
ANNALS OF PHYSICS 176, 33&343 (1987) 

Gauge Invariance, Anomalies, 
and the Chiral Schwinger Model 

N. K. FALCK* AND G. KRAMER 

II. InsMut fir Theorerische Physik der Universiriif Hamburg, 
D-2000 Hamburg 50, Federaf Republic of Germany 

Received November 19, 1986 

After having justified the gauge invariant version of the chiral Schwinger model we perform 
canonical quantization via Dirac brackets. The constraints are First class, exhibiting gauge 
invariance. As a result we find that this is the reason for the consistency of the model of 
Jackiw and Rajaraman. ROT 1987 Academic Press. Inc. 

1. INTRODUCTION 

Recently the interesting possibility has been proposed [l-3 J that chiral gauge 
theories might be consistently quantized in spite of the presence of anomalies (for 
review, see [4]). Since up to now anomalies have been thought to break gauge 
(BRS) invariance of the corresponding quantum field theory’ and hence to spoil 
consistency and unitarity (and renormalizability), this possibility might completely 
change our understanding of and relationship to anomalous models. This new 
development is important not only from a formal point of view, but also for very 
practical purposes since now anomalous models possibly do not have to be 
excluded from being realistic. 

The proposal of ref. [ 1 J consists of introducing by hand a scalar field in order to 
keep the constraints first class after quantization to maintain gauge invariance at 
the quantum level, This results in the addition of a Wess-Zumino term, which has 
been confirmed by careful path integral treatments [6-g], which improve earlier 
attempts [9] by reanalysing the Faddeev Popov procedure [lo]. The outcome of 
this investigation is the fact that the Wess-Zumino term need not be introduced by 
hand but that it arises automatically. All previous calculations, which led to incon- 
sistent results for anomalous gauge theories, have been based on the assumption 
that the Faddeev Popov trick, namely to neglect the volume of the gauge group, 
works in anomalous theories in the same way as in the anomaly free case. Since this 
assumption is not fulfilled, as will be discussed in Section II, these calculations are 
not reliable and should be redone in a correct framework. 

* Supported by Bundesministerium fur Forschung und Technologie, 05 4HH92P/3, Bonn, PRG. 
1 At the quantum level the notion “gauge invariance” always means BRS invariance [S]. 
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Unfortunately, this is very difficult for realistic four-dimensional models. This led 
us to investigate as a first step the two-dimensional case, where the effect of chiral 
fermions can be explicitly calculated. This has been the reason for the growing 
interest in two-dimensional gauge theories. The existence of an exact solution 
provides us with an excellent playground to test the survival of the gauge sym- 
metry, the anomaly cancellation and the consistency of the solution. 

In a recent paper Jackiw and Rajaraman [I I] studied the chiral version of the 
Schwinger model [12] (chiral QED in two dimensions). They interpreted the 
appearance of a mass term for the gauge boson as an anomalous breakdown of the 
gauge symmetry. Nevertheless they showed that quantization can be carried 
through consistently and that the quantum theory is unitary. This has been confir- 
med by a detailed analysis of the constraint algebra in the Hamilton formalism via 
Dirac bracket quantization of the bosonized theory [ 13, 141, showing that the con- 
straints are second class as one would expect for a theory without gauge invariance. 
In the following this formulation of the chiral Schwinger model will be called 
“anomalous” or gauge noninvariant. In ref. [6] the correct path integral treatment 
was also applied to the chiral Schwinger model, they, however, obtained a gauge 
invariant, anomaly free quantum theory. This formulation will in the following be 
referred to as the anomaly free or gauge invariant chiral Schwinger model. This has 
been considered in the Lagrange formalism by ref. [ 151 (see also [ 16, 171) too, 
these authors added the Wess-Zumino term by hand. following the proposal of 
ref. [l]. 

In the present paper we investigate in the Hamilton formalism the constraint 
structure of the gauge invariant formulation of the chiral Schwinger model, and we 
are going to explain why the so-called anomalous chiral Schwinger model is con- 
sistent and to clarify the relationship between the anomalous and the anomaly free 
chiral Schwinger model. In Section II we repeat the correct path integral approach 
in order to have the needed formulas at out disposal. In Section III the anomaly 
free chiral Schwinger model is quantized using the Dirac bracket procedure. 
Section IV will contain the discussion of the result. 

