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We have calculated the four-jet production processes e+e --} qqgg and e+e ---} qqqq to lowest- 
order QCD perturbation theory. We find that (qqqq) production is small compared to the dominant 
process e+e--, qqgg which can in part be traced to the fact that the latter process is more singular as 
the 2- and 3-jet phase-space limits are approached. We present differential 4-jet acoplanarity 
distributions and compare them with non-perturbative acoplanarity distributions at maximum 
PETRA and PEP energies. Leading log cross-section formulae are derived for various cut-off 
procedures and are compared to the results of our numerical integrations. We also present results 
on associated heavy quark production in e+e - annihilation. 

1. Introduction 

It is generally believed that quantum chromodynamics (QCD), the gauge theory of 

coloured quarks and gluons, is the underlying theory of strong interactions. This 

theory is closely related to the best known field theory, quantum electrodynamics 
(QED), which is an abelian gauge theory. QCD, on the contrary, is a non-abelian 

gauge theory with the gauge group SU(3)~co~our~. Hence the gluons have colour and 

thus couple to each other. 
Although QCD is well-defined as a field theory it is not without problems. For 

example, it is not known yet whether QCD confines quarks and gluons and whether 

one is able to predict the spectrum of existing hadrons. However, at very high energy 
or momentum transfer q2 the coupling constant ots(q 2) decreases, with increasing q2, 

due to asymptotic freedom. As was emphasized by many authors, this allows one to 
calculate those parts of a process involving high q2 by the use of perturbation theory. 
On this basis a large number of cross sections were calculated which serve as tests of 

QCD. 
One of the most interesting predictions of QCD is the existence of hadronic jets in 

e+e - annihilation resulting from the primordial production of quarks and gluons [ 1]. 

i On leave from L. E6tv6s University, Budapest. 
* Supported by Bundesministerium fi~r Forschung und Technologie. 
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At moderate energies this means basicaUy a two-jet final state coming from the 
lowest-order diagram e+e - ~ qq, while gluons radiating off the quark and antiquark 
are hidden in the non-perturbative jet spread. Experiments at SPEAR and DORIS 
have confirmed this picture [2]. Quarks and gluons are thought to materialize into 
jets in which the particles have limited transverse momentum (Pr)nonp~t - 0.3 GeV. 
In contrast to this, the mean transverse momentum of a gluon emitted from a quark 
or antiquark grows with increasing energy like (p2)~q2/ lnq2  [3]. Hence the 
production of quarks and gluons becomes visible at high enough energy as final 
states containing three or more jets. In the meantime there is convincing evidence for 
three jets at PETRA from the Tasso and Mark J collaborations [4]. Whether the 
properties of these three-jet events agree with the theoretical expectations will be 
seen in the future. Many QCD predictions for quark-antiquark-gluon (qqg) final 
states have been reported [3, 5]. QCD shows its full gauge structure, however, only in 

=as ) where the triple-gluon second- or higher-order perturbation theory (order > 2 
coupling comes in. 

In second order we will be led to four-jet final states: e+e --* qqgg and e+e --~ qqqq. 
Some aspects of the four-quark final state have been studied in ref. [6]. We shall 
present our results in terms of invariant jet measures as thrust, acoplanarity, etc., 
since these variables are least sensitive to the details of the fragmentation of quarks 
and gluons into hadrons which we do not treat in our calculation. For the 4-jet 
calculation, acoplanarity is a very useful variable since four-jet events stand out 
against two- and three-jet final states by having a non-vanishing acoplanarity A [7]. 
Thus d~,/dA is the canonical quantity to analyse as it allows one to cut off the 
dominant two- and three-jet events experimentally. Of course to consider events 
with non-vanishing A does not eliminate the two- and three-jet background 
completely since these events have some finite A through the non-perburbative jet 
spread near A-~ 0. With an appropriate cut on A one can reduce this non- 
perturbative background contribution and thereby enhance the true QCD pertur- 
bative contribution. Of a similar nature are background effects originating from the 
weak decay of heavy quarks [8]. 

Other tests of the three-gluon coupling have been proposed [9]. Some of them are 
concerned with the study of 3g decays of Q 0  resonances at higher energies. In a 
recent note we presented the results of the acoplanarity distribution d~,/dA for all 
four-jet final states and compared them to the non-perturbative background [ 10]. In 
this paper we report the details of. the calculations, their interpretation and the 
influence of background effects. In particular we consider the final states qqgg and 
qqqq separately and for the latter process we consider particular flavour final 
states using massive quarks which might be of use for comparison with future 
experimental data. 

The outline of the paper is as follows. In sect. 2 we describe the framework of our 
calculations and give predictions for dtr/dA, dcr/dT and dtr/d,~ where S denotes 
~phericity. In sect. 3 we study the most singular region of the four-jet distribution 
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using various variables and cut-off procedures. Some results for massive four-quark 
states are reported in sect. 4. Finally, in sect. 5 we summarize our conclusions. 

Technical details are relegated to the appendices. Appendix A contains the 
complete cross-section formula for the process e+e-~ qqgg. In appendix B we 
analytically calculate the leading log contributions to the two cross sections for 
various cut-off procedures. In appendix C we present formulae for the 6 structure 
functions that occur in these processes and comment on more stringent tests of 
four-jet states using angular correlations and asymmetries similar to the earlier work 
on three-jet final states [11]. 

2. Acoplanarity distribution of four-jet states 

To order a~ the four-jet cross section is given by the two sets of diagrams shown in 
fig. 1 which correspond to the final (jet) states 

e+e - -*  q(pl)ct(l~)g(pa)g(p4) , (2.1) 

e ÷e - -> q(Pl)~t(P2)q(pa)q(P4) . (2.2) 

The Pi denote the momenta of the produced particles, quarks, antiquarks or gluons. 
Throughout this section the quarks are assumed to be massless. The differential cross 
section is given by 

e 4 3 

i=l ~pio ~P+ + P- - -k=I  ~'~ Ns ' 
(2.3) 

where q = p÷ +p_. For unpolarized beams the lepton tensor is: 

{p+, p_},~ = p~+p~_ +p~_p~. _ g~½q2 .  (2.4) 

The hadron tensor Hu~ contains summations over the final spin, colour and flavour 
states including the appropriate quark charge factors ~ or ~. Ns is a statistical factor 
due to the identity of final-state particles which is 2 for (2.1) and 4 for (2.2). An 
equivalent procedure would be to integrate only over half and quarter of phase 
space, respectively, when calculating integrated quantities. As an example we have 
written down the formulae for H,,~ for e+e -~, qclgg in appendix A. 

