
Nuclear Physics B304 (1988) 687-711 
North-Holland, Amsterdam 

RADIATIVE CORRECTIONS TO BHABHA SCATFERING AT 
HIGH ENERGIES (I). 

Virtual and soft photon corrections 

M. BOHM and A. DENNER 

Physikalisches Institut, Universitdt Wiirzburg, FRG 

W. HOLLIK 

IL Institut ffir Theoretische Physik, Universitiit Hamburg, FRG 

Received 25 August 1987 
(Revised 3 February 1988) 

The complete set of formulas for the differential Bhabha cross section including all the 
one-loop virtual corrections and soft photon bremsstrahlung emission is presented for the 
standard model in an on-shell renormalization scheme. The influence and structure of 
the corrections are discussed below, on top and around, and far above the Z ° resonance. 

1. Introduction 

The  high energy e+e - colliders LEP [1] and SLC [2] are primarily dedicated to 

the investigation of the electroweak interaction. In particular, f rom measurements  in 

the resonance region ~ = 93 GeV detailed information on the properties of the 

neutral  intermediate  vector boson Z ° are expected. This provides very stringent tests 

of  the s tandard  model  [3] of  the electroweak interaction and is also a place to look 

for effects of  possible "new physics" like extended gauge models, supersymmetry 

and  composi teness  [4]. In  order to supply the precision experiments of the near 

future with the theoretical predictions of  equivalent accuracy, radiative corrections 

have to be taken into account. 

The  process of  Bhabha scattering is of  prime importance at e+e colliders since it 

serves as a reference process for luminosity measurements  as well as for clean 
precision tests of  the electroweak theory. The first calculation of the cross section 
for elastic e+e  - scattering in the framework of quan tum electrodynamics was 

per formed by  Bhabha [5]. Electromagnetic radiative corrections have been calcu- 
lated by  Readhead  [6] and later also by other authors [7]. The contr ibut ion of  the 
weak interact ion to lowest order was discussed in ref. [8] for the s tandard model  and 

in ref. [9] for extended gauge models with more than one Z ° boson. One-loop 
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calculations in the standard model have been done by Consoli [10] (without 
resonance effects) and by Consoli et al. [11] and Greco [12] (only QED corrections). 
Numerical results for the one-loop cross section containing real photon and all 
virtual corrections were given in ref. [13] and, including also hard photons, recently 
in ref. [14]. Numerical one-loop results without photonic corrections were also 
presented in ref. [15]. 

This is the first of two papers in which the standard model one-loop corrections 
to e ÷ e - +  e ÷ e-  are described in detail with respect to their application in realistic 
experiments. In the present paper we have collected the formulae for the purely 
weak corrections and the virtual and real electromagnetic corrections in the soft 
photon limit, including the resonance effect in the initial-state radiation. The 
calculation was performed in the on-shell renormalization scheme described in ref. 
[16]. The hard photon part will be treated in the subsequent publication [17], where 
the analytic results of this paper provide the (inclusive) two-particle cross section of 
a complete Monte Carlo program. 

We discuss the importance of the weak and soft QED part in this paper at 
energies well below M z, around the Z ° and far above the resonance up to 1 TeV. 
The analytic formulae given here allow also an easy approximate calculation of the 
one-loop Bhabha cross section if the cuts to the emitted photon energy are not too 
high (typically AEy/Ebeam <~ 0.1 or acollinearity cuts with 8acol I ~ 70). A rigorous 
discussion, however, is possible only after a combination of the two parts in one 
program. 

In sect. 2 we set up our notation and put together the lowest order cross section 
including longitudinal polarization of the electrons and positrons. The electromag- 
netic corrections are given in sect. 3, the weak corrections in sect. 4. Numerical 
results for the differential cross section are presented and discussed in sect. 5. 

2. Notation, lowest order cross section 

We discuss in the framework of the standard model [3] Bhabha scattering at high 
energies (s >> m2). We use, for the incoming and outgoing electrons and positrons, 
helicity states [18] with polarizations ?~ q:, A ~:, the scattering angle is denoted by 0. 
In this context it is convenient to work with left- and right-handed couplings gx of 
the vector bosons (T, Z, W-+) to the electron: 

g V = l ,  gV+ = 1 ,  

g_Z_ 2s2w- 1 z Sw 

2SwC w Cw 

1 
g_w , gW = 0 .  

v~-sw 
(2.1) 
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e f e e 
f -  e f # 

e + e+ e + e+ 
e+ e+ e+ e + 

Fig. 1. Born matrix elements .  
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The weak  mix ing  angle 0 w is a shorthand in the on-shell scheme 

M w  ~/1 2 (2.2) cos0 w = c  w =  M z  , s w =  - c  w.  