II. PATH INTEGRAL APPROACH 

In this section we briefly repeat the derivation of ref. [6] in order to make our 
discussion more explicit. The most important observation in the path integral quan- 
tization of anomalous gauge theories is the fact that functional integration has to be 
performed over the complete configuration space [6-81 including the gauge 
volume. Hence the generating functional reads: 
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where S[$, $, A] is the classical action. Now the Faddeev Popov trick [lo] is 
repeated by inserting an appropriate unity into Eq. (2.1), namely 

1 = A/w 3 j & w-(A “)I* (2.2) 

Here AR is the gauge transformed vector potential, f is the gauge fixing function, A, 
the corresponding Faddeev Popov determinant and the integration is performed 
over the gauge group. Then relabeling the integration variable A --f Agei and using 
the gauge invariance of dA and A,(A) gives 

Z= j g/Q,) d,) dg eis[i. d‘, AC-‘1 
(2.3) 

with the gauge boson integration measure 

9A = dA A,,-[A] &f(A)). (2.4) 

The usual Faddeev Popov procedure is to argue that relabeling II/ and 1,6 in the 
same way as A and using the gauge invariance of S leads to a trivial g-integration 
which may be absorbed in the normalization of Z. Hence the Faddeev Popov 
procedure gives 

Z = j 9A de d$ eisci- *, A]. (2.5) 

However, it is well known [9] that in the case of chiral gauge coupling to the fer- 
mions dt+b dJ/ achieves a nontrivial Jacobian which gives rise to anomalies. This 
means that Eq. (2.5) is in general incorrect in chiral theories. The old argumen- 
tations [4] concerning anomalies are based in Eq. (2.5). Therefore they should be 
reanalysed using the correct generating functional, Eqs. (2.1), (2.3), and (2.8). 
Defining the effective gauge field action by 

eiWIAl = d$ d$ eiSlri. +- Al (2.6) 

and the Wess-Zumino action [ 1 S] as 

M,[A, g-l] = W[A”-‘I- W’[A] 

the generating functional, Eq. (2.3), may be rewritten according to 

Z = f- 9A dg eMAn-‘l 

= 9Adge 
s 

i{W’[A]+a,[A.g-‘1; 

= 9Ad$d$dge 
s 

i(~C~,~.Al+a~[A.g~~‘l} 
(2.8) 

(2.7) 
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The exponent in the last line of Eq. (2.8) has been called the “standard action” in 
ref. [6]. From here we see that Eq. (2.5) is correct only in the case that the one- 
cocycle ct, [*4, !: ‘1 vanishes, i.e., that the theory is free of anomalies in the conven- 
tional sense. This derivation clearly shows that it is not necessary to introduce the 
WesssZumino term by hand in order to restore gauge invariance, as it was 
proposed in ref. [ 11, but that it is an indispensible ingredient of the theory itself, if 
a gauge invariant formulation is chosen. Since Eq. (2.8) can be shown to be gauge 
invariant 161, anomalies do not spoil gauge invariance at the quantum level, as it 
was commonly believed. Certainly, since Z is gauge invariant and ci$ li$ is not, it is 
clear that the action which contains the chiral fermions is not gauge invariant. This 
means that the action does ~01 reflect the symmetry of the theory. This is just con- 
trary to the conventional incorrect formulation based on Eq. (2.5) where the action 
suggests a gauge symmetry which is not present. 

III. CANONK‘AL QUANTIZATION OF THE CHIRAL SCHWINGER MODEI 

The chiral Schwinger model is defined by the classical action 

where we use the notation 

‘loo = -‘/II = 1, pl = -1: - I o,- 3 

3’? = jyi” 4 j;l,,;,, = f:/,, ;‘I. 