The differential cross section (2.3) depends on five independent "hadronic" 
variables describing the 4-jet final state which one could choose as xl, x2, x3, x12 and 
X13, where 

21p, I 2Iv, +vii 
x i = , f ~ ,  x, i= ~ , (2.5) 

and two angle variables 0 and X which describe the orientation of the "hadronic" 
4-jet event relative to the leptoni c beam direction. We have used a Monte Carlo 
routine to integrate over the angle variables and 4 of the 5 hadronic variables leaving 
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Fig. 1. Tree diagrams for four-jet  production (a) qC:lgg and (b) qqqq. 
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us with a differential distribution in one variable which we choose as the acoplanarity 
defined by [7] 

i 2 /~!pootl~ 
A = 4 m i n /  ~,IP, I J " (2,6) 

The sum in (2.6) runs over all particles in the final state and / Pout is  measured 
perpendicular to a plane chosen to minimize A. We consider the variable A first. 
Four  jets, as compared to three- and two-jet final states, are characterized by a 
non-vanishing A. Of course, instead of A, other  variables can be chosen, like thrust T 
or sphericity S. However,  differential T and S distributions are not singularity free at 
the tree-graph level since the remaining phase-space integrations include singular 
configurations of quarks and gluons. Therefore,  from this point of view, it is natural 
to study the dependence of the cross section on A first. We show the A distribution 
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Fig. 2a. dtr/dA for e+e - ~ q(lgg (full curve), e~e - ~ qC:lq~l (dashed curve) and e+e - ~ qqgg in the leading log 
approximation (dashed-dotted curve). 

do'IdA normalized to the zeroth-order cross section tro=4"lrot2~aQ2a/q 2 for 
X/-~q2=E =40 GeV in fig. 2a. Since the q2 dependence of tr~ ~ dtr /dA is determined by 
Ots2(q 2) the result can easily be extrapolated to other energies by the known q2 
dependence of as(q 2) where 

as(q2) = 1 2 ~ r / ( 3 3 -  2N,) ln-~2 ) . (2.7) 

We take Nf -- 6 and A = 0.5 GeV. 
The differential cross section dcr /dA diverges for A-~ 0. For e + e - ~  qclgg the 

leading log behaviour is 

d~r = 8 ( a s ~ 2  1 
°'~]d'-A - 9 \ z t /  A -]lnA]3 (2.8) 

as A ~ 0 (see appendix B). The leading log formula can be seen to give a good 
description of the differential A distribution up to rather large A values. For four 
massless final-state particles A is bounded between 0 and ~. The maximal A value 
occurs for the configuration where the 4 momenta point from the center of a 
tetrahedron [with side length (~q2)1/2] to its 4 corners which gives A = ] according to 
eq. (2.6). We do not show the corresponding comparison for e+e - ~ qftq~l where the 
leading behaviour is ~ A - ]  In 2 A. The latter cross section can be seen to be = 10 times 
smaller than the former over most of the region of A. 

The comparison with d t r / d A  for non-perturbative 2-jet production calculated in a 
Feynman-Field model [12] is presented in fig. 2b. This distribution which includes 
also weak decay effects of c and b quarks [13] is still rather broad at x/q -~ = 40 GeV. 
The input pT for the Feynman-Field model is trq =(p2)1/2=0.25 GeV. The average 
A for this non-perturbative 2-jet distribution is calculated to be A,o,r,~rt = 0.04. This 
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Fig. 2b. dcr/dA for non-perturbative two-jet contribution in a Feynman-field type model [13] (full curve), 
for e+e - -* qqg with quark and gluon fragmentation (dashed curve) and for e+e - ~ qqgg + qqqcl with quark 

and gluon fragmentation (dashed-dotted curve). 

is a much larger value than the value assumed in our earlier work [10]* (Anonpert = 

0.01) which was based on the estimate [3 (4th ref.)] 

16 
<A)nonpert = - - - ~  <n - 2)2<p+)nonpert , (2.9) 

where we used (n)= 1.5 (2 + 0.7 In q2) for the total multiplicity as extracted from 
low-energy data. The larger value of (A)nonpert in the Feynman-Field model is mostly 
due to higher particle multiplicities in this model for higher energies which agrees 
much better with the new high-energy data [4] than the naive extrapolation of the 
low-energy data. Some increase of (A)nonpert is also due to the jet broadening from 
weak decays of b quarks. Additional background comes from fragmentation cor- 
rections to the three-jet cross section qqg. Although this contribution is reduced in 
magnitude, if compared to the 2-jet contribution, by a factor = 10 it is broader than 
the 2-jet contribution. The 3-jet contribution is calculated with a thrust cut-off 
Tc= 0.9 motivated by demanding O'qqg(Tc)/cr0=as. Instead to compare with the 
tree-graph prediction dcr/dA of fig. 2a we have supplemented the 4-jet contributions 
with quark and gluon fragmentation also. The result for any acoplanarity cut-off 
Ac = 0.05 (for a justification see below) is shown in fig. 2b also. The normalization of 

* Note that the differential A distribution shown in [10] is for the sum of the two processes. The scale of 
the ordinate axis in the relevant fig. 2 of [10] is in error and should he multiplied by a factor 250 to 
obtain the correct normalization. 
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the three curves in fig. 2b is such that the area under the sum of the three 
contributions is one. The relative normalization of the 2-jet, 3-jet and 4-jet cross 
sections is 0.82, 0.13 and 0.05. 

Fig. 2b shows that A must be larger than 0.3 before the 4-jet contribution exceeds 
the background from q~g. Therefore this would be the region where the perturbative 
4-jet contribution can be tested. In this region (1/cro) dtr /dA dropped down by two 
orders of magnitude. Thus high-statistics experiments are needed to see the a~ 
terms. However, applying a restrictive T-cut would eliminate almost the total two-jet 
signal without losing any four-jet events. For example, considering only events with 
T <- 0.75 leads to o'(2-jet) : cr(3-jet) : o-(4-jet) = 0.02:0.66 : 0.32, so that the 4-jet 
term is very much enhanced. 

Because of the singularity for A ~ 0 [see (2.8)] the differential cross section do' /dA 
is not integrable over A. This is to be expected because of the infrared singularities 
associated with collinear and soft emission of quarks, antiquarks and gluons in (2.1) 
and (2.2). 

Of course, when calculating the total cross section to order a~, these singularities 
cancel against the corresponding singularities of the one- and two-loop virtual 
contributions. Due to the singular behaviour of do'IdA as A-* 0 the differential 
distribution should be considered to be reliable only for values of A above some 
cut-off A¢. Integrating do' /dA from 32- to A¢ one obtains a cut-off dependent 4-jet 
cross section tr (Ac) which is shown in fig. 3. A cutoff value for which tr (A¢)/tro ~- a 2 ~_ 
0.04 should be considered a reasonable choice above which a perturbatively 
calculated dtr /dA can be trusted. From fig. 3 this corresponds to A¢ = 0.07. 

We also show in fig. 3 the ratio of four-jet to three-jet production as a function of 
Ac. The three-jet cross section is computed with a thrust cut-off at T¢ = 0.9. We see 
that this ratio is quite large if the A cut-off is chosen in the vicinity of 0.1. 

