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In this second part of our at tempt to construct  a unitary high-energy description of a 
spontaneo: 'sly broken non-abelian gauge theory we calculate, for the n---~m amplitude in the 
multi-Regge limit, the first corrections beyond the leading logarithmic approximation. The 
resulting ampli tudes come in the form of the reggeon calculus where the number  of reggeons in 
each t-channel is restricted to one or two. We then s tudy the limit where the mass of the vector 
particle is taken to zero: for the 2-- .2  amplitude we show that this limit exists, not  only for the 
approximation of the present paper but  also for higher-order corrections. 

1. Introduction 

In a previous paper [1] (henceforth referred to as I) we have started a program 
whose aim is the construction of an acceptable high-energy description of sponta- 
neously broken non-abelian gauge theories. The main motivation for this came 
from the observation [2, 3] that, quite similar to the situation in abelian theories 
(QED), the leading logarithmic approximation (LLA) for the vacuum quantum 
number exchange channel (pomeron) violates the Froissart bound and, hence, does 
not obey s-channel unitarity. An acceptable high-energy theory, therefore, must 
necessarily go beyond this approximation, and it is mandatory that unitarity is fully 
incorporated. This suggests the use of unitarity from the start: the lagrangian 
determines certain tree elements, and all loop corrections are constructed from 
discontinuities, i.e., dispersion relations and unitarity equations. In I this method 
was introduced and, as the first step, used for the construction of n--~m amplitudes 
in the leading logarithmic approximation. In the present paper we continue these 
calculations and construct the first non-leading corrections to the LLA, as they are 
required by unitarity. 

The main results of I can be summarized as follows. We have been working in 
the SU(2) Higgs model where, after spontaneous symmetry breaking, a global 
SU(2) symmetry (called isospin) is left and all vector particles have the same mass 
M. The m - - ~ n  amplitudes in the LLA are found to have simple multi-Regge 
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Fig. 1. The n--~m amplitude in the leading-logarithmic approximation: (a) the wavy lines denote the 
exchange of the reggeized vector particle; Co) the group weight diagram. 

behavior (fig. 1): all t-channels have odd signature and carry the quantum number  
of the reggeizing vector particle. This generalizes the property of reggeization which 
first was established on the level of the Born approximation for the 2--~ 2 amplitude 
by Grisaru et al. [4]. A non-trivial feature of this result for the n-+ m amplitudes is 
the absence of multi-Regge cuts. Signature conservation would not exclude such 
cut contributions in one of the internal exchange channels of fig. 1, but, as a result 
of rather subtle cancellations, they do not contribute to the LLA. In the final part  
of ! the unitarity properties of the LLA were demonstrated: all energy discontinui- 
ties (for the total energy as well as for all subenergy variables) are in agreement 
with unitarity, for example: 

i f disG T2-~z  i '~' d f~  [T2~ ~ : [ odd signature ' 
n 

(1.1) 

, f disG.b T2_3 = ~ ~ df~,T2~,+ * 1Td---~n odd s igna ture ,  
n 

(1.2) 

E f disG T2_~ 3 _ 1 - -  2 d d~ '~nT2-~nT~.r todd  signature"  (1 o3~ 
?1 

On the r.h.s, of these equations, however, all t-channels are restricted to odd 
signature exchanges or, equivalently, to the quantum number  of the vector par- 
ticles, which does not allow for the pomeron yet. Eqs. (1.1)-(1.3) can be written in 
a more compact  form. We denote by T O) the matrix whose elements are the n - - . m  

amplitudes in the LLA (including disconnected contributions): 

T 0 ) =  ~ + ~ + ~ + ~  (1.4) 

Taking for each n---*m amplitude the sum of all its energy discontinuities (for the 
2---~3 process 1 + 2---~a + b + c, for example there are the variables s, Sab, Sb~, and 
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Sac and, correspondingly, four discontinuity equations), the results 
summarized in the following matrix equation: 

AT °) = L (T  °) - T (°+)  - ~ ,r(l)T(l)+ 
m ~ ~ " o d d  s i g n a t u r e  • 2i  

367 

of I can be 

(1.5) 

The restriction on the r.h.s, of (1.1)-(1.3) and (1.5) signalizes that s-channel 
unitarity is satisfied only in a limited sense, and we have to go beyond the LLA for 
obtaining complete unitarity. 

In order to improve the LLA we make the ansatz (again using matrix notation): 

T =  ~ T ~n), (1.6) 
n = l  

where the first term on the r.h.s., T ~), is just the LLA and the remaining terms T ~) 
have to be calculated from the requirement that unitarity is fully satisfied: 

1 
A T = - - ~ . ( T -  T +) = T T  . I + 

Z l  
(1.7) 

Eq. (!.6) is an expansion in powers of the coupling constant g2. In any given order 
of perturbation theory the high-energy behavior for, say, the 2--~ 2 amplitude comes 
in the form: 

1 n - - 2  
g2~s[( lns)  ~- f~_ t ( t )  + ( l n s )  f~_2(t)  + . . .  +fo( t ) ]  

+ O(s  °) + O ( s - ' )  + . . -  . (1.8) 

The LLA then represents the sum of the first term on the r.h.s, of this expansion: 

LLA = ~ g 2 " s ( l n s ) " - l f ~ _ , ( t ) .  (I .9) 
n 

The next order correction in (1.6), T (2), consists of thefn_2(t ), T t3) is the sum of the 
fn_3(t), etc. Equivalently, T (2) has one more power of g2 than T (0, T O) has two 
more powers of g2 and so on. 

For the computation of T (2), T (3) . . . .  we will, as we did in I, again make full use 
of the analytic structure of multiparticle amplitudes in the Regge region, i.e., 
employ both t- and s-channel unitarity. This does, a priori, not guarantee that we 
will find all pieces of fn_2 , fn_  3 . . . . .  in (1.8). We rather expect that we will find only 
that subset of all the non-leading terms which are necessary to just satisfy unitarity. 
The results of our calculation should, therefore, be regarded as the minimal subset 
of terms in the perturbation expansion that have to be taken into account in order 
to obtain a reliable high-energy theory. We can, however, not yet rule out the 
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possibility that this is still not  enough: in this case our result would be the 
first-order approximation to the exact solution. An answer to this question can be 
given at earliest, when we know the sum of all terms which we are going to 
determine in the following. 

Although the construction of a unitary high-energy description of massive 
Yang-Mills theory is of interest by itself, the most  fascinating problem is certainly 
the high-energy behavior of pure Yang-Mills theories, in particular, QCD. We, 

therefore, shall try to use our calculations as an intermediate step towards ap- 
proaching massless vector theories. The question of whether and how QCD in the 
confining phase can be reached in the zero-mass limit of a Higgs model has not 
been answered yet. In the context of our calculations this question represents itself 
in the following form. Within the approximation we are using, the S-matrix only 
depends on the gauge coupling g and the mass M of the vector particle, but not on 

the Higgs parameters  (the mass of the scalar particle, the Higgs self-coupling) 
separately. It is, therefore, first necessary to show that the limit M--~0 exists and is 
finite. Whether we then can hope to be in the confining phase of QCD or not can 
be shown only by performing the summation of all the terms in the expansion 
(1.6): as we have outlined elsewhere [5], there is a parameter  (b2~ which measures 
the extension of the scattering hadron transverse to its direction of flight and can 
be used as an indication of to what extent the present approach has a chance to 
"confine" the wee partons inside the hadrons. 

In the present paper  we shall construct the first term beyond the LLA in the 
expansion (1.6), T ~2). Since this approximation contains the vacuum exchange 

channel, we also address ourselves to the M-->0 limit: replacing the external 
particles by q?t bound states, we shall show that the zero-mass limit exists order by 
order in perturbation theory. In view of future work we also present a generaliza- 
tion of this proof to larger classes of diagrams (subsets of T (3), T (4) . . . .  ). This will 

help us (as we shall show elsewhere [6]) to formulate a new technique for summing 
all diagrams. In sect. 2 we begin with a few general definitions. Sects. 3 and 4 
contain the calculation of T2(~3 and T2~4, respectively. In sect. 5 we present a study 
of the zero-mass limit, and sect. 6 contains a brief summary  and an outlook on 
future parts of our program. A few details of our calculations are put into an 
appendix. 

2 .  D e f i n i t i o n s  

We begin with a somewhat more detailed outline of how the elements of the 
matrix T (2) will be constructed. The defining equation is: 

1 (Tt2) _ T(2) + ) _ ~ T(I)T(1) + (2.1) A T ( 2 )  = ~ - ~ - - even s i ~ a t ~ r e ,  

where on the r.h.s, each matrix element has one or more even signature exchange 
channels [otherwise we would be back at (1.5)]. The presence of even signature 
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implies that T (2) will be down by one power of g2 compared with T°): the 
signature phase factor e -i~j + • wi th j  = 1 + O(g 2) when expanded in powers of g2, 
starts with - 2  for odd ( ~ - = - )  signature but with O(g 2) for even (~'= + )  
signature. Eq. (2.1) can be read as an equation for energy discontinuities, for 

example for the element T2(~3, 

+ ~ + ~ t ..... 

+ ~ + ~ + ..... 

