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THE STEFAN-BOLTZMANN LAW AT HIGH TEMPERATURE FOR THE GLUON GAS 
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We determine the energy density of the pure SU(3) Yang-Mills system by Monte Carlo simulation. In the high-tempera- 
ture regime the Stefan-Boltzmann law is satisfied within errors. 

The understanding of the finite-temperature prop- 
erties of Yang-Mills gauge systems has a basic signifi- 
cance for the description of the thermodynamical be- 
haviour of matter. Besides, finite-temperature studies 
can also help in revealing some important features of 
the quantum field theory itself. The lattice Monte 
Carlo method for studying gauge field theories [ 1,2] 
turned out to be very fruitful also at non-zero temper- 
atures. The expected [3-6] deconfining phase transi- 
tion at some critical temperature T c has been shown 
to occur for SU(2) [7,8] and for SU(3) [9] gauge sys- 
tems. The behaviour of thermodynamical quantities 
was studied in the SU(2)-case both at high [10] and 
at low [11] temperatures. The SU(2) Yang-Mills sys- 
tem behaves at very high temperatures as an asymptot- 
ically free gluon gas satisfying the Stefan-Boltzmann 
law. This high-temperature behaviour suggests the va- 
lidity of asymptotically free perturbation theory for 
temperatures well above Tc, in spite of the "virulent" 
infrared divergences [12,13]. This conclusion is 
strengthened by the SU(2) Monte Carlo data on the 
non-abelian magnetic flux [14], supporting the pres- 
ence of the required non-perturbative infrared cut-off. 

In quantum chromodynamics the relevant gauge 
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group is SU(3), therefore it is important to know what 
are the quantitative or perhaps qualitative differences 
between SU(2) and SU(3). In the present paper we re- 
port on our calculations done on the finite-tempera- 
ture SU(3) Yang-Mills system. The Monte Carlo re- 
sults show the (approximate) validity of the Stefan- 
Boltzmann law for the energy density of the SU(3) 
gluon gas at high temperatures. 

For the description of the SU(3) Yang-Mills sys- 
tem with finite temperature we take, as usual, a lattice 
of size N3N~ with N>> Nt3 and periodic boundary con- 
ditions. The periodicity in the three spatial directions 
is imposed to diminish surface effects, whereas period- 
icity along the euclidean time direction introduces a 
non-zero temperature T =/3 -1 = (aaN#) -1.  Here a de- 
notes the lattice spacing in the spatial directions and 
aa ~ a~ is the lattice spacing in the time- (or "inverse 
temperature") direction. The spatial volume is V 
= (aN)3 .  

The energy density (e) and pressure (P) can be ob- 
tained by differentiating the partition function with 
respect to/3 and V. This could, in principle, be done 
on the lattice by changing N~ and N for a# and a fixed, 
but a much more convenient way in Monte Carlo cal- 
culations is to fix the lattice size (N~, N)  and change 
the lattice spacings a~ and a. Unequal lattice spacings 
a~ :/= a (a ~ 1) mean unequal ultraviolet cut-offs for 
the energy and the three-momenta. Therefore, any lat- 
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tice (bare) coupling constant has to depend on both a 
and a 0. In fact, in order to achieve (euclidean) Lorentz- 
invariance in the continuum limit a ~ 0, a = fixed, one 
has to introduce two different coupling constants gs 
and g~ in the action in front of  the space-like and time- 
like plaquettes [15]. (The restauration of the Lorentz 
invariance in the continuum limit can be shown using 
a local effective lagrangian [16] .) The euclidean lattice 
SU(Nc) action has in this case the form 