(3.1) 

( 3.3 ) 

In this model the functional fermion integration can be done explicitly, yielding 
[II, 19,201 

where u is a free parameter which reflects the ambiguity of the regularization of the 
fermionic determinant. According to the statements of the preceding section there 
are two possibilities for quantization: first one could start from 

z = [ d/4 p”“f 41, (3.4) 

then manifest gauge invariance is lost and anomalies are present. This approach has 
been investigated in refs. [ 11, 131. The second alternative is to insist upon gauge 
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invariance and to start from Eq. (2.8). If g is parametrized as e-j’ then 
,4g-’ = A, - (l/e) d,8 and integration over 6 gives P 

s 
deeil~r’~J;;a,e(‘+iy5’ILdZx-B(a 

P ($pyl +iy,)ll/)) 2 (3.5) 

i.e., current conservation is automatically ensured at the quantum level. We note 
that this argument holds for abelian theories in arbitrary dimensions. 

Since the fermionic action does not reflect the symmetries of the theory, the fer- 
mions have to be integrated out before canonical quantization can be performed. 
This results in the effective ation (cf. Eq. (2.8)): 

w[A"-'I= j {-i F,,,F”‘--((u-1)8 q 8+eea,[(a-l)s~“+&~“] A, 

ez 
+TAil 

aa 
@‘“~-(~+E)~~~(~-E)~~ A, d2x. 1 I (3.6) 

According to ref. [ 111, the nonlocal term A(&?/0 )A can be expressed in local 
terms by introducing an additional field 4, 

Z = j CjjA dd & ei j yefl d2.r, 

+e(%$,[(a-l)+‘“+~~~] A,+;aA,,A”. (3.7) 

At this stage we note that the gauge invariance of the theory has translated to the 
invariance of the effective action J Ze, d2x with respect to the gauge transformation 

1 
A,+A,--a,,A, d-4+A 8+6-A. 

e 
(3.8) 

Thus we expect the presence of first class constraints in contrast to the case of 
ref. [ 131, where no gauge invariance was present and hence all constraints have 
been second class. Performing the Legendre transformation, we find the primary 
constraint 

I7,ZO (3.9) 

and the canonical momenta 

n, = -F,, = a,AO+ doA’, 

Z7, = a04 + e(A” + A’), 

Z7,=(a-l)a,O-(a-l)eAO+eA’. 

(3.10) 

(3.11) 

(3.12) 
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In Eq. (3.9) 2 denotes weak equality in Dirac’s terminology [ 21. 221, i.e., Eq. (3.9) 
must not be used before all Poisson brackets of interest have been calculated. Note 
that Eq. (3.12) determines a one to one correspondence between Z7, and a,,0 only in 
the case II # 1. hence we have to distinguish between u # 1 and u = 1. 

In this case Eqs. (3.10)-( 3.12) may be converted to express the velocities in terms 
of the momenta in order to perform the Legendre transformation. The Hamiltonian 
density is given by 

x +,Ir,+;n;+ 
1 

------n;;+A”~Il,-e17~(A”+A’) 
2(a- 1) 

(3.13) 

where c, is an (up to now) undetermined Lagrange multiplier reflecting the 
arbitraryness of ?,,A” and ? denotes i!, In terms of the Poisson brackets 

the Hamiltonian equations of motion are determined by ( f’ not explicitly time 
dependent) 

Consistency requires that the constraints are at least weakly stable in time. that 
means in our case 

6H 
n,,z --= 

6A0 
4277, -en, + en,, - e (74 - e (31) 5z 0. (3.16) 

Since the Poisson bracket of this expression with the Hamiltonian vanishes. we 
have two constraints, namely 

(3.17) 

(3.18) 



336 FALCK AND KRAMER 

which are, as expected, first class, i.e., {xi, x2} z 0. The total Hamiltonian [21] 
reads 

H, = H + j <z x2 d-x, (3.19) 

which means that there are two Lagrange multiplier functions. 
There are two methods how to get rid of the arbitrary functions r, and t2. In the 

first one the Hilbert space is restricted to its physical subspace, where the con- 
straints hold, the second one is the Dirac bracket quantization method. Since only 
in the latter case the full information of the theory can be read off from the 
operators alone, this is more appropriate for our purpose. The Dirac bracket quan- 
tization of gauge theories is based on the observation that the first class constraints 
together with appropriate auxiliary (gauge) conditions form a set of second class 
constraints [23]. Then quantization may be performed along the lines described by 
Dirac [21] for a system with second class constraints. Hence we have to fix a gauge 
by introducing x3 z 0 and x4 z 0 such that det (x, x ). # 0. Then the Dirac brackets 
are defined by 

where C,( y, 2) is the inverse of {xi, xi}, more explicitly 

(3.21) 