On the r.h.s, the first line is the discontinuity in the total energy s, the second line 
represents the discontinuity in the subenergy sac, the third line in Sab, and the last 
line in Sbc. In order to write also the 1.h.s. as a sum of discontinuities, we have to 
make use of a general feature of the 2 ~ 3 amplitude in the double-Regge limit [cf. 
eqs. (2.6), (2.7) and fig. 5a of I]. In this limit, T2_~3 can be written as the sum of two 

terms: 

T2___~3(S,Sab,Sb¢ ) ~- Tab(S,Sab ) 4- Tbc(S,Sbc ) (2.3) 

(we suppress the dependence on other variables than energies), and each of the 
terms on the r.h.s, satisfies a double dispersion relation with right- and left-hand 
cuts. It follows from the definition of the double-Regge limit, 

S,Sab,Sbc---~O0, Sab/S,Sbc/S---~O , 

t], t z, 77 = S,b'Sbc/S fixed, (2.4) 

that several energy variables become asymptotically equal and cannot be dis- 
tinguished from each other: 

Sac=(pa  +pc )2 ,~S ,  

Slb -~ (Pl --Pb) 2"~ --Sab, 

= (p2 - p b )  2 (2.5)  

On the r.h.s, of eq. (2.3) the term Tab contains, therefore, a piece which depends on 
s and Sab and another one which depends on sac and sir ~. Similarly, the dependence 
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of Tbc is either on (S, Sbc ) or (s~,s2~,). The l.h.s, of eq. (2.2) can be written as: 

AT2_~ 3 = ~--~ (T2~3(all energies + ie) - T2_~3(all energies - ie))  

= A~b~(rab(S,S.b -- i t )  + Tb~(S,Sb¢ -- ie ) )  

+ a.0(Th,(s ,  + 

+ AabTab(S -1" iE, Sab ) + Ab~Tbc(S + ie,Sb,:) (2.6) 

(here Aab ~ denotes the discontinuity across the total energy). The four terms in (2.6) 
can be identified with the r.h.s, of (2.2): this equation will be satisfied if the sum of 
the discontinuities in Sab ~ and s~¢ equals the sum of the first two lines on the r.h.s, of 
(2.2), and the Sab and Sb~ discontinuities are identical with the third and fourth line 
of (2.2), respectively (note that we do not require to compare the S~b ~ and sac 
discontinuities separately: since these two variables become indistinguishable, we 
cannot separate their discontinuities). In the same way, the other elements of the 
matrix equation (2.1) contain sums of single discontinuities of the n- -~m ampli- 
tudes. 

This then leads to the following method of computing T (2). F rom the product 

T O ) T  °)+ on the r.h.s of (2.1) we calculate the various single discontinuities of each 
element of T (2), and we then search for the amplitude which correctly reproduces 

the sum of the discontinuities on the r.h.s, of eq. (2.1). For this it will be convenient 
to use that representation of T,_~,, which exhibits the full analytic structure. A list 
of these representations (which we have already used in I) is given in table 1, 
together with the form of the signature factors. In the case of the 2 ~ 3  amplitude 
one recognizes the two terms (2.3), and a similar decomposition can be read off for 
the 2--~4 and 3---~3 amplitudes (there is a slight complication concerning the last 
two terms of these amplitudes which we shall discuss a little later). In the following 
two sections we shall illustrate how the partial wave functions F... (or combina- 
tions of them) can be constructed by evaluating single discontinuities. The repre- 
sentations of table 1 then allow us to find the full amplitudes. 

The result of our calculations will be that the elements of T (z) come in form of 
reggeon calculus [7], i.e., each partial wave F... can be described in a diagrammatic 
way (as was already the case for Tc0). Once we know the partial waves it is, 
however, useful to combine the various terms in the representations of table 1 into 
one single expression. As an example, we consider the 2 ~ 3 amplitude. The energy 
factors of T2~ 3 can be written as: 

s J 2 e J l - - J 2  = e e J l -  leJ2-- 1~--(J2-- 1) 
Oab OOab Obc 

SSaJ~-- | J 2 -  I[ = Sbc t l  + O(g2"/~))  , ( 2 .7 )  

where we have used the fact that the singularities in j are always of the form 
.]'sing = 1 + O(g2). According to (2.4) 7/ is finite in the double-Regge limit, and we 
can safely neglect terms of the order O(g 2 In 7)- Now it is possible to combine the 
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TABLE 1 
Analytic representations of T2~2, T2~3, T2~,~ , and T3~ 3 

I 

i 
= d" s J I s J 2 - - J l  F . . . .  - "  " • 

T 2 ~ 3  (~ i )2  f dJl -]2[ be ~Jl~J2J I L ( Y l ' J 2 ' t t ' t 2 ' ~ ) + S Y ~ S J a g  J 2 ~ j 2 ~ j , j : F R ( J I , J 2 , t I , 1 2 , ~ ) ]  

l , . 

r~, = ~ f aj, d j2 dj3[sJ,s~g,,sa-J2~j,~.jzl,l~AhFLL + sj, sjg-j, sa-j,~,j:~j " ~,. . FR L 
l ) u 2  Jal2 

+ s J J s J 2 - - J a s J l - - J 2 ~  t • F~ + s J 3 ~ J l - - J a r J 2 - - J l ~ .  ¢ • ( l  
abc ab j3~'j2J3"~jtjl R R  °abe obc  ,*J3Wt/3sj2jigl~.ll~ 

. ~ $ J l s j ~ - - j l s j 2 - - j 3 1  ~ . ~. I~ ~L~(2) ] 
bed be "~jt'~jajx'~j~3* LR]  

1 g . J 2 - - J l  " " 

1~ cd %jl*°jljl~jaj2 R L  

J3 JI---J2 J2--J3 +~ ~,~ ~.o G~j~3j~fRR+ J'+J'-~' ~-~' "~-~' s s.¢ sg2 ~jzi,~jzi,~j,+j,_j=F~l~ 

+si~sg~2sJ~-Jt-J'i2c~ • ~. ~. • _j F~]  
Jt J3 J2--Jl 

e - i~J + r 

sin rrj 

e -- i~(Jl  --J2) + f i r  2 

sin ~'(j~ -J2 ) 

e - i w ( J l  +J3 --J2) + r l r2r3  

sin ~r(j, +~ -J2) 
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signature factors and partial waves, e.g., for the two cases ( r l , r2 )=  ( - , - )  and 
(+, +): 

2 ~  [ FL + FR 1 2  (2.8) 
T2~3(- '  - )  - (2~ri) 2 fdw'dw2sa'~Sb'°g w,(o~ 2 - w , )  w2(Wl- -W2)  ~r - 5 '  

T 2 - ' 3 ( + ' + ) - 2 s ~ i f  . . . .  I EL -t FR I -1 (2.9) 
(2¢ri) 2 dWl dW2SabSbc ~2 - -  co~--~ o~ 1 - -  w 2 ,n.2 

(here % = ~ -  1). The first case belongs to T m, and in I it was shown that the 
square bracket term takes the simple form (fig. la): 

J ~2 ~,( ,~2 _ ~ , )  ,o2(~,  - ~2)  

1 1 1 1 
= [ g H v v ] o a , - a ( t l ) +  1 t, M 2 [ g I ' ]  - ~ 2 - a ( t 2 ) +  I t 2 - M  2[gHvv] 

• group structure fig. lb .  (2.10) 
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A comparison of the r.h.s, of (2.10) and fig. la  suggests the following diagrammatic 
rules for the Mellin transform of the scattering amplitude, i.e., the term in square 
brackets on the r.h.s, of (2.8): each reggeon line with momentum k x has a 
propagator  

[t-M2]-'[~o-a(t)+l]-', w h e r e t - -  --k2_m (2.11) 

[where a( t )  is the trajectory function, given in eqs. (4.6) and (4.9) of I]; for the 
production vertex the three-component  vector [eqs. (3.6) and (3.7) of I] 

gF(q l ,  - q2) ; (2.12) 

for the coupling of a reggeon to external particles the matrix H,~ or Hvs [eqs. (3.2) 

and (3.3) of I]. For  the group structure we draw a separate diagram (fig. lb), in 
which each vertex has a tensor Cab ~ (or 6ab if one of the particles is a Higgs scalar). 
In the following we shall find that for the case of eq. (2.9) the term in square 
brackets also has such a simple form and can be described by these diagrammatic 
rules (with some new elements that we will derive), and this appealing situation 
holds for each signature configuration of all T~ , , .  

3. Construction of T ~  2 and T(z) 2---,3 

The first element of the matrix equation (2.1) is (fig. 2a): 

, f dis% T ~ 2  = ~ E d ~ .  [T2~,,I 2 e v e n  s i g n a t u r e  " 

n 

(3.1) 

In order to identify the r.h.s, of this equation with fig. 2a, we define the following 
rules: for each momentum and angular momentum loop we put 

d2k± f dw (3.2) 
f (-2-~ J 2~i ' 

~..._~.._.~ . ~ _ . ~  

7---( 
I=2 I--0 

(b) 

Fig. 2. (a) Construction of T2~2 from its s discontinuity. (b) The group weight diagrams for I = 2 
and 1 ~ 0 exchange. The corresponding tensors are the projection operators/)2 and P0, defined in eq. 

(4.3) of I. 
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where - k ~  = t is the momentum transfer and j = o ) +  1. The quartic reggeon 
vertex in fig. 2a which results from squaring the production vertex has been derived 
before (ref. [8] and I), but in order to make this paper as self-contained as possible 
we present in the appendix a summary of all those rules which one needs for 
deriving the momentum or helicity structure of vertices. For  the group structure we 
decompose the tensor which arises from squaring the production vertex into 
projection operators with definite isospin ( I  = 0, 1, 2) [cf. eqs. (4.3)-(4.7) of I]: I = 0 
or 2 belongs to even signature exchange since it is symmetric, whereas 1 =  1 is 
antisymmetric and belongs to odd signature. As a result of this, the quartic reggeon 
vertex comes with a group weight factor ( -  2 for 1 = 0, - 1 for I = 1, + 1 for I = 2), 
and the full diagram is proportional to the projection operator P0, PI, or P2. For 
this part of the diagram we draw a separate graph: our notation for P0 and P2 is 
shown in fig. 2b (Pt belongs to odd signature and is defined in I). With all these 
conventions eq. (3.1) can be written 

dis% T2(~2 --- 2~r.fig. 2a-fig. 2b (3.3) 

(note the factor 2rr: applying our rules to fig. 2a, we obtain the partial wave o f  T2(22 
up to this factor 2~r). From table 1 we then find the full amplitude T2t~2 with even 
signature exchange: 

do )  t~ 

F2___,2 ~-- fig. 2a-fig. 2b. (3.4) 

For the vacuum exchange channel, the leading j-plane singularity has been 
shown [2, 3] to be a fixed cut to the right o f j  = 1, whereas in the I = 2 channel the 
leading singularity is the two-reggeon cut. Although T ~2) does not belong to the 
LLA (in the sense we have defined it), (3.15) is often referred to as the leading 
logarithmic approximation for the pomeron (or the I = 2 exchange): this is because 
the vacuum exchange channel was not contained in the LLA, T ~1), and T (2) is the 
lowest approximation where it appears. It has also been calculated by conventional 
methods, i.e., by extracting leading powers of Ins from Feynmann amplitudes [9]. 