S= 2gs2a ~ (N c - Re tr Ups ) 
(ps} 

+ 2g~-2a -1 {pZ~} (Ar c - Re tr Upo ). (1) 
i 

Here Z {Ps} (respectively Z {p0} ) denotes the summa- 
tion over "space-like" plaquettes with only space-like 
links (respectively "time-like" plaquettes with two 
time-like links). The corresponding plaquette variables 
are Ups, Up~ E SU(Nc). Instead of the functions 
gs, o(a, a~) one can also use gs,0(a, a)  or gs,0(g, a), 
where g = g(a) is the bare coupling constant in a theory 
with equal lattice spacings a in all directions. The two- 
loop renormalization group formula for the function 
g(a) is: 

aA L = (11Ncg2/48rt2) -51/121 exp(-247r2/11Ncg2),  

(2) 

where A L is the lattice scale parameter on the equally 
spaced lattice. Following ref. [ t5] we shall assume 
that in the continuum limit a, g ~ 0 (a fixed) the two 
bare coupling constants gs and g0 satisfy 

gs(a, a)  - 2  = g(a) - 2  + Cs(a ) + O(g2), 

go(a, a) -2  = g(a) - 2  + ct3(ot ) + O(g2). (3) 

For a = 1 (a 0 = a) we have to put, by definition, gs 
= g o  = g ( e s  = e 0  = 0 ) .  

The thermodynamical quantities can be derived 
from the action (1) in the same way as it was done in 
ref. [10] with a single coupling constant. In the case 
of  SU(Nc) we obtain (N c = number of  colours = 3 in 
this paper): 

e=ea+eg, P = P  +P, (4) 

where, with the notation Ap = Re tr Up we have 

e a = 2(TN#)4(N3N[3) -1 

X tgs2a4 (~ps) (Nc-Aps)-g;2°t2 (~-Jp13) (Nc - A po) ), 

_ 1  P --~ ~a, (5) 

and 
eg = 2(TNo)4(N3No) -1 

X ( ~ a 2  a °t5 (~ps} (Nc - Aps) 

ag; 2 a3 
+ ~ a l a  {~po}(Nc-Apo)), (6) 

I Pg =5 5 - ~ ( TNo)4 (N3 No )-1 

~gs 2 or4 ~ (Nc - Aps) X 
, ,  -~a ~ (Ps) 

a ag;2 ot 2 
+ ---~a la {p~} (Nc - Ap0)).  (7) 

These relations will be used below only for a = 1 (a 0 
= a), i.e. for equal lattice spacings in all directions. The 
coupling constant derivatives needed at a = 1 are given 
in the continuum limit by eq. (3) like 

~gs 2 Og~21 dg -2  _ _ 2 g -  3~(g) 

a -~a-a = l = a -~a ic~= l = a da ' =  
(8) 

= -2(/30 + g2/31 + g4t32 +...) = - 11Nc/247r2 + O(g 2), 

and 

ag~,~ ' cs,~ = '  des 'o(a) (9) 
a=l,a =cs'O +O(g2)' ~ ~=1" 

The O(g 2) corrections will be usually omitted in 
what follows. They can, however, be easily included. 
In numerical calculations the effect of  O(g 2) terms, 
for instance, in eq. (9) would show up as a weak depen- 
dence of  e's, 0 on g2. We shall, however, calculate c's, 3 
only at a single g2 value. (Another g2 value would re- 
quire us to go e.g. to N3 = 5 lattices, a difficult task 
from the point of  view of  computer  time.) 

An interesting consequence of  eqs. (4 ) - (9 )  is that 
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= 1  for c~ = 1 the thermodynamical quantity/5 - 5 e - P 
does not depend on the parameters c s and c~ : 

/5 = (TN#)4(11Nc/36rt2)(N3Nt3) -1 

X t {p~s} ( A p s - N c ) +  {p~) (Apt 3 - Ne) ) .  (10) 

The reason for this is that/5 could be obtained without 
introducing unequal lattice spacings and two coupling 
constants at all. Namely, for fixed N and NI3 we have 
on the equally spaced lattice 

6 =-~e - P =  - ( 3 V )  -1 OlnZ/~t3 -(3 -1 ~ lnZ/OV 

_ 1 a --=31nZ 4a -4  /3(g) ( ~ (A - Nc'l\~/ 
3VI~ ~a 3N3N~ g3 \ (p}  P 

(11) 

Using T = (aN~) -1 and eq. (8) this gives again the ex- 
pression in eq. (10). 