Since only the tail of the A distribution is a genuine prediction of perturbative 
QCD, the QCD prediction for the average acoplanarity (A) may not provide a 
realistic measure of perturbative QCD since (A) obtains non-negligible contribu- 
tions from the region A = 0 where the 2nd order calculation can no longer be trusted. 
For this reason the 2nd-order QCD value for (A) as calculated in our earlier 
publication [10] must be considered to be an overestimate and should not be naively 
compared to (A),o,~rt. Higher moments (A") would be better measures of the QCD 
contribution since the region A -~ 0 is de-emphasized. Thus measurements of the 
energy dependence of (A) which is free of the above difficulty are important. 
Whereas the non-perturbative background has a (In 2 E / E  ~) energy dependence, one 
would have (i/In s E )  for the QCD contribution. 

In order to avoid the A region close to 0 it may be more sensible to compute an 
average acoplanarity with a lower cut-off A¢, i.e., 

dtr 
(A)A¢ = O'o 1 dA A d---A-" (2.10) 

¢ 
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Fig. 3. Integrated four-jet cross section as a function of the acoplanarity cut-of[ Ac for e÷e - ~ qClgg and 
e÷e- ~ q~lqCl separately. Ratio of o- f lou r - je t )  to ~ (three-jet) as a function of Ac.  The qclg cross section is 

c u t  o f f  at  Tc = 0.9. 

In table 1 we have listed the result of such a truncated average for several values of 
Ac. These numbers could be compared to experimental (A)Ac defined in the same 
interval. Note that the definition of (A)Ac in (2.10) is unconventional since the 
average value does not lie in the interval in which the distribution is averaged. In 
order to have an idea of how different cut-off choices affect the phase-space 
integration region we have listed in table 2 phase-space fractions for various choices 
of A¢ and (8, e). 

The subset of four-jet final states consisting of four quark jets has much smaller 
cross section than the qqgg jets. For all relevant cut-off values A~ the ratio of 
~r(q(:lq~l)/o'(qqgg) is roughly 0.1. (see fig. 2a). One can check that tr(qqgg) is 

TABLE 1 
(A) as a f u n c t i o n  o f  A¢ 

Ac (A) 

0.01 0.013 
0.02 0.010 
0.05 0.0057 
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TABLE 2 
Phase-space fraction as a function of Ac 

Ac fraction (%) (8 = 5 °, • ) fraction (%) 

0 100 0 100 
0.001 75 0.001 93 
0.005 57 0.005 90 
0.01 46 0.01 88 
0.05 20 0.05 67 
0.10 9.4 0.1 40 
0.15 4.9 0.15 16 

well-described by the leading log formula up to fairly high values of Ac as can be 
expected from the accuracy of the leading log formula for the differential dis- 
tribution. However, tr (qCtqCl) is substantially below the leading log contribution even 
for very small Ac values and does not even show the Iln 3 A~ I dependence of the 
leading log formula (see appendix B). We take this as an indication that non-leading 
log contributions are still important in this case for the A,  region under considera- 
tion. 

One of the aims of our investigation was to see how large the influence of the 
three-gluon coupling is. In some sense this is an ill-defined question since on the one 
hand the relative contribution of the three-gluon coupling depends on the gauge 
choice and on the other hand theories with only global SU(3) symmetry are not 
renormalizable (although for our tree-diagram renormalization this is not relevant). 
Therefore we compare to an abelian theory (i.e., QED with massless and colourless 
quarks) which is gauge invariant in itself. For such a theory we get for the qclgg cross 
section 

tr (q~lgg, QED) --- 0.15~r(q~lgg, QCD).  (2.11) 

From (2.11) we would estimate the effect of coloured gluons in the four-jet cross 
section to be 85%. Of course, if we take into account that tr0(QED)=~tr0(QCD) 
corresponding to an abelian theory with coloured quarks and colour-singlet gluons, 
and further, if we normalize the abelian coupling as to e+e - ~ qclg (as (abelian) = ~as 
(non-abelian)), the relative qclgg rate would be multiplied by ~. In this case the 
relative weight of qclqcl is enhanced by a factor 8, approximately, compared to the 
QCD case. 

Finally we present the dependence of the four-jet cross section on some other 
variables. As we mentioned already, the four-jet cross section depends on five 
variables so that multidifferential cross sections such as, for example, d2tr/dA d T or 
d2tr/dA dS could be measured in principle. As this requires high-statistics data 
which will not be available for some time to come, we do not present results on these 
two-dimensional distributions but integrate these over A. As discussed earlier, the 
singular region A -~ 0 has to be excluded in this integration. In figs. 4 and 5 we present 
differential thrust and sphericity distributions for an acoplanarity cut A¢ = 0.05. The 
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Fig. 4. Differential thrust distribution with acoplanarity cut Ac = 0.05. Normalization described in text. 

463 

1do"  

(Z2 

0.15 

0.1 

O06 

I I I I 

E= 40 C~ 

I 

02 (I/. 0.6 08 1.0 
$ 

Fig. 5. Differential sphericity distribution with acoplanarity cut Ac = 0.05. Normalization described in 
text. 

curves are normal ized  in such way, that  the area under  the curve gives the in tegrated 

cross sections in fig. 3*. 

It is clear that  the tests of  four- je t  behav iour  in Q C D  presented  so far are ra ther  

limited. T h e y  p resumably  test very little of  the vector  character  of  the gluons and 
finer details of  the th ree-g luon  coupling. For  this purpose  angular  correlat ions and 
asymmetr ies  of  the final jets would  be much  more  suitable. 

Such tests will require  very high statistics and are not  likely to become  relevant  in 
the initial stages of  the P E T R A  and P E P  physics programs.  Nevertheless  we discuss 

* The lower kinematical limit on T is x/~. 
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some aspects of these questions in appendix C in order to provide a rough idea on the 
physics potential of such measurements. 

3. (8, e )  cuts for e+e - - ,  qflgg 

In sect. 2 we demonstrated that the leading log formula for the differential A 
distribution gives a surprisingly good account of the full 2nd-order calculation up to 
quite large A values. In this section we discuss the accuracy of the (integrated) 
leading log formula using the angle-energy cuts (8, e) as introduced by Sterman and 
Weinberg. We shall concentrate on the case e+e ---, qftgg since it is the dominant 
2nd-order process. 

From the explicit expressions in appendix B it is clear that the most singular 
configuration corresponds to the gluons becoming soft and collinear with the quark 
(or antiquark). Thus the boundary of the most singular phase-space region is defined 
by 0q~q)~ => 26 and IPg[ => eV~q 2. When studying the dependence of the cross section on 
angle-energy cut parameters one has to, however, also cut out regions of phase space 
which contain non-leading singularities, such as those arising from the 3-gluon vertex 
g ~ gg when the two gluons become collinear. We thus define our cuts as 

Oii --- 2 8, (3.1 a) 

Ip, l-- ~,/~, (3.1b) 

for i,/" = 1 . . . .  4, i.e., we cut on the topology of events with no distinction between 
quarks and gluons. Simple geometrical arguments show that these conditions are 
sufficient to populate 6 5. of the boundary of the most singular phase-space region [the 
reduction factor of 6 5- is due to the fact that (3.1a) excludes the collinear two-gluon 
configuration]. Of course these conditions also exclude events not on the boundary of 
the most singular region which is, however, of no consequence in the leading log 
comparison. 