Next we come to T2(~3. That  part of the product T(I)T ~)+ which has odd 
signature (or I = 1) in both t-channels belongs to T t~) [see eq. (1.5)]. The remaining 
signature configurations are (T t, T2)= ( + ,  +),  ( + ,  - ) ,  and ( - ,  +).  We begin with 
the ( + ,  + )  configuration. The r.h.s, of (2.1) determines the discontinuities in s and 

Sac ; 

A aM T2(~3 ( + ,  + ) = 2 or- fig. 3a- group weight, (3.5) 

Aac T2(~3(+, + )  = 2~r-fig. 3b-group weight, (3.6) 
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but there is no equat ion for the Sab or  Sb~ discontinuities. The signature requirement  

allows only for I = 0 or 2 in the t-channels, and the corresponding group diagrams 

are shown in fig. 3c. For  the d iagrammat ic  rules we use the same convent ions as 

before: it is then easy to see that  figs. 3a, b lead to the same expression: 

AabcT(23(+ , + )  = AacT(23(+ , + ) .  (3.7) 

In  order to find f rom table 1 the discontinuities in s and sac, we note that  since the 
two variables s and  Sac become indistinguishable in the double-Regge limit (2.4) the 

variable s in table 1 can be either s or  sac, and  only the sum of bo th  discontinuities 

can be calculated safely: 

A ~ t sJ, sJ~-J,  e ~J,~J~-J, (3.8) 
( A a b c  + t ' a a c l ~ j 2 j l % j t  bc  ~--- - -  g j 2 j t  ° ° b c  " 

This is consistent with the idea that  the signatured ampli tude is a combina t ion  of 

the four crossing related processes 1 + 2--~ a + b + c, ~ + 2 ~ 1 + b + c, 1 + ~ ~ a + 

b + 2, and  fi + ~ ~ 1 + b + 7.. F r o m  this one would interpret the energy and  phase 

factors of  (3.8) as 

e - i * r ( J 2 - J ' t )  + '/'11"2 e-ira" + 'TI t, J l t ,  J2--Jt  
o O b c  

sin 7r(J2 - J l )  sin rrJl 

= [sin ~r(j2 - J , )  ] - ' [  sin "~'Jl ] - I [  e- i<j : j , )~- i~/ '~J'#:J 'o ~b~ 

+ ~l e - ' u : : ' ) ( - s ~ j ~ : ' s  j'-~'~ + "r2(-s~) j' 

• " --i~rjl j l t"  XJ2- -J l ]  X ( - s f , 2 ) : : : '  + "q~ze s ~ - s F , 2 )  J • 

(3.9) 

a b c 

z . . . ~ . ~ . . - ~ . . . . ~  = y- . . . . .  ~ 

1 2 
la} 

z r 

(hi 

t 
I : ", I I - - - - - ~ - - - 4  

Cc} 

Fig. 3. Construction of T~  3 with s ignature  (~qO'2)=(+, +): (a) the s discontinuity; (b) the s~ 
discontinuity; (c) two possible weight diagrams. 
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The discontinuities in s and Sac come from the first and fourth term, respectively, 

and their sum agrees with (3.8). For  more complicated amplitudes than T2~ 3, 
however, an interpretation ~t la (3.9) is presumably too naive, i.e., it will be 
impossible to compute discontinuities in variables such as s and sac separately. It  is 
then only the sum of discontinuities which can be defined. We thus have 

(Aab ~ + Aac)r2(23 = (2qri) 2 f d w ,  dwzsadS~d o~ 2 w,  " 

Together with (3.5) and (3.6) this leads to the result: 

l [ F L - - F R ] = - - f i g .  3a -g roupweigh t .  
7/.2 09 2 09 1 

(3.11) 

The full amplitude is 

+ ) = - -  - 2 7 r i s  f d w  I dW2SabSb e 
 , IFL-FR 

( 2 q r i )  2 71,2 092 - -  09 1 

_ 2~ris f ~, ~2 • 
| d w I d w zsab s b~" fig- 3a. group weight. 

(2 )2 '/7 i , J  
(3.12) 

A few words should be said about  the Sab and Sb~ discontinuities. The use of eq. 
(2.1) enabled us to find an expression for the combination of partial waves 

( F  L - F R ) / ( w  2 -- w l ) ,  but not F L and F R separately. This was sufficient, since the 
full amplitude (3.11) was found to be proportional to its discontinuity in s (or sac ). 
Nevertheless, one may ask what the partial waves F L and F R are. Counting powers 
of g2, one sees that the Sab (Sbc) discontinuity comes at a later stage of our scheme, 
namely from the product  T(2)T °)+ which, in our definition, is part  of T (3). The 

diagrams for F L and F~ are shown in figs. 4a and b. In order that these results are 
in agreement with the expression for ( F  L - F R ) / ( w  2 - - w l )  (fig. 3a), the following 
equation must be true: 

P~'2" rio. 3a = 2~r 2 fig. 4a - fig. 4b 
09 2 - -  09 1 

(3.13) 

(we leave out the group structure diagrams). We have checked this equation in 
lowest non-trivial order perturbat ion theory, g7, and found that it is satisfied. This 
indicates that the bootstrap equation of fig. 5a (see also fig. 36a of I) which was 
first found by Lipatov et al. [2] is only one example of a much larger set of 
identities which are fulfilled by T °) and T (2). Other examples are obtained from the 
requirement that, for T °), the calculation of double discontinuities must lead to the 
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a b 

z 
1 2 

(a) 

+z k "  
(b) 

Fig. 4. Reggeon diagrams for the partial waves (a) F L and (b) F R of T2(~3 with signature ( + ,  +).  

same answer  as single discontinuities,  e.g., (fig. 5b) 

2 
A .b T2(~3 = -- ~ ( A . ~  + A.~ ) A ab T2(~3, (3.14) 

*'/TOJ 2 

2 
AbcT(23  = --  - - ( A a b  c + Aac ) A b c T ( 2 3  . ( 3 . 1 5 )  

q'TO) 1 

We have  checked these equat ions  again  in lowest non-tr ivial  order  in g and  found  
that  they are satisfied. Identi t ies  of this k ind  will also play an  impor tan t  role in the 
future  par t  of our  p rogram.  

K 

/ - "~q-K 

=~--~ ,(~,2-ct(Kl-ct(q-Kl) 
al 

(hi 

Fig. 5. (a) Bootstrap equation for the I = I exchange amplitude (from ref. [2D; (b) bootstrap equation, 
(3.14). 
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Next we come to the signature combination ( r~ ,~ ' 2 )= ( - ,  +) .  The product 
T°)T  (°+ defines the discontinuities in s, Sac, and Sb~: 

A ab~ T~3(  - ,  + )  = 2 ~r- fig. 6a. group weight, (3.16) 

Aac T2(~3 ( - ,  + ) = 2 qr- fig. 6b- group weight, (3.17) 

7:-(2). , + ) 6c- group Abe 2--,..,(-- ~--- 2~r.fig. weight. (3.18) 

For the construction of the production vertex in fig. 6c we refer to the appendix. 
When going in figs. 6a, b from the 1.h.s. to the r.h.s, we use the bootstrap equation, 
fig. 5a. The signature requirements imply that the t : channe l  has I = 1 exchange, 
the t2-channel either I = 0 or I =  2. Since the group structure diagram is now 
antisymmetric when "twisting" the t :channel ,  figs. 6a, b are identical up to an 
overall minus sign: 

AabcT2(2_~)3( - , "Jr-)= --AacT2(2~)3( - , d - ) .  (3.19) 

The sum of these two discontinuities therefore cancels and gives no information 
about the amplitudes we are looking for. From table 1 we see that, to leading order 
g2, the amplitude T2t~3(-, + )  is given by F L only: since both partial wave 
functions F L and F R must be calculable from double discontinuities, they are of the 
same order in g2,  namely g3f(g2/to), a n d  the signature factors in front of F R have 

{aJ 

{cJ 

Fig. 6. Construction of T2(~3 with signature ( - ,  +):  (a) the s discontinuity; Co) the sac discontinuity; (c) 
the Sbc discontinuity. 
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one more power of g2 than thoee in front of F L. This implies that T (~3( - ,  + )  is 

determined by its she discontinuity: 

f d~2s~'~s~ 2 FL T(~3 ( - ,  + ) = - is do~, 
(21ri)Z ~r co l 

= iAbeT(~3( - ,  + ) ,  (3.20) 

2 
- - -  F L = 2 ~r- fig. 6c- group weight. (3.21) 

~O91 

When we calculate the s and Sac discontinuities, both partial wave functions 
participate, but their sum is of higher order in g2 than the Sb~ discontinuity. Within 
the approximation we are using, the s and Sac discontinuities, therefore, cancel, in 
agreement with (3.19). As a result, eq. (2.1) will be satisfied if we put 

T(~3(_ ' + ) =  2~ris 
(27ri)2 f d~o i d ~ 2 s ~ s ~  ~" fig. 6c- group weight. (3.22) 

4. Construct ion  of  T(2~)4, T(2~)3, and general izat ion to T~2_.),,, 

The five-point amplitudes which we have constructed in sect. 3 do not yet exhibit 
the full complexity of the analytic structure of multiparticle amplitudes. In order to 
be able to write down the general amplitude T ~ , ,  we have to go one step further 
and consider the six-point amplitudes T(2~) 4 and T ~  3 (fig. 7). In the multi-Regge 
limit, 