When all Dirac brackets have been calculated, the constraints may be considered as 
strong equations (hence t, and c2 drop out, as promised) and the equations of 
motion can be expressed in terms of Dirac brackets 

.h (.L H},. (3.22) 

From this point on quantization is straightforward (as long as no operator ordering 
problems occur): all phase space functions are converted into quantum operators, 
the constraints become strong operator equations and the commutators are 
abstracted from the corresponding Dirac brackets: 

{A g},=/l-t [j; $f]=il;, (3.23) 

where p denotes the operator corresponding to the phase space function f. 
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We want to perform this procedure for the special gauge which corresponds to 
the ?“H = 0 gauge of the Lagrange formalism 

x3= -?8%0, (3.24) 

x4 = n,, - rA ’ + e( u - I ) ,4” 2 0. (3.25) 

inserting l3 and xj into x1 and X. we find precisely the constraints and 
Hamiltonian of ref. [ 131, namely 

1, =n,,zo, 

i[i=;in,-P~~--eir~+e~A’-~Z(u-l))n”~o, 
(3.26) 

w ~+7$+/4”27, +t[n,-e(A”$-.4’)]‘-~c~u,4,,A” 

+t(cl~)~-Pir~(AO+A’). (3.27) 

The difference of their theory and ours is the occurrance of the additional con- 
straints zj and xJ which serve to eliminate H and I7,,. The constraint algebra is 
given by 

(X(-Y), x( 1.1 I = 

i 

0 0 0 -e(tI- I ) 

0 0 -e?, 0 

0 -e?, 0 -i, 

e(u-1) 0 -t’, 0 1 

ii(.Y- .I.). ( 3.28 ) 

The determinant of ix, x ) does not vanish (we are treating the case LI # 1). hence 
the gauge is completely fixed by Eqs. (3.24) and (3.25). The inverse C,, is given by 

qs, y ) = 

I 

0 
-1 I 

e2(u ~ 1 I 
O- 

r(a - 1) 

1 
e2(u - 0 1 ) 

0 rl 
e?, 

-1 
0 

e(u- I) 

From here we find the Dirac brackets 

-1 
0 

ei \ 

0 0 

0 0 

3.29) 
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(A”(+),~,o}o=~i.,6(x-Y), {n,(x),n,(Y)}o=d,6(x-Y), 

{A’(-+ ~dY)>, = &- Yh 
(4(x)7 ~,tY))o=w-Yh (3.30) 

all other Dirac brackets vanish. Note that the corresponding commutators coincide 
completely with those of ref. [13], except for those involving l7,, which merely 
express the dependent nature of Ils. Hence this gauge reproduces exactly the 
system of refs. [ 11, 13 J, which was derived by usage of Eq. (2.1). This establishes 
onces more the equivalence of the generating functionals of Eqs. (2.1) and (2.3) in 
this particular theory: using the gauge noninvariant formulation is nothing else but 
working in a specific gauge of the gauge invariant formulation of the theory. This 
statement will also be valid for the case a = 1, see below. 

The equivalence of the gauge invariant and the gauge noninvariant anomalous 
theory also implies that the statements of the latter are valid here, too, namely 
[ 1 I]: for a > 1 the quantum theory is consistent and unitary, consisting of a 
massive (m* = e’a’/(a - 1)) and a massless degree of freedom, for 0 < a < 1 or a < 0 
the theory contains tachyons and for a=0 the theory is inconsistent since the 
solution of the Heisenberg equations of motion is not compatible with the com- 
mutator structure [ 131. 

The quantum system may be formulated in the unconstrained way, 

H= {~IT~+f[H,-eA1]2+~ae2(A’)2+~(~~)2-~(~~)~~ s 

+ $e’(u- l)(A’)&,,} dx, (3.31) 

where A0 is the dependent quantity 

/to= e2(u1e 1 ) (i3H7, - eH7, - e@ + e2A’) (3.32) 

and the canonical commutators read 

Cd(x), n,(y)1 = CA’(x), n,(y)1 =iK-y). (3.33) 

The operator ordering ambiguity in A’* has been resolved by symmetrization 
according to the general rules of nonlinear quantum mechanics [24,25]. Fur- 
tunately the theory is not plagued by the simultaneous presence of constraints and 
operator ordering ambiguities, a problem which is not yet resolved for the general 
case [26]. 
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Finally we want to note that the occurrence of a mass for the gauge boson has 
nothing to do with an explicit breakdown of a gauge symmetry since it appears also 
in the gauge invariant formulation. However, it is highly questionable whether this 
mechanism of vector boson mass generation via “anomaly cancellation” is 
applicable to the realistic four dimensional case, too. Even worse, this seems to be 
very unprobable due to the absence of dimensionful parameters in the four dimen- 
sional case. 