In order to investigate the quality of the leading log cross-section formula we have 
done a "high-statistics" Monte Carlo cross section run using variable (8, e) cuts as 
defined in eq. (3.1). In fig. 6 we exhibit the e dependence of the 4-jet cross section for 
various 8 values. 

We also present our results in terms of the ratio 

R (8, e) = O 'qg lgg  ( 8 ,  \ / LLA e ) / O'q~gg, (3.2) 

where 

LLA 5 128(  2 
Crq~gg/O'o=~ 9 \ z r /  ln2 8 In 22e (3.3) 

[see (B.5)] includes the above factor 65-. The result of this comparison is shown in fig. 7 
(dotted lines) for 8 = 5 ° and 1 °. From the curves in fig. 7 it is clear that one has to 
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Fig. 6 . 8  and e dependence of (qclgg) cross section. E = 40 GeV. 

465 

choose rather small values of 8 and e before the leading log formula (3.3) approaches 
the result of the Monte Carlo integration. This shows that non-leading terms are not 
negligible. 

The fact that R(8, e) tends to zero as e -* ¼ in fig. 7 can be traced back to the 
energy cut which gives Orglclgg ( 8 ,  E' = 0.25)= 0 as the kinematical limit of energy 
equidistribution is reached. The presence of this kinematical zero tends to distort 
R(8, e) as e * 0.25. Therefore  we have also included in fig. 7 the comparison to a 
leading log formula with the same kinematical zero by adding a non-leading 
contribution to (3.3) such that In 2e * I n  4e. The agreement with the exact cal- 
culation becomes worse. One sees, however, that the effect of the spurious zero at 
e = 0.25 is weakened. We have not systematically searched for improvements of the 
leading log formula by adding suitable non-leading terms. 

Judging from the accuracy of the leading log formula for the acoplanarity 
distribution discussed in sect. 2 as compared to the (8, e) leading log formula, one 
must conclude that non-leading terms do not play such an important role in the 
former case as in the latter. In particular the leading log formula for o'(A¢) is still 
quite good for values of Ac for which ~r(Ac)/~ro << 1 where 2nd-order  perturbation 
theory can still be trusted. This is not true for the (8, e) case, where the leading log 
result shows larger deviations from the calculated cross section in the (8, e) region 
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dashed curve is the case where In 2e is replaced by In 4e. 

where tr(8, e)/tr0<< 1. On the other  hand, one should not rely on cross-section 
estimates based on too small A and (t~, e) cuts even if the leading log accuracy is good 
if the cuts corresponds to tr(cuts)/tro > 1. In such a case the finite-order perturbation 
theory calculation does not make sense any longer. In this context we would like to 
remark that the estimate of the (qqqq) production cross section of de Grand et al. [3] 
based on an invariant mass cut ~ = 0.01 must be considered to be too large. They 
used eq. (B.11) and Nf=  4 to obtain trqqqq/Cro= 1.4 which is clearly too large for 
perturbation theory to be valid. This may be ameliorated by the observation that the 
leading log formula trqqqq (~)LLA (B. 11) is a substantial overestimate of the true cross 
section even for this ~ value which, however, leads to the same conclusion that the 
(qqqq) cross section given in [3] is an overestimate. 

4. Massive four-quark production 

Several authors have advocated the use of QCD perturbation theory to estimate 
associated new flavour production by calculating e + e - ~  qqqq for massive quarks 
with new flavours [15]. We have extended the calculations for massless quarks 
described in the previous sections to the massive quark case. It is clear that there is no 
need for an additional cut-off in the (qqqq) case since the massiveness of the quarks 
provide a natural cut-off. 
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TABLE 3 
Relative rates for heavy quark production 

E c~c~/c~ c~bb/bb bbbb/bb 

40 0.0052 0.0059 0.00029 
80 0.0109 0.019 0.0019 
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In table 3 we present our results for the three cases (i) e+e - --, c~E, (ii) e+e - ---> cEbb 

and (iii) e + e - ~ b 6 b 6 ,  where we have used mass values mc = 1.6 GeV and mb= 
4,6 GeV and energies of v / -~=40  GeV and 80 GeV. The rates relative to the 
zeroth-order  cross section o'0 are extremely small. In this case o'0 is calculated using 
massive quarks, i.e., c~ in cases (i) and (ii) and bb in case (iii). For example, at 
x / ~  = 40 GeV the (c~bb) production rate is only 0.5% of the (c~) production rate. 
Our results agree with the numerical results of [15]. Note, though, that the leading 
log expression used in [15] for comparison is too large by a factor of two (see 
appendix B). 

In the case of associated charm production (e+e - ~ c~c~) our calculation is exact as 
against the corresponding one in ref. [15] since we include the full interference 
structure which is neglected in [15]. We found that the contribution of the inter- 
ference term is indeed negligible at these energies. Since the interference terms 
contribute only at the non-leading log level one would like to infer from this that the 
leading log terms are already dominant at these energies. In this context the large 
discrepancy between the exact result and the leading log formula which still persists 
at higher energies remains a puzzle [15] (we have checked that even for q 2 / 4 m 2 =  
105, crLLR/cr = 1.9 with a Monte Carlo integration error of 15%). 

In our calculations we assumed the strong coupling constant as to be determined 
by the energy x/~q 2. With massive quarks the choice of as is not unambiguous and 
other energy scales could become relevant, such as x/Q --~, where x/Q -~ is the mass of 
the virtual gluon. The corresponding calculated cross sections would then be larger 
[15]. 

5. Summary and conclusion 

We have calculated the four-jet  production processes e+e--->q~lgg and e + e - ~  
q~lq~l to lowest-order QCD perturbation theory. We have found that (qclgg) produc- 
tion dominates over (qCtq(t) production which can be in part traced to the fact that the 
first process is more singular in the limiting 2- and 3-jet configurations. 

The calculated acoplanarity distribution at 40 GeV shows that the tail of the hard 
perturbative QCD processes should become visible above the non-perturbative 2-jet 
background for acoplanarity values A > 0.2 and above the 3-jet background for 
A >0.3 .  If it should turn out that one is above t t  threshold at 4 0 G e V ,  the 
interpretation of large-A events becomes more difficult due to the large-acoplanarity 
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t-background. One then has to either go to higher energies where the t-originated 
acoplanarity distribution shrinks or try to remove events with t-signature from the 
data sample. 

We have found that the accuracy of the leading log formula for the acoplanarity 
distribution and the At-dependent (qqgg) cross section is surprisingly good and can 
be used with some confidence to quickly estimate the 4-jet cross section. This is not 
true for the (qqqcl) cross section where the leading log acoplanarity formula 
overestimates the true cross section by a substantial amount. The same statement 
holds true in the latter case for the other cut-off choices considered in the paper. We 
have calculated the rate of multiple heavy flavour production in the process 
e÷e - --> q~lq~l using massive quarks in the final state. The production rate was found to 
be quite small. 

Finally we pointed out that measurements on the angular distribution of the 4-jet 
final states relative to the beam axis can provide even more powerful and detailed 
tests of the dynamics of interacting spin-½ quarks and spin-1 gluons. 