S,Sabc,Sbcd,Sab,Sbc,Scd--~00 

sJS.bc, SJSa~c, S~c/S~, S~/Sbcd, ~a~c/S, Sb~/S--" O, 

SabSbc SbcScd 
t l , t 2 , t 3 f i x e d ,  T/b----- , T/c = - -  

Sabc Sbcd 
fixed, 

(4.1) 

these amplitudes decay into several pieces, each of which has a simple analytic 
structure and satisfies a multiple dispersion relation with right- and left-hand 
singularities. The representations of table 1 (which originally have been derived for 
amplitudes containing only Regge poles but no cuts) indicate that there are five 
such terms, and figs. 7a, b illustrate their discontinuity content in the physical 
region (right-hand singularities): each dotted lines denotes an energy variable S i j "  . .  

for which the amplitude has a non-zero discontinuity, and in the representation of 
table 1 there is a corresponding factor Su...P°Wer. The left-hand cut structure follows 
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IC) 

Fig. 7. The analytic structure of the two six-point amplitudes: (a) the five planar terms of the 2--~4 
amplitudes; (b) the five planar terms of the 3--*3 amplitude; (c) two contributions to T2_,, , which are 

included in the last two terms of the representation of table 1. 

f rom the fact that the fully s ignatured 2 ~ 4 and 3 ~ 3 amplitudes are connected  by 

analytic cont inuat ion and  crossing, such that they are even or  odd  under  a twist of  

a t-channel. For  const ruct ing T2(~4 or  T3t~3 it is, therefore, necessary to consider 
simultaneously the eight ampli tudes shown in fig. 8. Each of them has its five terms 

(fig. 7a and  b): for the first three it is obvious that analytic cont inuat ion of T2~4 

leads to the corresponding terms of T3(~3. This can be made  explicit by rewriting 

energy and phase factors in the same way as we did in (3.9): 

•j¢ ~ ~J'~J~-J'~J~-J~----[sin~'jl]-I ,~j~j,~j~jo ob~,i o¢d [sin ~'(J2 - - J , ) ]  - ' [  sin ~'(J3 --J2)]  - '  

"~ T l e -i~r(j2 - J l )  e - i~(J3 -J2) [sJ~  t, J2 --Jl~J3 --J2 
Obcd ~cd 

+ 'r 2 e - i~'(A -J2) [ SJb2 J 2 - J  J3-J2  Jl J3-J2  Sbcd Scd + "/'31Sldl °beZeJ2~-J'] Sc] I 

-I- T i f  2 e - i ~ r j j  e -- irr(J3--J2)~'J1 [oZ2 - J l  I t, J3--J2 
° lb2  I~bcd I°cd 

+ T'~T 3 e -i~'Jl e - i ~ ( j 2  - J l )eJ l  e J2 - J l  e J3 -J2 
~ 1~:2°b~d °~:2 

+ '/'IT 3 e --i*rjloJload °i0c2eJ2---Jl ]SJ~. -J2[ 

+ r l r z r  3 e -~(J~--Jl) e J, ~ J 2 - J ,  e J3 -J2  ] (4.2) 
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b a / ~  - b c b c - ~ -  b c )- 

I {a} Z g Ib} 2 1 It} d - Id} d 

1 d a 2 

_ _ a _ l  ~- 
b b b b 
le) if} Ig} {h} 

Fig. 8. The eight six-point amplitudes which are connected by crossing and analytic continuation. 

The fully signatured ampli tude then is interpreted as the sum of the r ight-hand cut 
contr ibut ions of the eight ampli tudes of fig. 8*. Fo r  the last two terms in figs. 7a, b 

the situation is more  complex. W h e n  following the simple recipe of adding  up 

energy and phase factors of all eight ampli tudes one neither arrives at the signature 

factors of the last two terms of  the 2 - + 4  ampli tude nor  at those of the 3 - + 3  

amplitude.  This is because the last two terms of  both the 2 - + 4  and  the 3 - + 3  
ampli tudes in table l have, in fact, a larger discontinuity content  than is suggested 

by  the last two terms in figs. 7a, b. Since in the mult i-Regge limit (4.1) several 
energy variables become indistinguishable f rom each other, we have the identities: 

s J 3  e J t  --J3 t, J2--Jl ~ ¢J l  ~J3--Jl  t, J2--J3 ~ oJ l  + J 3  --J2 ~Ja--J3 oJ2 --Jr ~ ¢ J l  t, J3 ,',.]2--Jl --J3 
Oab c O b c  ~ o  a b e  d " ' b c  ~ o  Oac O b d  ~ O a c O b d O b c  , 

(4.3) 

(4.4) 

Hence  it is not  possible to distinguish between the analytic structure of the last two 

terms of  fig. 7a and those of fig. 7c (which are the analytic cont inuat ions  of the last 

two terms of fig. 7b): the last two terms of T>_, 4 in table 1 not  only  s tand for the 
last two terms of  fig. 7a but  also for fig. 7c. In  other words,  contr ibut ions which 

have the analytic structure of fig. 7c can still be written as i f  they had  the structure 
of the last two terms of fig. 7a, and the representat ion of table 1 does not  require 
extra terms. Similarly, the last two terms of T3~ 3 in table 1 may  contain  contribu- 
tions which do not  correspond to the last two terms of fig. 7b but rather to those of 
fig. 7a (with suitable analytic continuation).  For  practical  purposes this implies that 

if one computes,  for example f rom multiple discontinuities, the five r ight-hand cut 

* This interpretation, however, must not be oversimplified: there are non-planar unitarity contribu- 
tions to T2_, 4 which cannot be reduced to a planar contribution to one of the eight amplitudes in 
fig. 8. They will be included if we note that the energy factors in (4.2) are not unique: for example, 
s J, s~J~ s~ -j2 also includes s J~ s~d-J' s~ -j2. 
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contributions of figs. 7a, b for the 2--->4 and 3-->3 amplitudes, respectively, one 
may find some contributions for the 2---> 4 amplitude which are not simply analytic 
continuations of those which come from the 3-->3 case. For  the signatured 
amplitude one then has to add  these distinct contributions such that the resulting 
amplitude has the right signature properties. 

Within our calculational scheme we use the unitarity equation (2.1) as the 
definition of T t2) and do not attempt to compute multiple discontinuities. The r.h.s. 
of (2.1) determines single discontinuities, and we have to find the amplitude whose 
discontinuities agree with them. This requires us to be able to compute single 
discontinuities from the representations of table 1. For the first three terms this is 
rather straightforward: from (4.2) we know that there are discontinuities not only 
in s = SabCd but also in the variables Sa~ d, Sab a, and sa~ which are indistinguishable 
from s. For the sum of all these discontinuities we therefore find: 

A "~. I~ ¢: ojloJ2-JlsJ3--j2 __t: ~" ~Jl.J2--JleJ3--J2 ( A a b c d  + Aad  + Aaed + "~'~abd.l%j,%j2j,'~jaj2° "~bcd cd ----- tajzjtGj~j2° "~bcd °¢d • 

(4.5) 

For  the last two terms of the amplitudes T2_~4 and T3__,3 it will, in general, not be 
possible to determine individual single discontinuities but only sums of them: those 
contributions which correspond to the last two terms of fig. 7a will, for example, 
contribute to the discontinuity in Sab c but not sac, whereas those of the type fig. 7c 
contain an sac discontinuity but not an sab c discontinuity. But since the r.h.s, of eq. 
(2.1) always gives the s u m  of both discontinuities, we do not run into counting 
problems. A similar argument argument holds for the 3 ~ 3 amplitude. 

After these general remarks we now illustrate how the knowledge of analyticity 
properties will enable us to find from eq. (2.1) the 2---*4 and 3--->3 amplitudes of the 
matrix T (z). From this we then will extract the general n-->m amplitude. Out of the 
23-- 8 signature configurations we only need to consider the cases (TI,T2,1"3)= 
( + , + , + ) ,  (+ ,  - ,  - ) ,  ( - ,  + ,  --), (-- ,  + ,  + )  and (+ ,  - ,  --)  [the case ( , , - )  
belongs to T t~), and the remaining combinations follow from symmetry arguments]. 
We start with the case ( + ,  + ,  +).  The requirement of having even signature in the 
t~- and the t3-channels restricts the quantum numbers in these channels to 1 -  0 or 
2, but there is no restriction for the central tz-channel. The r.h.s, of eq. (2.1) only 
determines the following discontinuities: 

AabcdT(2_~)4( + ,  "4-, + ) ---- 2~r" fig. 9a. group weight, (4.6) 

mad T2(2,)4( -t - , J r ,  -'~-) = 2~r- fig. 9b.group weight, (4.7) 

Aab o T2{2,)4( + ,  + ,  + ) = 2 ~r- fig. 9c. group weight, (4.8) 

A,cdT2{~4( + ,  + ,  + ) = 2~r.fig. 9d-group weight. (4.9) 
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Fig. 9. Construction of T2~.~ with signature (+, +, +): (a) the s discontinuity; (b) the sac discontinuity; 
(c) the sab a discontinuity; (d) the sa~ discontinuity. 

On the other  hand,  the use of table 1 and our  previous discussion tell us that  the 
ampli tude is propor t ional  to the sum of these discontinuities (we only keep leading 

terms in g2 of the signature factors):  

T z % ( + ,  + ,  + ) =  - i s  ( 2 ) 2 f  t~ l ~ 2  tO 
(2rrQ' -~ d~'  d~2 dcoaS"bSbcSa 

× ELL FRL + 
( , ~  - ,o~)(,o3 - ,o2) ( , o , -  ,o2)(,~3 - ,~2) 

t;(I) 
E R R  " LR + q 

F(2) ] 
LR (4.10/ 

+ (~3 - '~1)('~2 - o~3) ' 

(Aabcd + Aac d + A b d + A i)T2(2~4(+, + ,  + )  = -iT2(2)4(+ , + ,  + ) .  (4.11) 

F r o m  this we find that: 

f ~ l  t02 60 T2(24) ( + ,  + ,  + ) =  2~ris doqd~2d~3SabSb~S ~ 
(27ri) 3 

• [figs. 9a + b + c + d ] - g r o u p  weight .  (4.12) 
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c d a 

] _ 2 
b 

• 3 other diagrams 

Fig. 10. Reggeon diagrams for T3(~3 with signature (+ ,  +, +). 