(b ) The Case N = 1 

Let us now turn to a = 1, then the Lagrange density simplifies to 

The canonical momenta are 

(3.34) 

n,, = 0, I7,, = PA ’ . (3.35) 

n, = -F,,, , I7, = $ + e( A” + A ’ ). (3.36) 

Equations (3.35) have to be considered as constraint equations since they do no 
involve velocities. Hence we have two primary constraints in this case. 

0, = n,,zo, (3.37 

i& = I7,, - cA ’ 2 0. (3.38 

The Hamiltonian density reads 

,~‘=tn~+A’dn,+tn~-en,(A”+A’) 

+e”A’(A”+A’)+f(F~)‘-e@(A”+ A’) 

-e@A’+ir,SL, +1’?52,. 

Consistency requires a, z 6, x 0, this yields 

~Zj=an,-en,+e’A’-rii~-e~f~=O, 

SZi4=z7,zo. 

(3.39 

( 3.40 

(3.41 

Since fi, and d, are second class, their time derivatives do not lead to new con- 
straints but only fix Lagrange multipliers. We have two sets of constraints 

52, =n,zo, Q2 = dI7, - ef7, + elf,, - e&j - ed8 22 0, (3.42) 

!2,=n, zoo, Q,=I7,,-eA’a0. (3.43 ) 
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the first being first class, the latter second class. This means that we have to impose 
two gauge conditions in order to eliminate the Lagrange multipliers associated with 
Q, and Q,. We use as gauge fixing conditions 

QR,=aezo, (3.44) 

SZ,=e(A”+A’)+17,-Z7,-c3qSzO. (3.45) 

Then the matrix {Q, Q} has a nonvanishing determinant, as required for an 
admissable gauge fixing. Finally we build new constraints by linear combination of 
the Q’s 

x, =n,zo, x2= --d17,+e17d+e&-e2A’~0, 

x3 = n, z 0, x4=e(Ao+2A1)-Z7,-d#zO, 

Xs=ae=oo, x6=17,-eA’. (3.46) 

x1 to x4 may be recognized as Q, to 0, of ref. [ 131, x5 and x6 serve for the 
elimination of 8 and rc,. Using the fact that x2, x3, and x4 imply A0 = -A ‘, the 
Hamiltonian in this gauge can be written as 

H = s [;n; + j(a(b)*] dX. (3.47) 

The final task is the evaluation of the Dirac brackets, to this aim we need 

and 

0 0 0 -eO 0 

0 0 -e* 0 0 - 4 
0 e* 0 -2e0 e 
e 0 2e 22, 0 0 

&x 

0 0 0 0 0 a, 
0 -ea, -e 0 a, 0 i 

-Y) (3.48) 

3 
2a, 2 0 e 2e 0 

-2 0 1 0 5 0 
.Y 

0 -1 0 0 -e 0 
-e 0 00 0 0 &X-Y). (3.49) 

-2es e 
-2e’ e* 

5 
Oa;i- 

I x 

0000~0 
x 1 
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This leads via Dirac brackets to the nonvanishing equal time commutators 

CA0(.d, d(Y)1 =f ax - Yh 

C&(.x), A’(v)] =2’a 6(x- ?I 
e2 ‘; 

’ 3 

[A’(x), (ivy)] =f [n,(x), &.v,l= -$- YL 

[/P(x), q+(y)] = -$(.Y-1,). (3.50) 

W-x), n,(y)]=; [n,(x), n,(?;)]=$x-.v), 

which, together with Eq. (3.47) reproduces precisely the quantum system for LI = 1 
of ref. [ 133. 