Appendix A 

Cross-section formula  for e +e--* qFlgg 

We shall give an explicit cross-section formula only for the dominant subprocess 
e+e---> qqgg. For this purpose we introduce the following notation: 

s =p3.p4, x =p l .p3 ,  

t =P2"p3 ,  y = p l " p 4 ,  (A.1) 

u = p 2 " p 4 ,  z = p l " p 2 ,  

and 

We can then write 

(i, j)~" = P~P7 +P~'P~ - g~'~Pi "Pj. (A.2) 

8 

H,v=(4cras) z ~ O 2 Z A ( m , n ) , , ~ ,  (A.3) 
k z l  m ~ n z l  

where (dropping the tensor indices ( /~ )  except in g~) 

A(1, 1) = 64(3, 4 ) / 3 x u ,  

A(2, 1) = 64{-(2, 2)(s + x ) -  u[(3, 3)+(1, 3)]+(1, 2)(s + t) + (2, 4 ) ( t -x )  

+ (2, 3)(s + 2t  + u + z ) + (3, 4)(t  + z ) + g ~ , ~ ( s z - t y - u x  ) } /3ux ( s  + x + y ) , 

A(2, 2) = 64{(s + x)[(1, 2) + (2, 4)] -  (2, 3 ) y } / 3 x ( s  + x + y)2, 
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A(3, 2) = 6 4 { -  (1, 1)[st + (t + u ) ( t  + u + y + z)] - (3, 3)uy - (4, 4)x t  

- (2 ,  2)[sy +(x  +y) (x  + y  + t + z ) ] + ( 3 ,  4 ) ( y t - s z  + x u )  

+(1, 2 ) [ s ( y + x + u  + t ) + z ( 2 z  + 3 y + x + u  + 3 t ) + y ( y + x + 2 u + 4 t ) + 2 x u  

+ t ( 2 x + u  + t ) ]+ (1 ,  3 ) [ z ( s+z  + y  + t ) - u ( 2 y + x + u + t ) ]  

+(2, 3)[(z + y ) ( z + y  + x + t ) + y ( s + u + t ) ]  

+(1, 4)[(z + t ) ( z  + t + u + y) + t(s + y + x)] 

+(2,  4 ) [ z ( s  + z + y + t ) -  x ( y  + x + u + 2t)  

+ g . ~ [ s ( - s z  + ty - tz + ux  + uz  + x z  - y z  - 2z 2) 

+t(ty - ux + uy  + x y  + 2 x z  + y 2 + 2yz) 

+ u ( - u x  - x 2 -  x y  + 2 x z  + 2 y z ) ] } / 3 x u ( s  + x +y)(s  + t +  u) ,  

A(4,  1)= 8z[(1, 1 ) ( s + u + t ) + ( 2 , 2 ) ( s + y + x ) - ( 1 , 2 ) ( 2 s + 2 z + y + x + u + t )  

+(1, 3 ) ( u - y -  z )+  (1, 4 ) ( t - x -  z )+  (2, 3 ) ( y - u  - z ) +  (2, 4 ) ( x - t - z )  

- 2 z  (3, 4) + 2g.v(ty + ux  - s z ) ] / 3 t u x y ,  

A(4, 2) = 8{-(1, 1)st - (2, 2)x(s + y + x ) -  (3, 3)zy + (1, 2)[s(x + t) + x ( u  + t)] 

+(1, 3)(sz + ty - x u )  + (1, 4)t(x + y) + (2, 3)(zx - ty + x u )  - (3, 4)zy 

- (2 ,  4)[z(s + 2y + x) + y(x + t) + (x - u ) x ]  

+ g . ~ x ( s z  + ty - u x ) } / 3 t x y ( s  + x + y) ,  

A(5, 2) = 16{-s(1,  2 )+(x  + y)[(2, 3)+(2 ,  4 ) ] } / 3 x y ( s  + x  + y ) ,  

A(5,  3) = 8(u + y + z){(1, 1)( /+ u ) +  (2, 2)(x + y ) - ( 1 ,  2)(y + u + 2z + x + t) 

-z [ (1 ,  3) + (1, 4) + (2, 3) + (2, 4 ) -  2 s g . ~ ] } / 3 u y ( s  + t + u) (s  + x + y) ,  

A(7,  1) = 12{-u(1,  1)(3s +2x  + y ) - ( 2 ,  2)(2sy + s x  + 2 y 2 + 2 x y  +2x  2) 

-2(3 ,  3 ) x u  - 2 ( 4 ,  4 ) z x  + u(1, 3)(y - s - 2x) 

+ ( 1 , 2 ) [ s ( - s + 2 z  + 2 y + x + u - t ) + y ( 2 z + y + 2 x + 2 u + t )  

+x(4z + u  + 2t)]+ (1, 4)(3sz + z y  + 2 z x  - 2 y t + 2 x u  + x t )  

+(2, 3)[s(z + 2y + 2x) + yx + (y + 2x)(z + u + 2t)] 

+(2, 4)(sx + 2zy + z x  + yx  + 2 y t -  2x 2 -  x u  + 2x t )  

+(3, 4)(z (s + y + x) + 2xt )+  g . v ( - s 2 z  + s z y  + sy t  + sxu  

- y 2 t  + 3 y x u  - 2 x 2 u ) } / s x u  (s + x + y) ,  
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A(7, 2) = 24[(1, 2 ) ( - s  2 - sy - 2sx  + x 2 - yx) + (2, 3)(sy - sx + y2 + x 2) 

+2(2, 4)(sy + s x  + y2 + 2yx + 2 x 2 ) ] / s x ( s  + y  +x)  2 , 

A(7, 7) = 12[(1, 2)(s 2 - 9sy - 1 l s x  - 2y 2 - 14yx - 4x 2) + (2, 3) ( -3sy  - 8sx  

+5y 2 -  3yx) + (2, 4 ) ( -8sy  - 5sx  - 5yx + 3x2)] / s2(s  + y + x) 2 , 

A(8, 2) = 12[(1, 1)(3su - s t - y u  - y t + x u  +xt)  + (2, 2 ) ( -2sy  + s x  - 2 y 2 -  3yx - x  2) 

-2(3 ,  3)yu -2 (4 ,  4)xt + (1, 2) 

x ( - s 2 - 2 s z  - s y  - s x  + s u  +2zy  - 2 z x  + y2 + 2yu +3y t  

- x 2 + 2 x u  - x t )  + (1, 3)(sz + 3 s u  +zy  - z x  - 3 y u  - x u )  

+(1, 4) ( -3sz  - s t  + z y  - z x  + 3 y t  + xt)  

+ (2, 3)(-sz  + 3zy + z x  + y2 + yx + yu + 3yt) 

+(2, 4)(2sz + 2 s x  +2zy  - y x  - x 2 - x u  - 3 x t ) +  (3, 4 ) 2 ( y t - s z  + x u )  

+g~,~( -3s2z-s ty  + 5sux  - s x z  - 5 sy z  + txy + ty 2 - ux  2 

- y x u ] / s x  (s + x + y)(s  + u + t) , 

A(8, 7) = 12{8s(1, 1)(u + t) +8s(2,  2)(y + x ) -  8yu(3, 3 ) -8x t (4 ,  4) 

+(1, 2)[s(6s - 16z + y + 3x  + u)  + t (3s  + 14y + 8x) + u (4y + 14x)] 

+(1, 3)[s(3u - 8z) + u (3x - 5y)] + (1, 4 ) [ s (5 t -  8z) + t(5y - 3x)] 

+(2, 3)[s(3y - 8 z ) + y ( 3 t - 5 u ) ] + ( 2 ,  4)[s(5x - 8 z ) + x ( 5 u  - 3 t ) ]  

+8(3, 4)(ty + xu  - s z )  + 8g ,~s ( s z  + ty + xu ) } / s2 ( s  + y + x ) ( s  + u + t) . 