The lowest order helicity amplitudes ~¢0()~_, 2,+, A _, A +) get contributions from s- 
and t-channel exchange of the photon and the Z°-boson (fig. 1) denoted by 

r i  Jlo(X_,X+,A_,A+)(r=s,t; i = y , Z )  

~'o(X_, x+, a_, a +) = E.~g;(X_, X+, A ,  a+).  
i,r 

(2.3) 

Since the Higgs-electron coupling is proportional to the electron mass m e we can 
neglect the Higgs exchange diagrams. For high energies s >> m 2, due to helicity 
selection rules the only non-vanishing contributions are 

u 
si • "¢/0 (X, - )~ ,  X, - X )  =..¢([i()~) = 2-g[xi(s)g[, 

s 

t 
. . ¢ / sq  x 0  ~ " ,  - ) ~ ,  - ) , ,  X )  = . . ¢ / ~ ' ( X )  = 2 - g ~ x ~ ( s ) g i x ,  

s 

u 

~g(x, -x ,  x, -x )  = ~ l ' ( x )  = 2 Tg~x' "t'~ )~,-' 

s 
i i i ~eg(x, x, x, x) = ~ i ( x )  = 27g~x (t)g_~, (2.4) 

where the reduced propagators Xi(s) are given by 

X~(S) = X ~ ( t )  = 1, 

s s 

x Z ( s )  s ------Tn 2 = s - M 2 + i M z r  z ' 

t 
x Z ( t )  . ( 2 . 5 )  

t -  M ~  
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Squaring of the matrix elements yields the Born cross section 

i - i  a,.o= (x)= 

The cross section with arbitrary degree P -+ of longitudinal polarization of the 
incoming electrons and positrons and summed over the final helicities has the 
general form: 

d o  ~ + do  p+p_)+(p+_p_)(  do -~)~ + p+p- (d~) , 
EL 

(2.7) 

with 

(~)~ 
(~)~ 

zl~) 
=¼x a\ d~2 °(X), 

(d~)() 
I~xX X , 

1 

X 

(2.8) 

In the Born approximation these read 

s(d°) 1[u2 .2 2u2 
--aT - ~  = -~ -sAu(s ,  s) + 7 A u ( t ,  t) + Au(t, s) 

U ts 

t 2 S 2 ] 
+ ~Bu(= ,  =) + -yB~(t ,  t) , 

s(do)__x[u2 u2 2u2 ] 
a-5 - ~  L ~ 7 A L ( S , S ) + T A L ( t , t ) +  st AL(t,s) , 

s [ do  ] s 2 
- j  ~ i-~ ILL = 7~ Bu( t, t ), (2.9) 
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with 

g~_ + g~+ ~4 + g4 
Au( t , s )= l  + ~ R e ( x * ( t )  + X(S)} + ----7-- R e ( x * ( t ) X ( S ) } ,  

g4_g4 
AL(t,s) g2_g22 Re{x*(t) +X(s)} + --Re(x*(t)X(s)}2 ' 

2 2Re¢ B v ( t , s ) = l + g + g _ R e { x * ( t ) + X ( S ) } + g + g _  t X*( t )X(S)} ,  (2.10) 

where the contributions from the photon exchange, the photon-Z-boson inter- 
ference and the Z-boson exchange are separated. In pure QED A U and B U equal 1, 
whereas A L vanishes. 

3. Electromagnetic corrections (excluding hard bremsstrahlung) 

For  the calculation of radiative corrections a specification of the renormalization 
scheme is needed. We use the on-shell renormalization scheme [16] with the 

fine-structure constant a and masses M w, Mz, M H and m f as physical parameters. 
It is constructed in such a way that on-shell photons (k 2 = 0) are decoupled from 
the Z, which means that QED is realized as substructure in the usual way. 
Consequently, we split up the one-loop radiative corrections into electromagnetic 
and weak ones. The virtual corrections i.e. self-energy, vertex and box-diagram 
corrections of the standard model factorize for high energies (s, It I, l ul >> m~) into 
the lowest order matrix elements and correction terms 

~ ; i ,  virt(X) =,,'~¢ri()k) ~ri()k) =~¢ri()k)[~rlern()k ) q- ~rlweak()k)] . (3.1) 

In this section we summarize the electromagnetic corrections to the Bhabha cross 
section to order a 3. Among these there are one-loop diagrams which possess after 
UV-renormalization still infrared-divergent parts. These are regularized by a small 
photon mass/~ and are compensated by real photon emission which, in this section, 
will be treated in the soft photon approximation taking into account photons up to 

an energy A E << v/~ -. The additional contributions of hard photons will be treated in 
the subsequent publication [17]. 