The above thermodynamical quantities still include 
vacuum (T = 0) terms. This is not surprising as even in 
the simplest case of  a free scalar field the euclidean 
formulation leads to an infinite vacuum energy density 
term [17]. Such zero point terms can be removed in 
the above formulae either by subtracting the same ex- 
pressions for the symmetric (N~ = N )  lattice (assumed 
to describe T = 0), or by taking differences belonging 
to two different values of the temperature. Let us il- 
lustrate the second procedure for the quantity 6. (The 
treatment of eg is very similar, whereas e a does not 
contain a T = 0 term as it vanishes on the symmetric 
lattice.) 

The relation of the temperature T with the lattice 
size in the time direction N~, the coupling constant g 
and the ratio a = a;3/a is from eq. (2) 

T/A L = -1 (11N¢g2/48,2) 51/121 exp(24"2/11Neg: ). 
(12) 

At a = 1 for a giveng, corresponding to a given lattice 
spacing a, the zero point term does not depend on N;~. 
Taking into account that the number of  both  space- 
like and time-like plaquettes is 3N3N~, we have from 
eq. (10) 

/5 ( r ) - /5 (TNffN '~)  = (TN~)4(1 1Ne/12w2 ) 

X ((Aps + Ap~3}g,N(3 -- <Aps + Apt)g,N~). (13) 

The relation between 7", Nj3 and g is given by eq. (12) 
with a = 1, therefore the temperature corresponding 
to the same g and different N~ is TNjN'~, as indicated. 

Another formula can be obtained from (13) if we 
r + putN~ =N~ 1 and sum for T, TN~ (N~ + 1) -1 , 

TN~(N~ + 1) -2  . . . . .  The sum on the right-hand side 
can be replaced by the corresponding integral ifN~ is 
large. This gives 

-2 gl 

/5(TI) - /5 (T2)  = 2N~A[ f 2  dg-2  exp(967r2/llNcg2) 
g2 

X ((Aps+Ap)g2,N ~- Gtps +Apt3)g2,Nl3+l ) . (14) 

Note that we are now neglecting everywhere, for sim- 
plicity, the O(g 2) term in eq. (8) which is proportional 
to/51. In the integration limits g/ ( j  = 1, 2) is given by 
7"] from eq. (12)wi th  a - -  1 and Nt3 and the power 
term on the right-hand side neglected. A further possi- 
bility is to take the derivative of  eq. (14) with respect 
to the temperature. This gives 

d/5/dT = T3N~(11Ne/12~r 2) 

X ((Aps +Ap)g,N ~ - (Aps +Ap)g,Nf3+l ). (15) 

As already mentioned, the expressions for/5 and eg are 
very similar. The procedure which leads to eq. (15) 
gives for %: 

deg/dT = 6T3N5~ ' A [-Cs(< ps>g,N  - C4ps>g,U + 1) 
t 

-- c ~((Ap~) g ,N  B -- (ApB) g, NB+ 1 ) ] "  (16) 

There is, of  course, also a relation for eg(T1) - eg(T2) 
analogous to eq. (14). 

The quantities e a and d/5/dT in eqs. (5) and (15) 
can be determined immediately from the lattice 
Monte Carlo data by measuring the expectation values 
of plaquette variables. The energy density e = e a + eg, 