These formulae already include the colour factors. The numbering of the matrix 
elements exactly corresponds to the order in fig. 1. The other matrix elements are 
obtained by performing permutations of the momenta. By interchanging momenta 
Pl and P2 we can generate term by term the matrix elements 

(A(2, 1); A(2, 2); A(4, 2); A(7, 1); A(7, 2); A(7, 7); A(8, 2))---> 

(A(6, 4); A(6, 6); A(6, 1); A(8, 4); A(8, 6); A(8, 8); A(7, 6)). 
Similarly the interchange of momenta P3 and p4 generates new matrix elements 

(A(1, 1); A(2, 1); A(2, 2); A(3, 2); A(4, 2); A(5, 3); A(7, 1); A(7, 2); A(8, 2))--* 

(A(4, 4); A(5, 4); A(5, 5); A(6, 5); A(5, 1); A(6, 2); A(7, 4); A(7, 5); A(8, 5)). 

The simultaneous interchange of pl with P2 and p3 with p4 generates the remaining 
matrix elements: 

(A(2, 1); A(2, 2); A(4, 2); A(5, 2); A(7, 1); A(7, 2); A(8, 2)) 

(A(3, 1); A(3, 3); A(4, 3); A(6, 3); A(8, 1); A(8, 3); A(7, 3)). 
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The calculation of the matrix elements was done in the Feynman gauge. It is then 
necessary to cancel the contribution from the unphysical gluon polarization by 
adding ghost diagrams. These appear in the matrix elements A(7, 7), A(8, 7) and 
A(8, 8). Ghost contributions can of course be avoided by choosing a transverse 
gauge. However, since the propagator in the transverse gauge contains several terms, 
the complexity of the matrix elements grow like powers of the number of gluon 
propagators and become unmanagable even when symbolic computer programs are 
used. Our cross-section calculations have been done with REDUCE [16]. 

Appendix B 

A n a l y t i c a l  leading log calculat ions 

As has been emphasized in the main text, an integration of the order a 2 
differential cross section over the whole phase-space region from the tree-graph 
contributions alone is not meaningful in massless QCD since one picks up essential 
singularities from those regions of phase space where off-mass-shell quanta go 
on-mass-shell. As is well-known, this does not pose any principal difficulty for the 
theory since these essential singularities are cancelled by the singularities of the a~ 
virtual one- and two-loop contributions. Meaningful four-jet cross sections are 
obtained by placing cuts on the integration such that the singular regions are avoided. 
The so-defined cross sections will then be functions of powers of logarithms of the cut 
variables. It is the purpose of this appendix to describe somewhat the analytic 
evaluation of the power and coefficient of the leading log contribution to the 
two cross sections e+e--~q~lgg and e+e--~qqqq for several choices of cut 
parameters. 

The best known of the cut parameters are the (8, e) cuts introduced by Sterman 
and Weinberg [ 1] which in our context correspond to demanding that any two quanta 
are separated by at least 28 in angle and that each quanta carry at least a fraction e of 
the total energy. A second possibility to avoid the singular configurations is to place 
cuts on the invariant mass of pairs and triples of the four produced quanta, i.e, by 

/ \ 2 >  A 2 demanding that (pi +pi)E~eq 2 and ~pi+pi+Pk) = e q  . Finally, the infrared and 
collinear divergences can be avoided by placing a cut on the topology of the events, 
i.e., by demanding that the events be acoplanar (A _-> Ac). The various cuts introduced 
here are sufficient to avoid the singular regions but not always necessary. They do, 
however, include the whole boundary of the most singular phase-space region 
yielding the leading log contributions [with the exception of the (8, e) cut for 
e +e--~ qclgg where the angle cut between the two gluons has to be dropped as 
discussed in sect. 3). 

The Feynman gauge used in the main part of this work is not well-suited for the 
calculation of the leading log contributions since there are many diagrams contribut- 
ing at the leading log level. In order to reduce the number of leading log diagrams it is 
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more convenient to use a physical non-covariant gauge ( n . A  ~ =0) with the 
propagator 

k~,n,, + k,,n,, 2 k~,k,, 
n (B.1) d~,v(k) = -g~,~ -~ k.  n (k. n) 2" 

The number of leading log diagrams is further reduced by choosing for n the 
momentum of the quark (or antiquark) being produced at the electromagnetic vertex 
[17]: the leading log contributions come only from those diagrams where the (soft 
and collinear) gluons are emitted from the opposite antiquark (or quark) line. 

We take n = p2. The respective leading log diagrams are shown in fig. 8. Diagrams 
resulting from those in fig. 8 by symmetrizing identical particle legs in the final state 
(one for e+e - -~ qclgg and three for e+e - ~ q~lq~l) are not shown explicitly. 

We start with the process e÷e-~q~lgg. The leading log contribution to the 
integrated cross section comes from the region of phase space where the gluons with 
momenta pa and p4 are soft and approaching collinearity with the quark with 
momentum Pl. Thus we can neglect terms proportional to P3 and p4. Calculating H~,~ 
as defined in (2.3), we obtain in the LLA 

H~, =2~3 g 4 ~  O2{pl ,  , S12S13S14 1 1 
P 2 ~ v  .3 .-T"--.'-2- W + -L'T" , (B.2) 

a S134S24S23 S14 S13 

where S~jk = (p~ + p~ + pk) 2, S~ = (p~ + pj)2. 

I 

I 
(b) 

1 

Dr*. 

I 
(a) 

Fig. 8. Leading log diagrams in the transverse gauge (n = P2) for (a) e+e--~ qclgg and (b) e÷e---* qciqcl. 
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The second term in the square bracket of (B.2) results from the symmetrization of 
gluons with momentum p3 and p4. The hadronic tensor (B.2) can be simplified by 
adding a term 2/s14s13 to the square bracket in (B.2). This term, which corresponds 
to fig. 8a but with the gluon lines crossed, contributes only at non-leading level. With 
this trick we obtain 

H~, = ~ g 4 ~  2 (Pl 'p2) 2 
O~{Pb P2}~,~ 

a (Pl" P4)(Pl" P3)(P2 "P4)(P2 'P3) 
(B.3) 

The phase-space integration is considerably simplified at the leading log level by 
noting that p3 and p4 are soft and can be omitted from the energy-momentum 8 
function. The integration over Pl and p2 can be done trivially with the result 

f d3pl 84(q - p l  -p2){pl, P2}~,~{P+, P-}~'~ = 1 q4. (B.4) dap2 

2plo 2p2o 

We can now perform the remaining integrations for the various sets of cut 
parameters. 