3.1. VIRTUAL ELECTROMAGNETIC CORRECTIONS 

The virtual electromagnetic corrections consist of the corrections due to virtual 
photons and of fermion loop corrections to the photon self-energy. 
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3' 

7 

Fig. 2. Electromagnetic vertex corrections. 

(a) The photonic ver tex  corrections [19] of fig. 2 yield (/~ is the photon mass) 

r ) r 

~, i  [ X ~ = 2 F e m ( r ) =  - 2 1 n  In 2 ie m e - t E  %,em,V~ / 1 + I n - - i - - .  
_ .  m e _  

[ ~ - r  2 ,g/.2 

+Iln--z----- ,  + - - - 4  . t  
• .__z m e -- t e ]  3 

(3 2) 

(b) The result for the TT-box  diagrams [20] (fig. 3) is* 

with 

8 7  em,B(~k)  ~-- C : Y ( s ,  t ) ,  
2 '  

8'{ em,B(X) = C~(t, s), (3.3) 
3' 

o( )1 C r J ( s ,  t) = ~ - 2 I n  - - i~ In - i~ +_ 2I~Y(S , tu)  
- U 

(3.4) 

and for the TZ-box diagrams [21] (fig. 4) 

8 Sl z , em ,B(  ~ ) = C~+z( s,  t ) , 
2 

tz 
81 . . . .  B( ~k ) = c ~ Z (  t, s ) , ( 3 . 5 )  

3 

* Here and in the following we combine two formulae into one. The upper and the lower of the indices 
or of the arguments ~ belong to the upper and lower sign _+, respectively. 
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Fig. 3. 73,-boxdiagrams. 
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with 

or{ (tu )r [M2-s)  +Inl------M-T _ [ M 2 - s ) ]  c~Z(s,t)= ~ -21n  - - i e  [ln/---- ~ 

÷ - 

[M~+s) (M~+u-ie)} 
+ 2 Sp/----- ~ - 2 S p  u + 4IsrZ(t'~)" (3.6) 

The Spence function [22] is defined by Sp(x)= -fol(dt/t)ln(1 -xt). I~ Y and I~ z 
are given in the appendix of ref. [16]. 

(c) In our renormalization scheme we do not need wave-function renormalization 
for electrons and positrons, therefore the only electromagnetic self-energy corrections 
are the fermionic contributions to the photon self-energy [19] (fig. 5). The corre- 
sponding correction factors ri ~a, era, .~()t) read 

"r 
~r,Tern,.~()k ) ~-/-/eTm,lept(r) -1-//em, had(r) ,  

rz (3.7) ~a, em,~(~k) = 0 .  

The leptonic part is given by 

/-/e~m,lept(r)=-.~e~m,lept(r)/r=-~-~a 2 ---~ 1 +  r ) F(r'me'me)' 

(3.8) 

where the sum extends over all charged leptons with charges Qe and masses m e. 
The scalar function F is defined in ref. [16]. 
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Fig. 4. yZ-box diagrams. 

Fig. 5. Electromagnetic self-energy corrections. 

includes the light quark contributions where nonper- The hadronic part Hem, had 
turbative strong-interaction effects cannot be ignored. Since reliable theoretical 
predictions are not available for these contributions, one has to use experimental 
data for their evaluation. The real part satisfies the dispersion relation 

a_~_r[~ Rvv(s) 
ReH~m'had(r) = 3qr J4m~ dS S(S - -  r - i e ) '  (3.9) 

with 

o(e+e - ---, ~,* ~ hadrons) 
RVV(s) = o ( e + e - ~ y *  ~/~+/x-)  ' (3.10) 

as a fairly well-known experimental quantity as input. The evaluation of this 
integral for 5 flavours using e+e - data up to an energy E t and perturbative field 
theory for the tail E > E 1 was recently updated by Jegerlehner [23] (for earlier work 

T see ref. [24]). Around the weak boson mass scale the result for Hem, had can be 
described sufficiently well in analytical form by an expression which is equivalent to 
the result of a perturbative calculation with quark loop diagrams [23, 25] yielding a 
result similar to our (3.8). The quark mass parameters are effective quark masses 
adjusted to fit the numerical value for the dispersion integral. The values which 
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reproduce the result of [23] are 
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mu=m d= 32 MeV, m s= 150 MeV, 

m c = 1.5 GeV, rn b = 4.5 GeV. (3.11) 

3' The same vacuum polarization term Hem, had appears in the fermionic contribu- 
tion to the real part of the renormalized Z-boson self-energy Zz (sect. 4), which 
together with the lepton contribution is the dominant part of Zz. Replacing the 
terms with large logarithms - E q ,  tQ21og(s/m2q) in the perturbatively obtained 
expression for X z from [16] by the dispersion integral leaves only terms of 

2 2 ..._) O(mq/Mw) which would vanish in the limit mq 0. Therefore, for the case of light 
fermions only, the fermionic contribution to the weak boson self-energy reduces to 
that of the QED correction of the photon propagator. 