By similar arguments we obtain for T3(~3: 

T3(~3(+, + ,  + )  = 2~'i_____f_s f d~o, d¢o 2 dw3s,bSbc'~ ~2S¢ a,o3. [figs. 10] "group weight. 
(2rri) 3 

(4.13) 

As to the remaining energy discontinuities of T2(2~4), the situation is similar to 
T2(~3 with signature ( + ,  +).  Eq. (2.1) gives no information about them, which 
means that they are of higher order in gZ and will come in at a later stage of our 
calculations. We again expect the existence of equations of the type (3.13) which 
imply the self-consistency of our results: determining combinations of partial wave 
functions from single energy discontinuities must lead to the same answer as 
computing first, from multiple discontinuities, each partial wave individually and 
then forming their combinations. Although eq. (2.1) does not contain enough 
information for determining all partial wave functions separately but only combi- 
nations of them, this was, nevertheless, sufficient to determine the amplitude 
uniquely. This turns out to be true also for the other signature combinations which 
we have to compute: we always have just enough information to fix the amplitude 
to leading order in g2. 

In the case of the signature combination ( + , - , - )  the product T(I)T (l)+ 
determines, for the 2 ~ 4 amplitude, the discontinuities in s, saa, saca, Gbd, in S~b ~, S~c, 
in Sab, and the double discontinuity in S~b and S~d. They are shown in figs. 1 l a -d .  
They all have to be multiplied by the group weight diagram of fig. l ie:  the 
q-channel has either I = 0 or 2 exchange, and the t3-channel only allows for I = 1. 
For the production vertex we refer to T2(~3(+, + )  of sect. 3 and the appendix. 
Because of the signature structure, the amplitude is symmetric under twisting the 
tl-channel, but antisymmetric in the G-channel. This implies that the discontinui- 
ties in s and Ga are identical up to a minus sign, and similarly the s~ d and saw 
discontinuities. Therefore, 

[ mabed "1" macd -1" ~abd + mad] T2(~4( "b,  , ) = 0 .  (4 .14)  

From the same argument it also follows that 

[ ~abc  + mac] T2(2-~)4( -[-, , ) = 0 .  (4 .15 )  
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Fig. 11. Cons t ruc t ion  of T2(2_~4 ) with  s igna ture  ( + ,  - ,  - ) :  (a) s u m  of the d iscont inui t ies  in s ,  sut ,  sam , 
a n d  sat,d; (b) s u m  of the  d iscont inui t ies  in sab ¢ a n d  s,c;  (e) the Sab d iscont inui ty ;  (d) the  doub le  

d iscont inui ty  in s ,b  a n d  s~,t; (e) a g roup  weight  d i a g r a m  ( I  = 2 in  the t t - channe l  ). 

The double discontinuity in Sab and Sod can easily be shown to be of higher order 
in g2 than a single discontinuity. Therefore, only the Sab discontinuity remains and 
can be used for finding the 2 ~ 4 amplitude. F rom table l, on the other hand, we 
find that to leading order in g2 the amplitude is 

S d£01 d£02d£03SabSb¢Sex~ 
T2(~4(+, - ,  - )  = (27ri)3 

X °"12( £03 - -  £d2 ) £03( £02 - -  £03 ) "[ - -  - -  

+ - LR + FL(~ , (4.16) 
£03 - -  602 £03 602 - -  £03 

where we have expanded the signature factors and made use of the fact that the 
singularities in the o~ i are of the order g2. Since all partial wave functions F... must 
be of the same order (they all are calculable from triple discontinuities), we 
conclude that in (4.16) only the first two terms should be kept. This implies that the 
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amplitude is proportional to its S~b discontinuity: 
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_ _  f "~1 ¢°2 S dw 1 dw 2 dtO3SabSbcSc ~ AabT2(~4(+ ' ' ) = (2r t i )3  

For the other discontinuities we find, in agreement with (4.14) and (4.15), that 
they are down by one power of g2 compared with the S~b discontinuity, i.e., they 
are zero in our approximation. The final result for the 2--+4 amplitude of this 
signature combination is 

T(Z)~__,4~+,r , ) = __(2qri) 32~ris f de01 dw 2 dw3SabSbcS~.f ig . , o r  ,o~ ,o 1 lc.group weight . (4.18) 

Repeating similar steps for the 3 ~ 3 amplitude of the same signature configura- 
tion we obtain 

f 021 ~0 2 ~o 3 . 2~ris doo I dw 2 do~3SlgSgcSed .fig. 12.group weight. (4.19) 
T3(23(+' ' ) =  (27ri)3 

The signature configurations ( + ,  + ,  - )  and ( - ,  + ,  - )  are treated in very much 
the same way. The crucial point is that several discontinuities on the r.h.s, of eq. 
(2.1) cancel among each other; from the amplitudes of table 1, on the other hand, 
one finds that these discontinuities are down by powers of g 2. As a result, the 2---)4 
amplitude for ( + ,  + ,  - )  is proportional to its s ~  and sac discontinuities and the 
( - ,  +,  - ) amplitude is proportional to its sbc discontinuity. The results are 

+ ,  - )  

+ ,  - )  = - -  

T(23(--t-,-I.-, - ) = -  

+ ,  - )  = - -  

2~ris ~,, ~2 ~,. • 
f dw 1 d%doa3s~bsb¢s~g fig. 13.group weight, (4.20) 

(2~ri) 3 

2~ris ,o, ,o2 ,o~ . 
f dw 1 d w z d w 3 s ~ b s ~ s  ~ . f i g .  14.group weight, (4.21) 

(2¢ri) 3 

2~ris ,o, ,02 ,o3 . 
f do~ 1 do~ 2 dw3stgsgescx 1 "fig. 15.group weight, (4.22) 

(2~ri) 3 

2~ris ,o~ ,o2 ,o~ . 
f dw  I dw 2 dw3slgs~sea -fig. 16.group weight (4.23) 

(2~ri) 3 

Fig. 12. The amplitude T3(2~) 3 with signature (+ ,  - ,  - ) .  
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• r 

Fig. 13. The amplitude T2(~ with 
signature (+, +, - ) .  

+ z  • X .  • • > t - - - - - q  

Fig. ! 5. The amplitude T3(~3 with 
signature (+, +, - ) .  

Fig. 14. The amplitude T2~ with 
signature ( - ,  +, - ) .  

Fig. 16. The amplitude T3(~3 with 
signature ( - ,  +, - ) .  

(note the special contribution to T ~  3 coming from fig. 16: it gives rise to a new 
production vertex). In all these cases the r.h.s, of eq. (2.1) gives just enough 
information to determine, to leading order in g2, the full amplitudes but not all 
partial wave functions separately. 

Finally we note that the signature configuration ( + ,  - ,  + )  belongs to T (3) but 
not T (2). This follows from counting powers of g2 [cf. the discussion after (3.19)]: 
all partial waves of T2{~4 are of the same order in g2, namely g4f(gE/to). Because of 
the different signature factors, however, the amplitudes are not always of the same 
order: for ( , , ) the amplitude is of the order g-2f(g2/~), for ( - ,  - ,  +) ,  
( + ,  + ,  +) ,  ( - ,  + ,  - )  and ( - ,  + ,  + )  we have gOf(g2/~), but for ( + ,  - ,  + )  the 
amplitude goes like g2f(g2/w). This case therefore belongs to the following step 
within our scheme. 

We now try to generalize to T~(~,~. For this we do not offer a general proof but 
rather rely upon the belief that the six-point amplitudes already contain all 
essential features of the analytic structure of multiparticle amplitudes. For  general 
T~,~ we state the following rules: 

(i) T (2) contains n-->m amplitudes where the number of t-channels with even 
signature /even is greater or equal to one (the case teven --- 0 belongs to TO)). If tew . is 
greater than one, the even signatured t-channels must be connected, i.e., there is no 
odd signature t-channel between two even signature t-channels. Otherwise the 
amplitude is down by one (or more) powers of gZ and belongs to T {n) with n >/3. 

(ii) The amplitude T/~,, can always be cast into the form 

= 2rris f 
Z(~m (2~ri)p jd¢dl...d¢ops~d...Syzefn_,m(O~i,ti,llij). (4.24) 

The Mellin transform F,o,~ which is a combination of the various partial wave 
functions and signature factors, can be described in a diagrammatic way [cf. the 
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Fig. 17. The elements of the reggeon calculus for T (2). 
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discussion after (2.10)]. The elements of this reggeon calculus are shown in fig. 17. 
F~,~  then consists of all possible diagrams with the restriction that any odd 
signature t-channel has only one reggeon intermediate states whereas an even 
signature t-channel has two reggeon intermediate states. (Note that the production 

vertex in fig. 17 stands for a "contracted" even signature t-channel). The quantum 
numbers are restricted only for the two t-channels which couple to the external 
particles ( I =  1 for odd, I =  0,2 for even signature, respectively) and for all 

t-channels with a single reggeon line ( I  = 1 always). 