¢ 

however, can only be calculated if the values of c s and 
c't3 in (16) are known. According to eq. (9) these pa- 
rameters reflect the dependence of the two coupling 
constants gs and g~ on the ratio of the lattice spacings 
a = a~/a in the vicinity of a = 1. The functions Cs(C 0 
and c~(a) can be determined analytically from a per- 
turbative calculation analogous to the one done by 
Hasenfratz and Hasenfratz [ 15]. A numerical proce- 
dure, checking at the same time the consistency of  the 
numerical evaluation, is to consider some physical 
quantity on the lattice and determine the dependence 
o fg  s and gg on a by requiring that the numerical val- 
ue of this quantity be unchanged if c~ is changing. An 
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example of such a procedure is given in a recent paper 
by Bhanot and Creutz [18] in a zero-temperature 
SU(2) lattice gauge theory with two coupling constants. 
The physical quantity chosen by Bhanot and Creutz is 
the ratio of  some Wilson-loop expectation values, In 
thermodynamics the best physical quantity to fix [I0] 
is the value of the deconfining phase transition temper- 
ature T c. At this critical temperature the expectation 
value of  the Wilson-line going through the lattice in 
the time direction ("order parameter")  becomes non- 
zero [ 7 - 9 ] .  

The action S in eq. (1) depends on the combina- 
tions G s ~ ~ g s  2 and G~ = o~-lgf1-2, therefore first we 
have to locate the critical line corresponding to T c in 
the (Gs, G#)-plane. Let us measure the value of T c in 
units of  A L, which is according to eq. (2) the scale pa- 
rameter for a lattice with equal spacings in all direc- 
tions. From eq. (2) or (12) we get: 

ln(otN~Tc/AL) = 241r2/11Ncg2 + i~1 In(11Ncg2/48zr2 ). 
(17) 

From this equation it is possible to express g as a func- 
tion of the variable av =e~N#Tc/A L. Omitting, for sim- 
plicity, the O(g 2) corrections in eq. (3) we have: 

G s = otg(otv) -2  + eCs(O 0 ~- Gs(a, o~v), 
(18) 

G~ = ~ - l g ( a , ) - 2  + a-lc~(~) _ G~(a, ca,). 

This is a parametric representation of  the critical 
curves in the (Gs, G#)-plane when c~ is changed and u 
is kept fixed. 

In order to extract e' s and c~ we make a linear ap- 
proximation of  C~es(a ) and a - l e s ( a  ) in the variable c~ 

- 1 near c~ = 1. In a numerical procedure it is not good 
to choose (c~ - 1) too small, because it is difficult to 
detect a small change in G s and GO. We have taken, for 
simplicity, ~ = 3/4 forN~ = 4 and ~ = 4/3 forNfl = 3. 
(Other choices may even be better for the optimal de- 
termination of c' s and c~, but these simple values are 

p 
sufficient to show that c '  s and c a are small.) In these 
cases eq. (18) gives, with T c - Tc/A L and G~ =~ g(f fc )  - 2  
(/= 3, 4): 
G 3 _ 3  1 t - 

s(~ ", 31" c ) - ~ G  3 - - g C s ~  Gs4 ,  

4 1 i, - -  - -  

GO(¼,37-c) = -fG 3 - ~c# = Gt~4, 
1 t - -  

4 o) 4 -Cs3, 
_ 3  1 t -- G#(-~, 4rc) -7G4 +7c# = GO3. (19) 

The numerical search for the critical values of  G s and 
G o (where the time-like Wilson-line expectation value 
becomes non-zero) can be carried out by fixing the ra- 
tio GIG s and changing e.g. G s. We can, for instance, 
take G o = 9Gs/16 for ot = 4/3 and Gt3 = 16Gs/9 for 
= 3/4. The points of the Na = 3 and Nt3 = 4 critical 
lines in the (Gs, Gfl)-plane are then P3 = {Gs3, 9Gs3/ 
16} and P4 = {Gs4, 16Gs4/9}, respectively (see fig. 1). 
These points would coincide with P3 = (Gs3, Gfl3 }, re. 
spectively, with P4 = (Gs4, Gt34), if in eq. (19)c  s and 
c o would be zero. Otherwise, in the linear approxima- 
tion near a = 1, P3 is on the line connecting P3 to the 
a = 1 point Q3 ~ {G3, G3}, and P4 is on the line con- 
necting P4 to Q4 ~ {G4, G4}. The points Q3 and Q4 
can be obtained by determining T c for a = 1 with N# 
= 3 and N# = 4, respectively. With the help of  fig. 1 it 
is easy to show that if we put Gs3 = 4G4/3 + e 3 and 
Gs4 = 3G3/4 + e 4 (e3, 4 small), then the solution of  eq. 

