bucket moves with β = 1. The
inner tensions which normally occur at lower speed if one cuts
out the singularity disappear now. A constant mass energy
compatible with the relativistic energy-momentum tensor of
the field results.

Thus one finds, that the electron may totally be described
by the synchrotron radiation of a massless charge field. It does
not only behaves like a wave, it is a wave.

APPENDIX

Solving the homogeneous wave equation in spherical coordi-
nates

The wave equation

~curl ~curl( ~F) = − 1
c2
∂2 ~F
∂t2

(48)

is solved in spherical coordinates for a vector field ~F to yield
directly the spherical components of the field. The equation is

expected to separate in the variables when a product ansatz is
made, e.g. for Fr:

Fr = Ar · Rr(x) ·Θr(ϑ) · Φr(ϕ) · T (t) (49)

and with

T (t) = e±iωt and (50)
Φ(ϕ) = e±imϕ, k = ω/c , kr = x .

One expects a source free wave field and may thus subtract
~∇(~∇ ~F) in eqn. (48) as one does in Cartesian coordinates. This
simplifies the equation, but has to be checked afterwards. The
ansatz eqn. (50) eliminates the time and ϕ-dependence in the
equation and the 3 following components remain:



−ArΘr(ϑ) ∂
∂x

1
x2

∂
∂xx

2Rr(x)
−Ar Rr(x)

x2 sin(ϑ)2 Θr(ϑ)
· (x2 sin(ϑ)2 −m2)

−Ar Rr(x)
x2 sin(ϑ)

∂
∂ϑ sin(ϑ) ∂

∂ϑΘr(ϑ)

Aϑ
2Rϑ(x)
x2

· ( cos(ϑ)
sin(ϑ) Θϑ(ϑ) + ∂

∂ϑΘϑ(ϑ))

+Aϕ2m Rϕ(x)
x2 sin(ϑ)Θϕ(ϑ)


= 0 , (51)



2ArRr(x) ∂
∂ϑΘr(ϑ)

+AϑΘϑ(ϑ) ∂
∂xx

2 ∂
∂xRϑ(x)

+AϑRϑ(x)
· ∂∂ϑ

1
sin(ϑ)

∂
∂ϑ sin(ϑ)Θϑ(ϑ)

−AϑRϑ(x)Θϑ(ϑ)( m2

sin(ϑ)2 − x
2)

−2mAϕRϕ(x) cos(ϑ)
sin(ϑ)2 Θϕ(ϑ)


= 0 , (52)



2ArRr(x)Θr(ϑ) m
sin(ϑ)

+2mAϑRϑ(x) cos(ϑ)
sin(ϑ)2 Θϑ(ϑ)

−AϕΘϕ(ϑ) ∂
∂xx

2 ∂
∂xRϕ(x)

−AϕRϕ(x) 1
sin(ϑ)

· ∂∂ϑ sin(ϑ) ∂
∂ϑΘϕ(ϑ)

+AϕRϕ(x)Θϕ(ϑ)( m
2+1

sin(ϑ)2 − x
2)


= 0 . (53)

One obtains special solutions if one chooses

Rϑ(x) = jnϑ1(x) + aϑ
jnϑ1+1
x (x)

Rϕ(x) = jnϕ1(x) + aϕ
jnϕ1+1(x)

x

(54)

Θr(ϑ) = P qp (ϑ)
Θϑ(ϑ) = P qp (ϑ)
Θϕ(ϑ) = P qp (ϑ))

(55)

and uses

1
sin(ϑ)

∂

∂ϑ
sin(ϑ)

∂

∂ϑ
Pmn (ϑ) (56)

=
[

m2

sin(ϑ)2
− n(n+ 1)

]
Pmn (ϑ) ,

∂

∂x
x2 ∂

∂x
jn(x) = [n(n+ 1)− x2]jn(x) .



If one eliminates Rr(x) from both eq. (52) and eq. (53),
and sets nϑ = nϕ one arrives at



mPm
p (ϑ)

sin(ϑ) ∂
∂ϑP

m
p (ϑ)

·



Aϑ( ∂
∂xx

2 ∂
∂xRϑ(x))Pµν (ϑ)

AϑRϑ(x)
· ∂∂ϑ

1
sin(ϑ)

∂
∂ϑ sin(ϑ)Pµν (ϑ)

−AϑRϑ(x)Pµν (ϑ)
· ( m2

sin(ϑ)2 − x
2)

−2AϕmRϕ(x) cos(ϑ)
sin(ϑ)2P

M
L (ϑ)




2mAϑRϑ(x)Pµν (ϑ) cos(ϑ)
sin(ϑ)2

−Aϕ( ∂
∂xx

2 ∂
∂xRϕ(x))PML (ϑ)

+AϕRϕ(x)PML (ϑ)[m
2−M2+1
sin(ϑ)2

+ L(L+ 1)− x2]





= 0 . (57)

One gets now 2 solutions for eq. (57). One for which both
the upper and lower cluster vanish separately, and the other
one for which the left side of this equation vanishes on the
whole.

When these results are inserted into equ. (51) they determine
Rr(x), and div( ~F) = 0 restricts the values of the separation
constants. Both solutions may represent solutions of the elec-
tromagnetic fields ~E and ~H.
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