5. T h e  zero -mass  l imit  

The strongest motivation for investigating the high-energy behavior of non- 
abelian gauge theories comes from the question what the dynamics is in the 
vacuum exchange channel (the nature of the pomeron). Within our scheme of 
calculating a unitary high-energy description, T (2) is the lowest approximation in 
which this quantum number  configuration appears ( I =  0, even signature). The 
2--->2 amplitude TEt~2 which can be represented in terms of an integral equation has 
been studied by two groups [2, 3] and it has been shown that the leading j -plane 
singularity in the vacuum channel is a fixed cut to the right o f j  = 1. This makes it 
clear that higher terms in our expansion (1.6) will be essential in order to restore 
the unitarity bounds which are violated by T (2). It will, therefore, be one of the 
most important  parts of our program to find a method which allows us to sum all 
the terms of (1.6). An observation made by Lipatov et al. [10] could serve as a 

starting point for developing a summation technique: they noticed that the forma- 
tion of the fixed cut vacuum singularity in T2~2 is intimately related to a diffusion 
of the wee partons which, formally, requires infrared finiteness of the amplitude 
T2¢~2 in the limit where the vector particle mass goes to zero. This diffusion 
dynamics can be generalized (as we shall discuss elsewhere [6]) to include higher- 
order terms in the expansion (1.6), provided that the limit M - ~ 0  can be shown to 
exist also for the higher T ~n). We therefore perform a somewhat systematic study of 
this limit*. In this section, we show that, order by order in perturbation theory, 
T2(~2 is finite and well-behaved when M--~ 0. This proof will then be generalized to 
parts of higher Tin): this will help us in studying the effect of higher T ~) in the 
pomeron channel. 

* That the zero-mass limit exists in lowest non-trivial order perturbation theory was communicated to 
me by L.N. Lipatov. This result has also been stated in ref. [ll]. 
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Another reason for being interesting in the zero-mass limit comes from the hope 
that our calculations can also be used for the Regge limit of pure Yang-Mills 
theories (QCD). As we have explained elsewhere [5], the Regge limit lies, in a 
certain sense, not far from the hard scattering region where perturbation theory can 
safely be applied, and the introduction (via the Higgs mechanism) of a mass for the 
vector particles (gluons) then serves as a convenient way of avoiding infrared 
problems within perturbation theory. The question whether, at least in the Regge 
limit, the zero-mass limit of the Higgs model agrees with the high-energy limit of 
QCD is still unresolved, but recent calculations [12] indicate that this may be the 

case (at least at the level of T(2)). A t  the present state we shall only show that the 
limit M--~ 0 exists and is well-defined (in a sense which will be specified later): after 
summing all terms in (1.6) it then will have to be shown to what extent the final 
result is dependent on M at all. 

As a result of our unitarization scheme, the elements of T (2) c o m e  in form of a 
reggeon calculus. For  the case of the 2---> 2 amplitude, the diagrams are shown in 
fig. 2. In order to have an analytic expression we define a (non-amputated) reggeon 
particle scattering amplitude ~(k,  q - k; to) which is given by the following integral 
equation: 

[ co + 2--  a ( k )  - a ( q -  k ) ] r p ( k x , q ±  - k± ;co) 

= g 2 t o [ - 2 H v E - H 2  ] + - 2 g 2  f d 2 k ~ K ( k  q ± - k ± ; k ~ , q ± - k ~ )  
(2~.)3 ± '  

1 1 
× k'2± + M 2  ( q _ k , ) 2 + M 2 ¢ P ( k ' ± , q i - k ' ± ; t o ) .  (5.1) 

In the vacuum channel the kernel K(k ,  q - k; k', q - k') has the form 

K ( k ± , q ±  - k± ; k ~ , q  z - k ~  ) = ( - q 2  _ ~ M  2) 

+ 
( k ~  + M2) ( (q  - k ) 2  + M 2) + (k  2 + M 2 ) ( ( q _  k,)2 + M 2) 

(k -- k ')  2 + M 2 

(5.2) 
The connection between cp and the Mellin transform of T(2.~)2, F2_.~2, is 

dEk~ ~(k~_, q± - k~_ ; to) l to6- 2(q2)--f(2 )3 292[-2":*-n:v] (5.3) 
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Since the trajectory function a(t)  [eqs. (4.6) and (4.9) of I] is singular when M goes 
to zero, this way of representing (p is not very convenient. Following ref. [10] we 
rather rewrite the integral equation (5.1) in such a way, that the new kernel is 
directly proportional to g2/o~: 

cp(k±, q_t. - k± ;to) = g2[ _ 2Hv2 _ Hv~] 

.~ -2g___~ 2 f d2kkK(ki,ql_k±;kk,q~__k,x) 
(2rr)3w 

1 1 
× M2 M2~P(k~,q± - k~_ ; ¢0) k ~  + (q - k')~_ + 

a ( k ) + a ( q - k ) - 2 c p ( k + , q ±  k±,6o) (5.4) 
H - -  " 

t O  

(the Neumann  expansion of this equation coincides with the power series expan- 
sion of q~ in g2/o~). Before taking the limit M-~0 ,  it is necessary to change the 
inhomogeneous term which represents the coupling of the exchanged vector par- 
ticles to the external particles: as it is well known (e.g., from calculations with QED 
[13]), the simplest example for a high-energy scattering amplitude which is finite 
when the exchanged vector particles have zero mass is photon-photon scattering 

(fig. 18). The photon dissociates into a fermion-antifermion pair (which for simplic- 
ity is taken to be massive), and the fermions then interact by exchanging vector 
particles. The infrared finiteness of this amplitude is due the fact that the fermion 

loop produces a zero when the momentum of one of the two attached photons goes 
to zero. Replacing the external photons by vector mesons and taking for the vertex 
meson-fermion-antifermion a hadronic wave function (e.g., p--~q~,  one obtains a 
simple model in which the massless gluons can couple to a q~t-bound state. In the 
following we shall use this function %(k ,  q - k)  as the inhomogeneous term in the 
integral equations (5.1) or (5.4). We do not need to present the analytic expression 
of %:  the only property which is relevant for our purposes is its vanishing as a 

+ ... 

Fig. 18. Simplest model for a infrared finite 2--~2 scattering amplitude: photon-photon scattering in 
QED. The sum goes over all possibilities of attaching the two exchanged photons to the fermion loops. 
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function of one of its arguments: 

%( k ± , q ± - k ± ) -- I k ± I.const, if I k ± l ~ O ,  

= [q_L - k± [-const, if Iq± - k± I--->O. (5.5) 

We shall now show that, order by order in perturbation theory, the solution ~ to 
the integral equation (5.4) (with the inhomogeneous term replaced by ~0) is 
well-behaved and finite when the mass of the vector particle M 2 is taken to zero. 
Moreover, the property (5.5) of the inhomogeneous term is preserved, i.e., the 
solution ~ has this property at each order of g2 (up to powers of In I k I or ln[ q - k I). 
By iterating the integral equation, the solution is represented as a power series in 
g2/~:  

-k±) .  (5.6) 

For the coefficient functions we have the recursion relation: 

e p , + l ( k ± , q ± _ k ± ) =  - 2  f d Z k ~ K ( k ± , q ± _ k ± . k , ± , q ± _ k , ± )  
(2 )3 

1 1 × ¢p,,(k'~,q.L - k 2 )  
k ~ + M 2 ( q - k ' ) ~  + M 2 

+ a ( k ) + a ( q - k ) - 2 % , ( k ± , q ±  - k ± ) .  (5.7) 
g2 

The first term in (5.6), ~0, is independent of M E and satisfies (5.5). We now 
assume that % has already been shown to have the desired properties and 
demonstrate that the recursion relation for cp, +1 does not destroy them. In the limit 
M---~0, the integral in (5.7) can be simplified (for convenience, we slightly change 
the notation of the variables and write the expressions for a(k) in a somewhat 

special way [10]): 

q~n+l(ql'q:~) = (2~-) 3 ( q l + k ' ) ~ ( q 2 - k ' ) ~  2 q'+ k---~ j_ 

q2 , 
- k ' u 2 ±  l ~n(q~ + k ' ~ , q 2 - k l  ~o) 

• q2 ] 1  

+ f  k-----~tk~+(q,+k,)  2 t- ,2 k'~ + (q2 - k ' )~  

× 9~,(q,, q2) + O(MZ)~ " (5.8) 
] 
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As long as ql ~ q2 and  ql :~ 0, q2 4 : 0  this integral is wel l -behaved and  finite: the 
t pole at k~_ = - q l ±  is cancel led by a zero in q l±  + k ~ q 2 ± / k ~ ,  and near  k ±  = 0  

there is a cancel lat ion be tween  the two integrals. For  q l±- - -~ -q2± v~O the first 
integral tends to diverge logar i thmical ly  near  k~_ = q2 ±,  but  the p roper ty  (5.5) of  ~ 
produces  a zero in the n u m e r a t o r  which kills the divergence. Now we take ql ±-->0 
with q2± 4: 0. For  all values of k~_ away  from zero, say Ik~_l > e, each par t  of  the 
integral (5.8) is finite by itself and vanishes as I qJ± I. The  integrat ion par t  with 

[k~_ I < e can be es t imated by using (5.5): 

~ , ( q l ±  + k ' z , q 2 ±  - k~_) = (q ,±  + k ~ ) - [ a  + b O ( I k ' [ )  ] 

~n( ql , ,q2± ) = q l ± ' a  (5.9) 

(neglecting powers  of logar i thms which are not essential  for the argument) .  We find 
that  this par t  of the integral behaves  like: 

(Pn + l (q t ,  q2) = I q, ± I" (ln q2± )P. const  (5.10) 

(the power  of the logar i thms has increased by one, c o m p a r e d  with 9~n). Finally, for  
[qt ± I ~  Iqz± [ ~ ?~---~0, the par t  of the integral with Ik~  [ > e goes like q l±  "q2± ~?~2. 
The  region ]k~ l  < e behaves  as ~2(1n ~)P, where again  the power  of logar i thms has 

increased by  one c o m p a r e d  with q%. This then completes  our  assert ion that  each 
~ . (k ,  q - k)  has, up to powers  of logari thms, the same propert ies  ( infrared finite- 
ness and  (5.5)) as the inhomogeneous  te rm % .  The  fact  that each ~v, has the 
p roper ty  (5.5), ensures that  the integral (5.3) (with the vertex [g2H~v ] being 
replaced by  another  % )  does not  b low up when M2--~0. 