t p . 
(19) for c s and ct~ is: 

C' s = ( 2 5 G 3 G  4 - 1 2 G  2 - 1 2 G 2 ) - l ( 3 G 3  - 4 G 4 )  

X ( - - ~ G 3 e  3 + - ~ G 4 6 4 )  , 

C'# = (25G3G 4 - 1 2 G  2 - 1 2 G 2 ) - l ( a G 3 -  3G4) 

X (9G3e 3 + 16G4e4). (20) 

The Monte Carlo data for Te, on lattices with space- 
like size N = 9, are shown in fig. 2. For the details of  
our Monte Carlo methods see ref. [19]. Taking the 

31a .. ?#16~/9 / G ~ 6  s 
D/, " ' , ,  

"%, 
• Qq 

5~ 90s116 

. GS 

Fig. 1. The critical lines (full lines) belonging to the critical 
temperature  T c in the (Gs, G0)-plane for N o = 3 (Q3P3) and 
N o = 4 (Q4P4). The dashed lines would be the critical lines 
for c s = c~ = 0. 
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3 

1.0 

A o<=I N~=3 
[] o<=I N~=6. 
• c~(:3//+ N~ = 4 
i c4=t43 N,=3 

N=9 

70 O" T/̂ L 

Fig. 2. The behaviour o f  the time-like Wilson-line expectat ion 
value Re(Lt  )3 as a funct ion  of  the temperature calculated from 
eq. (12). The points  represent the averages of  typically 200 
iterations. Statistical errors are roughly the same as the size of  
the points.  

average o f  the N~ --- 3 and N# = 4 points at a = 1, the 
critical temperature obtained from fig. 1 is: T c = (78 
+ 3)A L. This agrees, within the errors, with the value 
T c = 83 A L given in ref. [9].  The behaviour of the 
time-like Wilson-line expectation value in a larger tem- 
perature range is depicted in fig. 3. The systematic dif- 
ference between the values of  T c obtained from the 
N 0 = 3 and 4 points could be due either to finite lat- 
tice size effects or to deviations from the two-loop re- 
normalization group formula (12) connecting g with 
the temperature. Assuming the second possibility, the 
shift of  about ATc/T c = 0.08 would then be due to 
the higher loop corrections to the/3-function. In fact, 
regularization scheme dependent three-loop correc- 
tions were advocated recently [20] in order to explain 
the differences in the string tension values obtained 
from different lattice actions. The difference in the g2 
values belonging to N o = 3 and N o = 4 (for t~ = i )  is 
abou tg  2 ~- 0.04, hence the above shift in T c could be 
accounted for if for the Wilson-action [in the notat ion 

~..0 ̧  

3.0 

2.0 

1.0 

CJ 
933 

/x 
A 

A 

AA T/AL 

260 4o 6~o 860 
Fig. 3. The time-like Wilson-line expectat ion value as a func- 
t ion of the temperature measured in units  of  A L. The lattice 
size is here 93-3 with equal spacings in all directions (~ = 1). 
The points  are obtained f rom typically 500 iterations. 

of eq. (8)1 032 -/32//30) ~ 4132. 
The quantities needed in eq. (20) can be inferred 

from fig. 2: G 3 = 0.917, G 4 = 0.948, e 3 = 0.020 
+ 0.010 and e 4 = - 0 . 0 0 1 4  -+ 0.0014 (the errors are 
subjective estimates based on the statistical fluctua- 
tions of  the averages during the iterations). This gives 
c' s = - 0 . 1 2  -+ 0.06 and c~ = 0.14 + 0.06. The differ- 
ences of  plaquette expectation values needed for the 
calculation of  deg/dTin eq. (16) are, for instance, at 

a temperature T = 800 A L : ( A p s ) g  ' 3 - ( ,4ps)g ,4  
= - 0 . 0 0 3 6  + 0.0004 a n d  ( A p o ) g , 3  - ( A p o } g , 4  = 0.0040 
+ 0.0004. Therefore we have 