Again we succeeded to find a gauge which translates the gauge invariant version 
of the theory into the so-called gauge noninvariant one. This implies that the 
statements on the physical content of the latter is valid in our case, too, i.e., also for 
u = I the theory is consistent and it contains one free massless scalar degree of 
freedom. 

This finishes our analysis of the canonical quantization of the chiral Schwinger 
model, we explicitly showed by appropriate gauge fixing the equivalence of the 
gauge invariant and gauge noninvariant formulation of the model. Using the results 
of the latter we established besides gauge invariance at the quantum level also con- 
sistency and unitarity of the chiral Schwinger model. 

There has been some discussion that the spectrum might be nonrelativistic or 
that Lorentz invariance has been lost [ 16, 271. Unfortunately these arguments rely 
on the nonrelativistic gauge A0 = 0 in a formulation without gauge invariance. The 
authors should have used the gauge invariant formulation as presented in this 
paper. Then we expect also Lorentz invariance in the A” = 0 gauge. 

The equivalence of the gauge invariant and the noninvariant formulation has 
already been conjectured in ref. [283, motivated by a naive consideration of the 
0=0 gauge in the Lagrangian. In general, however, it is not allowed to insert a 
gauge condition into the action before the Euler-Lagrange equations are derived, 
since in this way one equation is lost (Gauss’ law in the temporal gauge). The 
reason that the conjecture of ref. [28] is correct, is the fact that the theories are 
identical from the very beginning, i.e., that the generating functionals coincide. 
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IV. DISCUSSION 

The elaborated equivalence of the gauge invariant and so-called gauge non- 
invariant formulation of the chiral Schwinger model clarifies the reason of the 
absence of anomalies in current conservation and current commutators in the latter 
case. The superficial anomalous divergence of the current in the gauge noninvariant 
case, which is given in ref. [ 141, 

a,jp=ee’[(l -a)a,A~-&fi”+4,], 

can be shown to vanish if the solution of the equation of motion [ 111 

(4.1) 

A,= -~Ca,,ln+(l-u)&~“~“d-ul:,” JUh], (4.2) 

where h is a harmonic function, is inserted. The current-current Poisson bracket in 
the noninvariant case has an anomalous Schwinger term 

{j&h MY)) = 2e2 d, WY - y). (4.3) 

This Schwinger term disappears only at the level of Dirac brackets ( and hence of 
quantum commutators). 

In the gauge invariant formulation the current is given by 

jv f i3,FMy = -ed,(q - E)~‘“(Q~ + f3) + ea 8’0 - ae2A”. (4.4) 

Variation of L& with respect to 8 yields at 0=0 as a gauge condition just that 
Eq. (4.1) vanishes. Here current conservation, which seems to be an accident in the 
noninvariant formulation requiring the complete solution of the theory, is enforced 
by gauge invariance (cf. Eq. (3.5)) and hence automatically fullfilled. Since ap jp is 
gauge invariant and since the noninvariant formulation is nothing but a special 
gauge of the gauge invariant theory, this means that current conservation does not 
happen by chance but that there is a symmetry principle ensuring that the current is 
conserved. In the Hamilton formalism j, is given by 

j, = e(IZ, - 17, + c%j + 80). (4.5) 

This implies that there is no Schwinger term even at the Poisson bracket level 

b(x), jd y) 1 = 0, (4.6) 

which certainly remains valid upon quantization. From this discussion we may 
conclude that the absence of an anomalous divergence of the current and of a 
Schwinger term can always be seen one step earlier in the gauge invariant 
formulation. 

It is just the introduction of the field 19, i.e., the requirement of gauge invariance, 
which makes the absence of genuine anomalies transparent. Hence it seems to be 
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advantageous to use also in other models and higher dimensions the gauge 
invariant formulation of Eq. (2.8) instead of the formulation without gauge 
invariance of Eq. (2.1) in order to investigate whether there are genuine anomalies 
or not. 

Though it is not a problem in two dimensions, our final remark concerns renor- 
malizability. In four dimensions it is the loss of gauge invariance, which usually has 
authors led to assume that anomalous gauge theories are not renormalizable (see. 
e.g.. [29]). Now we learned that gauge invariance is not lost, hence the question of 
renormalizability of “anomalous” gauge theories seems still unanswered. 
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