We now show how this result can be used in order  to prove  the infrared 
finiteness of h igher-order  terms T <") in the expansion (1.6). W h a t  we have  con- 
s tructed so far, are only the first two terms: T °) in paper  I and T (2) in this paper .  

The  construct ion of the higher T (~) will be described in future publications,  in 
par t icular  the fo rm of the general  (the reggeon number  non-conserving)  n---~m 

reggeon interact ion vertex. It is, however,  a l ready clear at the present  stage of our  
calculat ions that  some contr ibut ions  to T2(~) 2 (n > 2) will be of the fo rm shown in 
fig. 19: this are those reggeon d iagrams in which the n u m b e r  of reggeons in the 
t -channel  is conserved.  T h e y  a lone are not sufficient for  satisfying s-channel  
uni tar i ty in all subenergy var iables*,  and  what  is missing are those d iagrams in 
which the reggeon n u m b e r  changes.  In view of the task of f inding a s u m m a t i o n  
technique for  all reggeon d iagrams it is, however ,  reasonable  to start  with those of 

* In a series of papers, Cheng et al. [12] have claimed that the unitary S-matrix takes the form of an 
eikonal operator: by expanding this eikonal expression one obtains exactly the diagrams of fig. 19. 
As explained above, these diagrams are not sufficient to satisfy unitarity: the eikonal result 
therefore represents only a part of the complete high-energy description. 
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l ...x.-. 
/ 

Fig. 19. Reggeon diagrams of T~)2 for which the zero-mass limit can be shown to exist: the quartic 
vertex is the same as in fig. 17, and  for the coupling to the external particles we assume the property 

(5.11). 

fig. 19, because they represent, in a certain sense, the mos t  simple ones. In  this 

paper  we therefore demonst ra te  that these diagrams are, in the p o m e r o n  channel,  
finite when  M 2 is taken to zero; use of  this result will be made  in a separate paper.  

The argument  is very similar to that of T2(~2 . We first define a two particle-n 

reggeon function q~ (k 1 . . . . .  kn) (the momen ta  k i are restricted such that Y~7-1 
k i = q) which represents the sum of all diagrams of  fig. 19 except the lower vertex. 

For  the coupling of  the reggeized vector  particles to the external particles we take a 
vertex funct ion % (k  1 . . . .  , kn) which does not  depend on the vector mass M 2 and  

satisfies the condi t ion (5.5): 

CPo(kl ± . . . . .  k~ ±)  ~ Ik~_u I .const ,  i =  1 . . . . .  n (5.11) 

(we expect that  the simplest model  for  this funct ion is, again, a quark  loop with the 
vector particles being a t tached in all possible ways). Before we write the integral 

equat ion for cp (k~ . . . . .  kn) we have to analyze the group structure. For  the 

interaction of two reggeon lines i and  j the coupling funct ion is (in the limit 

M2--~O): 

+ • k j - I ,  , ( 5 . 1 2 )  

with the group weight factor  (cf. (4.6) of I): 

EalrbiEa)bjr = - 2 P o ( a , a j l b , b j )  - P,(a,ajlb, bj) + P2(a,ajlb, bj). (5.13) 

The tensor (5.13) indicates that  the two lines can be in a state with I = 0, 1, or 2. 
Since the total quan tum number  of all reggeon lines is restricted to I = 0, we define 

the project ion operator  on to  the I = 0 state*: 
n 

,0_- co st 
1 i < j  

* For the construction of the projection operator we have used ref. [13]. 
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where ( t a ) m n  = - - i e a m  n is the isospin matrix for the line i and the normalization is 
such that p2 = P0- From the condition 

n 

= " i < d "  

it follows that 

and 

Po ~. t,.tj = -nPo ,  (5.16) 
i <j  

2 
P o t a ' t b  -- eo (5.17) 

n - - 1  

Hence each kernel K~i in (5.12) comes with the weight - ( 2 / ( n -  1))P0, and the 
integral equation for ep(k I . . . .  k~) is 

" /~)l 
i = l  

g2 - 2  f d2k± K ( k i ± ' k j ± ' k i ±  + k ± , k j  
(2~)3 ,;--1 ± - ~ )  

I 
X ( k i { - k ) 2 ( k j - k )  2 (~9(k l  ± . . . . .  ki2_ ..{._k I . . . .  kjd_ _ k d _  . . . .  k n . L ; £ 0 )  " 

(5.18) 
It is convenient to rewrite this equation in such a way that the Neumann expansion 
coincides with the power-series expansion in g2/o~: 

. . . . .  ±" g2 _ 2  /~  / d 2 k j  - 
~v(kl± kn , w ) - - % ( k , j _  . . . .  k , ± ) + i 2 7 r ) i n  - 1 . .  

× ~ ( k , l , k j ±  ; k,± + k ± , k j l  - k ± )  1 
(~, + k)~( l , j -  k)2± 

1 1 
-t ~. [ a ( k i ) + a ( k j ) - 2 ] c p ( k ,  . . . .  k, ;  to). (5.19) to n - - l  i< j 
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We now see that the kernel of this integral equation is a sum of combinations 
( - 2 K ( k i k j ;  k i + k,  k j  - k )  + a(  k i )  + t~(kj) - 2) / (n  - 1): for this expression we 
have shown [cf. (5.8)] that when it acts on cg,, which satisfies (5.5) and is infrared 
finite, it reproduces these properties also for ~, + 1. The kernel in (5.19) therefore has 
the same property, and our function q~ will be infrared finite to any order in g 2 / w .  

This completes our study of the zero-mass limit. What  we have shown- - f i r s t  for 

T2(~2, then for parts of T2~) 2 with n > 2 in the vacuum exchange channe l - - i s  that, 
with a suitable coupling of the exchanged vector particles to the external particles, 
the amplitudes are finite and well defined in the limit M2---~0. For this argument it 
was essential that the various terms in the kernel of (5.8) and (5.19) come just with 
the right weight to cancel possible infrared divergences. 

6. Summary and outlook 

In this paper we have constructed the first non-leading term in expansion (1.6) 
for a completely unitary high-energy S-matrix of a spontaneously broken non- 
abelian gauge theory. Eq. (2.1) which defines this term T (1), determines the single 
energy discontinuities of the n-- . rn  amplitudes, and we have made full use of the 
analytic structure of multiparticle amplitudes in the Regge limit in order to 

reconstruct the amplitudes out of these single discontinuities. The resulting ampli- 
tudes T ~ , ,  (our calculations went up to the six-point amplitudes and then gener- 
alized to the n--~m case) come in form of a reggeon calculus with one (odd 
signature) or two (even signature) reggeons in each t-channel. The elements of this 
reggeon calculus are given in fig. 17, and their analytic form follows from the rules 
of the appendix. 

For the most interesting case, the vacuum exchange channel (pomeron), we have 
studied the zero-mass limit. After replacing the external particles by an appropriate 
model for a q~ bound state one finds that the amplitude T2~2 is finite in the limit 
M2---~0, order by order in perturbation theory, and we have extended this proof to 
larger classes of reggeon diagrams which are subsets of T2(~ with n > 2. Use of 
these results will be made in a separate paper. 

Together with ref. [1], this paper  represents the first two parts of a program 
whose aim is the construction of a unitary high-energy description of massive 
Yang-Mill theories. Although the basic idea has not c h a n g e d - - t o  use the lagrangian 
of the theory only for the computat ion of tree elements and to find all other 
contributions from un i t a r i ty - - the  procedure of the present paper slightly differs 
from I. The elements of T O) have been calculated order by order in perturbation 
theory; in the present paper  we used the results of I (which are of infinite order) 
and eq. (2.1) in order to find the elements of T (2). In order to find the remaining 
terms T (") with n > 2 in the expansion (1.6), we will, in essence, repeat these two 
steps. At the level of T (3), new subtraction constants appear (this can most easily be 
seen by expanding the three reggeon exchange amplitude in powers of gZ: the 
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lowest term is of the order s ' g  6 and real-valued), and it is, therefore, not sufficient 
to just iterate the unitarity equation. It is rather necessary to compute these new 
subtraction constants in the same way, as the tree approximations were found for 
T (I), and then to continue order by order in perturbation theory. At the level of 
T (4), one repeats the step which has been done in this paper. The results of these 

calculations will be a complete reggeon calculus with computable elements. The 
most interesting part  of this is the form of the general n ~ m  reggeon interaction 
vertex, for which, at least in the limit of small M 2, a simple form is expected to 
exist [in analogy to (5.12) for the 2---*2 vertex]. 

Apart  from the task of completing the derivation of the full reggeon calculus, we 
are also faced with the problem of being able to sum all the terms in the expansion 

(1.6), i.e., of understanding how the higher terms change the result of the first 
approximation T (2). As we have outlined elsewhere [5], two approaches are emerg- 

ing: the first one tries to make use of the apparatus of reggeon field theory [14], the 

other one starts from the diffusion picture which has been found in ref. [10]. For 
both approaches it will be absolutely essential to know the form of the general 
n--->m reggeon vertex, but at tempts to formulate such schemes should be made 
already at the present stage. 

During two visits to C E R N  ! had very useful discussions with A.R. White about 
the analytic structure of multiparticle amplitudes. Both his support and the 
hospitality of the C E R N  Group  are gratefully acknowledged. 

Note added 
After this paper was written a publication of Ya.Ya. Balitskij and L.N. Lipatov 

was brought to our attention (Yad. Fiz. 28 (1978) 1597) in which a similar proof is 
given for the infrared finiteness of T2~2 . 