(T - 3  deg/dT)T=8OOAL = --0.72 + 0.30, (21) 

This has a large relative error, but  the important  infor- 
mation is the order of  magnitude. Namely, as we shall 
see later, eq. (21) implies (for this temperature)  leg l 
< e  a- 

The general behaviour of  IT - 3  deg/dTI as a func- 
tion of  the temperature is the following: It has a high 
and sharp peak at T c. Above T c it is monotonical ly 
decreasing. The decrease in the high-temperature re- 
gion (T~" Tc) is compatible with being logarithmic. 
Therefore, in the relation 

T -3 deg/dT = 4egT -4 + T(d/dT)(egT-4), (22) 

the second term on the right-hand side can be ne- 
glected for T>~ T c. (Actually, the second term would 
dominate if legT-41 would decrease faster than T - 4 .  
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6,.0 

Ea/T ~ 6. Nt,= 3 
o N~=4. N=9 

20 t 
Z~ dIAL 

ld0 360 s6o 760 

Fig. 4. The energy density as a function of the temperature 
obtained from the same runs as fig. 3 (triangles) and from a 
93 -4 lattice with ~ = 1 (squares). Here ea T-4 is given and com- 
pared to the Stefan-Boltzmann expectation 8n2/15 (horizon- 
tal line). 

But this case need not  be considered at all, as ea T-4  
is nearly constant for T>> T c, therefore legT-41 
"~ Ca T - 4  would be trivially fulfilled.) Dropping the 
second term in eq. (22) we obtain from eq. (21): 

(T -4  eg)T=800A t = --0.18 + 0.15. This characterizes 
the order of magnitude of T-4eg in the high-tempera- 
ture region. 

The other part of the energy density is, according 
to eqs. (4), (5), for ct = 1 : 

= 6(TNo)4g-2(Ap~ - Aps)g,N O. (23) % 

The Monte Carlo results for this quantity on 93-3 and 
93-4 lattices are given in fig. 4, where the values of the 
Na = 3 points are divided by a factor 1.7 and those of 
N o = 4 by a factor 1.35. These factors take into ac- 
count the finite-size effects derived from the lattice 
thermodynamics of a free scalar field [21]. The same 
factors were necessary also in the SU(2) case [10] in 
order to obtain agreement with the expected free gas 
behaviour of the energy density at high temperatures. 
In our case the Stefan-Bol tzmann law predicts for the 
energy density e = 87r2T4/15. As shown by fig. 4 this 
prediction is fulfilled for T > 120 A L by e = e a within 
the errors of the numerical calculation. The small neg- 
ative value of egT -4 shifts the points in fig. 4 a little 
bit downwards, therefore it makes the agreement with 
the Stefan-Boltzm~nn value even slightly better. But 
this improvement is insignificant due to the numerical 

errors on both ea T-4  and egT -4. A more precise nu- 

merical determination of e = e a + eg would require 
considerably higher Monte Carlo statistics. 

The behaviour of the quantity T -3  d6/dT given in 
eq. (15) is very similar to the behaviour of IT -3  deg/ 
dTI. It has a sharp and high peak at T c and decreases 
monotonously for T >  T c. (We shall give detailed 
Monte Carlo data on 6 and eg in a forthcoming publi- 
cation [22] .) This is another argument for the conclu- 
sion that for T>> T c the pure SU(3) Yang-Mills sys- 
tem behaves as an asymptotically free gas, in spite of 
the infrared singularities seen in perturbation theory. 
For an ultrarelativistic ideal gas 6 vanishes. Its devia- 
tion from zero gives a measure of the effective strength 
of interaction manifested in the decrease of the pres- 
sure if compared to the energy density. Note that a 
finite effective gluon mass implies also 6 > 0. 
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