(i) Angle-energy (6, e) cut* 

On substituting angular and energy variables for P3 and P4 one finds 

O'q~lgg = O 'o8C  In 2 8 In 2 e ,  (B.5) 

where CF =4. Note that eq. (B.5) is the third term of an exponential series 
tr0 exp (4CF(as/Tr) In 8 In e). The cross sections are positive in every order as must 
be the case, since we are integrating over positive measures. The corresponding 
cross section for the phase-space integrations inside the above boundaries need not 
be positive definite in every order since virtual gluon graphs also have to be 
included and, in fact, one finds an exponential series with alternating signs 
o'0 exp (--4CF(adcr) In 6 In e) [14]. 

At first sight this is puzzling since one expects the logarithms to cancel when adding 
the two contributions in the total cross section. However, there are other contribu- 
tions containing leading logarithms. For example, in 2nd order one has the three-jet 
contributions, which, at the leading log level, result from the contributions where one 
gluon approaches the cut boundary from the inside and the other from the outside. 
There are two of these three-jet contributions with negative signs which cancel the 4- 
and 2-jet leading logs. A similar reasoning shows that the cancellation of leading logs 
takes place in every order. 

* We would like to acknowledge some useful discussions with J. Stehr. 
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(ii) Invariant mass (~) cut 

It is convenient to use the variables w, x, y and z introduced in [6]. In the space of 
these variables the remaining integral completely factorizes and one obtains 

2 
L L A  ,,--,2 (~)½1n4~ (a.6) 0rq~lgg ~ Or0{..~ F 

Using the first order result [6] one again has the first three terms of an exponential 
series ~ro exp (Cv(adzr)  In 2 ~). 

(iii) Acoplanarity (Ac) cut 

Using the same leading log approximations leading to eqs. (B.3) and (B.4) one 
finds 

do" 2 2 1 dSl3 dSl4 dSE3 ds24 (B.7) 
=o'oCF(adlr )  2 s13 s14 S23 S24 

Since 

this gives 

Aoc min {(pi .p i ) /q2} ,  forA-->0, 
i,](i#]) 

-1 dcr 1 2 2 1 O'o ~-~=~CF (as/*r) ~[lnA[ 3, (B.8) 

and on integrating from A = Ac 

LLA = o'oC~ (~dzr) 2 8! Iln Acl 4 (8.9) Orq~lgg 

Next we discuss the process e+e - ~ qqqcl. We do not write down the expression for 
the hadronic tensor that is obtained from calculating diagram 8b (and its permu- 
tations) in the transverse gauge (n = p2) since the result is identical to a similar 
Feynman-gauge calculation done in [6] except that one has to replace (N~ - 1) in [6] 
by Nf. Since interference diagrams do not contribute at the leading log level in the 
transverse gauge it is easy to see that the correct generalization of the non-identical 
quark calculation in [6] is achieved by the above replacement. There is one subtlety, 
though. When antisymmetrizing quarks 2 ~-~ 4 this has to be carried through also in 
the choice of gauge, i.e., (n = P2) <-~ (n = P4). Although straightforward to calculate, 
the resulting hadronic tensor H~,~ is unwieldy and the necessary integrations are 
tedious. We only list the results of these calculations 

(i) Angle-energy (8, e) cut 

Orq~lq~lLLA = crofgNf(ots/~)2 in 2 8[In el (B.10) 
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This result is in agreement with the corresponding 3-jet calculation in Smilga and 
Vysotsky [1]. 

(ii) Invariant mass (~:) cut 

LI_A = croC~Nr(as/ zt)2 ½ iln 3 ~1 (B.11) O'q~lq~ 1 

L L A  We have done the acoplanarity integration analytically and find O-(q~qq)= 
croC~Nf(adTr)Z~lln 3 Acl. One notices from fig. 3 that the leading log formula is a 
gross overestimate of the exact cross section even down to low values of Ac indicating 
that non-leading terms are much more important in the (qclqq) case than in the (qqgg) 
case. Related to this is the observation that the leading log formula for massive quark 
production gives a gross overestimate of the exact cross sections even for very large 
values of q2/4m2 (see [15] and sect. 4). 

Finally, the leading log formula in the massive quark case reads 

4¢ra2 q2 
~ i . i= - - -~ - (Oz i+O~) (~ )  2 1  In3 ~--~m 2 p (B.12) 

for non-identical quark pair production and 

4,/rcr 2 2 2 

o . i ,=__~_O2/ (~  ) 1 1n34 ~ (B.13) 

for identical quark pair production. 
Note that the leading log formula'(B. 13) in the identical particle case is a factor of 2 

smaller than that given in ref. [15] and a factor 2 larger than that of re/. [17]. In the 
non-identical particle case we agree with the electromagnetic case calculated in [ 18] 

1 1 1 1 after removing the colour factor Tr(~)ti~)b)Tr(~ti~)tj) = 2 from (B.12). 
Let us close this section with an intuitively obvious remark. The leading singulari- 

ties in both the (q?:lgg) and (q~qq) cases multiply the tensor {Pl, p2}~, in the hadronic 
tensor H,,~ (see (B.3) and [6]). Projecting onto the 6 (helicity) cross sections defined 
in appendix C one finds that the leading singularity projects only onto or,. This is not 
surprising since the leading singularities must appear in the same cross section as the 
leading 2-loop singularity according to the Lee-Nauenberg argument. The latter 
obviously only contributes to o',. 

Appendix C 

Angular correlations and asymmetries 

In case enough hadronic events could be produced with the higher energies of the 
PETRA and PEP machines, further tests of QCD with four jets in the final states can 
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be done. In sect. 2 we considered the four-jet  cross section integrated over  angles 0 
and )6 Keeping the angular dependence one has: 

dZor 
217 3(1 +cos  z 0)tr, + 3 sin 2 0OrL "+-3 sin 2 0 COS 2XOrTR 

d cos 0 dx 

3 1 • + 43- sin 2 0 sin 2X0rTI + ~ 2  t- sm 20 cos Xtrm 

3 i" 
+~x/~ sin 20 sin XO'n. (C.1) 

The formula (3.1) can be easily derived with the general formalism of Avram and 

Schiller [19] for angular dependences of multiparticle production in e+e - anni- 
hilation. 

We see that in principle six independent  cross sections o-u, trL, trTa, trTI, O'IR and trii 
can be measured in a 4-jet  process. Each of these depend on five variables for which 
one could choose jet variables as T, S, A, etc. 