Appendix 

In this appendix we briefly describe how the momentum (helicity) structure of 
reggeon particle vertices can be computed. All necessary calculations have been 
done in I (sect. 4 and the appendix), and we only have to make repeated use of 
them. For the calculation of production vertices typically the following situation 
emerges. When computing, say, the Sb~ discontinuity of a 2--~3 amplitude (cf. fig. 
6c), we have to multiply the two-reggeon particle vertex with the two particle 
reggeon vertex, the former being a 3-component  vector in helicity space and the 
latter one a 3 × 3 matrix. The production vertex is most easily expressed in the 
center of mass system (c.m.s.) of the 2---~3 amplitude, whereas the 2-- .2  scattering 
in the (bc) system is most conveniently expressed in the c.m.s, of the bc channel. It 
is, therefore, necessary to perform a Lorentz transformation from one coordinate 
system to the other, and it is the kinematics of this transformation that we need for 
the calculation of production vertices. In the following we will calculate the central 
vertex of fig. 20, going step by step from the left- to the right-hand side. 
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LLi2 
r3 rn.2 

Fig. 20. Construction of a general reggeon serf-interaction vertex. 

The  lef t-most  e lement  is the p roduc t ion  vertex Y(r 1,- r2) [cf. eqs. (3.6) and  (3.7) 
of I] in the overall  c.m.s. It  is given by  the 3 -componen t  vector:  

1 2 r T = (roeo, roe°, r o d )  (A.1) 

(the polar izat ion vectors  e I and  e 2 refer  to the t ransverse polarizat ion,  the vector  e 3 

to the longitudinal  one). In  order  to compute  the uni tar i ty integral in the (bc) 
system, we t rans form to the c.m.s, of the particles b and  c. The  t r ans fo rmat ion  

matr ix  is Lbc (k0 :  

Lbc (k l )  = 1 0 

l Bbc Abc 

(A.2) 

She 
~bc -- {kl[Sbc (-- M2 + T ( S a b  + Sbc)) ' (A.3) 

Ik l±  IMVss 
Bb¢ = Ik I ISb~ (A.4)  

W h e n  mult iplying the vector  I" in (A.1) by  this mat r ix  L ~ ,  we  obta in  [cf. (4.29) of 

I]: 

rTLb¢___(_i)[V(r~±,k, )_Me3 r?_M2 IT ± - k ~ -  M 2 ( V ( k l z ' k l ± ) -  2Me3)  ' 

(A.5) 

V(r,± , k l ±  ) = 
"21r,± [cos(r,± ,k,± )1 

2lr,± I s in ( r ,± ,k j±)  , 
0 

e 3 = . (A.6) 
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For the subsequent scattering process in the (bc) channel which consists of the 
exchange of N 3 vector particles we have, for the upper vertex, the matrix 
R(k l±,k2 . ) (H, ,~ )  s3, where k l .  and k2± are the initial and final transverse 

momenta:  

cos0 sinO !1 
R ( k l ± , k 2 ± ) =  - s i n O  cosO , 

0 0 

O = angle between k l .  L and k 2 ± .  (A.7) 

Multiplication with (A.5) leads to: 

T N3 [ r Lb~RHvv = ( - - i ) ( - - 1 )  s~ V(,,_ L ,k2± ) -- (½)U~Me3 

. . . . .  / I ~ N 3 - 1  a i  I T .  r 2 - M 2  ( V ( k l  ~ - k 2 ) ~,2] -aae3 ) 
- k 2 ±  - M 2 ' ± 

(A.8) 

In order to return to the c.m.s, of the particles a, b, and c, we multiply with 
LL(k2): 

T N 3 T [ I" Lb~RH~v Lb~ = ( -  1) s3 r ( r  l 
L 

, --F23 ) + 1 -- ( - i )MLb~e  3 
r 2 _ M 2 

- k ~ j _  - M 2 

( ( , )IT x r (k~ , - r3)+  1 2 N~-l ( - i ) M L b c e  3 (A.9) 

The two terms of (A.9) are illustrated in fig. 21. This result only includes the 

production of vector particles. If the produced particle with momentum k I is a 
Higgs scalar, the result is, instead of (A.9), simply const. × (Me3)Z; the contribution 

of a Higgs scalar somewhere between k I and k 2 leads to (A.9), but without the 

terms r ( r p  -r23) and F(k  1, - r3 ) .  

q k~ 

I" 2 

F 2 * r 3 F 3 

Fig. 21. Momentum structure of the production vertex (A.9). 
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Next we compute a unitarity integral in the (ab) system. The transformation 
which takes us from the (abc) c.m.s, to the (ab) c.m.s, is Lab(k2). It has the same 
form as (A.2), and the elements are 

v'ss (-M2 Sab ) 
Aab-~" [k2[gab "Jr--(Sab+Sbc)s ' (A.10) 

- [k2± [MV~s 
Bab -~- [kz[sa b (A.11) 

M 
LTab(k2)Lbc(k,)e3 ---- e 3 _ k2± - M 2 (V(k2 ± ,k2± ) + 2Me3), (A.12) 

and 

r ( r , ,  -r23)Lab( k2) = ( - i ) [  V(-r23 ± , k2± ) + Me 3 

r23_ M2 IT 
_ k-~-f--_-M2 (V(kz±,k21)  +2Me3)  . (A.13) 

Multiplication of (A.9) with Lab therefore leads to: 

T N3 T 
r Lbc RH~ Lbc Lab 

=~ "'~ /'fV~ r~3~ k2~+(2 --' ) Me3- 2~ 
rl 2 -- M 2 

X (V(k21 ' k ~ )  + 2Me3) _k,L_ - M  ~ 

× [ V ( - r 3 ± , k 2 1 ) + ( 2 - 1 - - ~ ) M e 3  

r~ (2 ~ ) ~  
- -  k 2 ±  - M 2 

r E -  (2 1 2u~-l ) M2 

- k2± - M 2 

(AA4) 
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For the scattering process in the (ab) channel (exchange of N 4 vector particles) we 
have, at the central vertex, the matrix R(k2±, k3±)(H~) N'. In order to return to 
the (abc) c.m.s., we use the matrix Lab(k3). The calculations are straightforward, 
and the results are illustrated in fig. 22. 

From these two steps we already recognize the general pattern: each time when 
we switch from the (bc) c.m.s, to the (ab) c.m.s. (or vice versa), we double the 
number  of terms. There is one group of contributions (e.g., the first and third terms 
of fig. 22) in which the new exchanges in the (ab) channel couple directly to the 
previous result; in the other group of contributions (e.g., the second and fourth 
terms of fig. 22) there is a propagator  line between the new exchanges and the 
previous results, accompanied by the factor (R z -  ~MZ)/(k~ + M 2) in our for- 

mula (R is the total momentum carried by the previously exchanged particles, e.g., 
r 2 + r 3, rj, and r 3 in the second, third, and fourth term of fig. 22, respectively: k 2 is 
the momentum along this propagator  line; for the factor a in front of M 2 we do 
not want to give an explicit rule, for reasons which we shall explain below). Higgs 
scalars only occur within a circle of fig. 22, i.e., the link lines between circles always 

belong to vector particles. When adding their contributions to those of the vector 
particles, one only changes the factor c~ for that vertex in which the Higgs scalar is 

produced. 
Finally, we come to the right end of fig. 20. From the previous step we have 

terms like (cf. fig. 23; we are still in the (bc) c.m.s.): 

( - i ) ( - 1 )  u3++u" 2{V(rij,k, ,± ) -c ,Me  3 ri2-c2M2 
t - _ k 2 _ 2  ± - M 2 

I 
T 

×(V(k,_2±,k,_21)-c3Me3) . (A.15) 

r I • I-~ r~ 

r2 

r2+r  3 rT+ % 
rL 

q 

Fig. 22. M o m e n t u m  structure of the production vertex (A.14). 
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2 //!l lilt(n_? T Fn 

Fig. 23. Momentum structure of (A.17). 

For the r.h.s, production vertex of fig. 20 we also go into the (bc) c.m.s.: 

( - i ) {  V ( r , - , l ,  - k , _ , l )  - M e  3 

r : _ l  _ M 2 )T 
- 7.2- _ M 2 ( V ( - k . - , ± , k . - , ± ) - 2 M e 3 )  kn-l± 

Putting together eqs. (A.15) and (A.16) we arrive at (fig. 23) 

i N I . 2 ( 4 - c z M Z ) ( ( r o _ , ~ + k o  2 ~ ) ~ + ~ 2 M  2) 2 ( -  ) ( r i + r n _ l ) ±  +O~l M 2  -- [ -- k~_2± - M 2 

( rd - , - c2M2) ( ( r i - kn_ l )~  + a , M  2) 

2 _ M  2 - k n _ 1 3  - 

(A.16) 

-(r22-c2M2)(r~-'-M2)((kn-2-kn-l)22 2 2 2 + a ' M 2 ) }  
( - k n - 2 _ L - M  ) ( - k . _ , j  - M  ) (A.17) 

( N  = N 3 + • • • N n- 2 + 1 is the total number  of intermediate states in fig. 20). Our 
previous remark that switching from the (ab) c.m.s, to the (bc) c.m.s, doubles the 
number  of terms remains true; the same holds for the final connections with the 
right-hand vertex. 

This completes our description of the algebra one has to do in order to obtain 
the momentum structure of a production vertex. The reason why we have not been 
very specific about  the contribution of Higgs production along the central line in 
fig. 20 and constants in front of terms proportional to M 2 in the numerators is the 



J. Bartels / High-energy behaviour ( H)  401 

following. Since we are mostly interested in the vacuum exchange channel, and 
since the leading j-plane singularity in this channel comes from the large momen- 
tum region (this is explained in refs. [10, 5, 6]), we can restrict ourselves to large 
values of the momenta or, equivalently, to the limit M2-~0.  In this limit, terms 
proportional to M 2 become unimportant, and we can forget about the Higgs 
scalars. Moreover, the terms coming from the vector particle production can be 
combined to a very simple expression. The final result for the central part of fig. 22 
is: 

rl ' k~  i T i j ( k ' )T j ' ( k2 ) ' ' ' T '~ (k" -2 )  r"-l+k"-2r~-----'-L 
k~_ 1 ' 

(A.18) 

where 

7jj(k  ) = 6ij - 2 k-- S- (A.19) 

This expression will be used in the following parts of our program. 
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