The coordinate system which defines the angles 0 and X in (3.1) can be chosen in 
different ways depending on which momen tum vectors of the final states are used to 
fix the axes of the coordinate system O X Y Z  with respect to a system O x y z  with Oz 
along the beam direction p+. Let  us consider first the genuine four-particle states 

(2.1) and (2.2). Then a customary choice is the helicity system with O Z  along P l and 
OY along the normal to the plane defined by the non-collinear momenta  p~ and P2. In 
this frame 0 is the polar angle (0_-__ 0 = 7r) and X the azimuth (0 <-X = 21r) which 
measures the orientation of the X Z  plane to the zZ plane. Of course with quarks and 
gluons being unobservable the final configuration can be specified only by vectors 
which are determined by hadron momenta  in the jets. For example,  instead of the 

momentum vectors pl and P2 we can use the triplicity vectors n ~ and n2 introduced by 
Brandt  and Dahmen  [20]. The above definition of angles 0 and X coincides with the 
choice B in ref. [11] for describing the orientation of the the three-jet  structure. 

Using some such procedure to define the (0, X) orientation of the 4-jet  event relative 
to the beam axis one could then do an angular moment  analysis of the experimental  
distribution (or do an angular polynomial  fit) to obtain the 6 cross sections in (C. 1). 

When calculating the corresponding theoretical distributions one has to exclude 
the singular regions by placing adequate cuts just as in the angle-integrated case 
discussed in the main text. The degree of singularity of the 6 cross sections varies 
from o'u which contains the most singular contribution down to OrTi which is the least 
singular. For the same reason o'u will dominate the other  cross sections and thus very 
accurate measurements  would be needed to measure the angular dependences 
induced by the other non-dominant  cross sections. 

In practice one could either generate the theoretical angular distributions by 
Monte Carlo methods and then extract the 6 cross sections using a similar moment  
analysis as above or one could project  a Monte Carlo generated event onto the 6 
cross sections on an event-by-event  basis. In the latter case the necessary projections 
would be event-specific and have to be calculated for each event separately. 
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A less ambit ious  m e a su re m e n t  than the full angular  distr ibution (C.1) would  be to 

de te rmine  the dis tr ibut ion of two vectors,  for  example  the thrust  vec tor  T and the 
acoplanar i ty  vector  A with respect  to the beam direction. For  this purpose  let O be 

the polar  angle of  T and a the polar  angle of  A (0 _-< 0 -<_ ~r and 0 <_-/3 _-< ,r) with the 

requ i rement  that  TIIOZ and AllOY. T h e n  cos a = sin 0 sin X, so that  the hemispheres  

X and ~ r - x  are not  dist inguished anymore .  If fu r the rmore  we do not  distinguish 

be tween  0 and ,r - 0 and a and a - 7r (both are polar  angles), respectively,  we also 

lose the contr ibut ions  which are ant isymmetr ic  for  X "-> ,r - X  in (C. 1). Then  trTi, crm 
and o'u drop  ou t  in (C.1) and we are left with the fol lowing angular  distr ibution:  

d2cr 

d cos 0 d cos a 
½ rr (sin 0 - c o s  a) 1/2 = 3  (1 + c o s  2 O)O-u 

+ 4 3- s in  2/9 (O" L + OrTR) -- 3 COS 20~OrTR , 

(C.2) 

where  now 0 = O - ½~r and ½~" - O <- a = ~zr. With  (3.2) we can still de te rmine  three 

out  of the six polar ized cross sections which appear  in (3.1). 

References 

[1] G. Sterman and S. Weinberg, Phys. Rev. Lett. 39 (1977) 1436; 
P.M. Stevenson, Phys. Lett. 78B (1978) 451; 
K. Shizuya and S.-H.H. Tye, Phys. Rev. Lett. 41 (1978) 187; 
M.B. Einhorn and B.G. Weeks, Nucl. Phys. B146 (1978) 445; 
A.V. Smilga and M.I. Vysotsky, Nuel. Phys. B150 (1979) 173. 

[2] G.G. Hanson et al., Phys. Rev. Lett. 35 (1975) 35; 
Ch. Berger etal., Phys. Lett. 78B (1978) 176. 

[3] J. Ellis, M.K. Gaillard and G. Ross, Nucl. Phys. B i l l  (1976) 253; 
H.D. Politzer, Phys. Lett. 70B (1977) 70B; 
T.A. De Grand, Y.J. Ng and S.-H.H. Tye, Phys. Rev. D16 (1977) 3251; 
A. De Rfjula, J. Ellis, E.G. Floratos and M. K. Galliard, Nucl. Phys. B138 (1978) 387; 
G. Kramer and G. Schierholz, Phys. Lett. 82B (1979) 82B; 
G. Curei, M. Greco and Y. Srivastava, Nucl. Phys. B159 (1979) 451. 

[4] P. S6ding, Talk atthe EPS-Meeting, Geneva, July, 1979; 
H. Newman, Talk at the Photon-hadron conference, Chicago, August, 1979. 

[5] S.-Y. Pi, R.L. Jaffe and F.E. Low, Phys. Rev. Lett. 41 (1978) 142; 
G. Kramer, G. Schierholz and J. Willrodt, Phys Lett. 78B (1978) 249 (E: 80B (1979) 433); 
C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Phys. Rev. D17 (1978) 2298. 

[6] T.A. De Grand, Y.T. Ng and S.-H.H. Tye, Phys. Rev. D16 (1977) 3251. 
[7] A. De Rfjula et aL, ref. [3]. 
[8] A. Ali, J.G. K6rner, G. Kramer and J. Willrodt, Z. Phys. C1 (1979) 203. 
[9] A. De Rfijula, R. Petronzio and B. Lautrup, Nucl. Phys. B146 (1978) 50; 

K. Koller, T.F. Walsh and P.M. Zerwas, Phys. Lett. 82B (1979) 263. 
[10] A. Ali, J.G. K6rner, Z. Kunszt, J. Willrodt, G. Kramer, G. Schierholz and E. Pietarinen, Phys. Lett. 

82B (1979) 285. 
[11] G. Kramer et aL, ref. [5]. 
[12] R.D. Field and R.P. Feynman, Nucl. Phys. B136 (1978) 1. 
[13] A. Ali, J.G. Kfrner, G. Kramer and J. Wilirodt, DESY preprint 79/63 (1979); Nucl. Phys. B, to be 

published. 



478 A. All et al. / QCD predictions 

[14] E. Curci and M. Greco, Phys. Lett. 79B (1978) 406; 
A.V. Smilga, Phys. Lett. 8313 (1979) 357. 

[15] G.C. Branco, H.P. NiUes and K.H. Streng, Phys. Lett. 85B (1979) 269; and references therein. 

[16] A.C. Hearn, Stanford University Report No. ITP-247. 
[17] W. Furmanski, R. Petronzio and S. Pokorski, Nucl. Phys. B155 (1979) 253. 
[18] V.N. Baier, V.S. Fadin and V.A. Khoze, JETP (Soy. Phys.) 23 (1966) 104. 
[19] N.M. Avram and D.H. Schiller, Nucl. Phys. B70 (1974) 272. 
[20] S. Brandt and H.D. Dahmen, Z. Phys. C1 (1979) 61. 