For the values of the light quark masses specified above, the finite-mass terms are 
completely unimportant; thus our lack of understanding of those masses is no 
obstacle for practical applications. The uncertainty connected with the light hadron 
contributions is the uncertainty in the e+e data, estimated to be + 0.0007 [23] and 
+ 0.0013 [24], respectively. 

The b, t quark contribution has been calculated perturbatively with free quark 
2 2 masses. For large m t the quadratic terms - rn t / M w  give rise to big effects in the 

weak vector boson 2-point functions which are different from the QED corrections 
in the photon propagator. For example, for the parameters specified in sect. 5, the 
corrections in the real part of the Z propagator are reduced by 4% if m t is shifted 
from 40 to 200 GeV. 

The contribution to the cross section from these virtual corrections is given by 

(do) 
8 " ~  a,em,virt 

Ol 2 
= _ _  r' i ' ,  ri ~ . . . . . .  irt (~k)] }, (3.12) 4S y'~ Re{ ~: i ( )k)J t ' a  (3k)[B . . . . . .  i r t(~)_t_ r ' i ' ,  

r, i, r', i' 

where 

ri ~arlem,virt ()k) = ~ria,em,,~,/'~k~] -'t- ~a,em,V (~k) -t- ~a, era, B r i  (~k) . (3 .13)  

3.2. SOFT PHOTON BREMSSTRAHLUNG 

The Feynman diagrams (fig. 6) for the nonresonant emission of a photon with 
momentum k and polarization vector e~(k, o) give, in the limit of small photon 
energy k 0 [19], 

• "~¢aNRrems(~t) = [J/~CaSY(~t) 4-.-~gatY(~t) "}--~¢atZ()k)] ~ N R ( k ) E / Z ( k ,  o)(2~r) -3/2, (3 .14 )  
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Fig. 6. Nonresonant bremsstrahlung diagrams. 

with the electromagnetic current 

(3.15) 

The emission of a bremsstrahlung quantum from the resonant scattering (fig. 7) 
leads to the expression [26] 

with 

JI~,$,,,(X) =.4V;z(X)&a’“(k)&‘(~,o)(2n)-3’2, (3.16) 

s-M2 _%‘+!%‘]. (3.17) 
s-itI*-2k& q-k q,k 

The factor multiplying emission from the initial state takes account of the energy 
shift due to photon emission in the resonant matrix element. 

The soft photon cross section is obtained by squaring .MBrems and integrating 
over the photon phase space with 1 k 1 < A E 

=2Re{ [_MzY(A) +&z(A) +_M~~(~)]*JY~~(~) P}, 

(3.18) 



with 

M. B5hm et al. / Radiative corrections (I) 

Fig. 7. Resonant bremsstrahlung diagrams. 
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a [ 2AE 2AE 
{~NR = --/4fleln + 4flintln - - f12+ 1--  2 r r 2 + X } ,  

3,nt=3NR + ~{2flelnM2 M : - s  
- s +  2¢~ AE 

M 2 - s  } 
+ 2&'lnM2-S+-? s a e  ' 

~{ Me-s  
~Res = ~NR + 2fl~ln M2 _ s + 2(s- AE + 4flintln 

MZ-s 
!MZ-s+ 2fsAE 

s-M~ } 
+ 2 & M - - M - ~ ( ~ - ~ o ) ,  (3.19) 

s t 
fie = In _-77.2 - 1, flint = l n - ,  (3.20) 

m e u 

2Sp( u ) - ( l n - ~ ) 2 - 2 S p ( ~ )  - t  2 X=  - s  - +(ln-~--)  , (3.21) 

M.~- s + 2v/s A E M2- s 
= arctan , ~o = a r c t a n - -  (3.22) 

Mzrz Mzrz 

3.3. CROSS SECTION INCLUDING ELECTROMAGNETIC CORRECTIONS TO ORDER a 3 

Summing the virtual (3.12) and bremsstrahlung contribution (3.18) gives the 
electromagnetic radiative corrections to the Bhabha cross section 

()  () (do) do do (?t) + ~ ()t) 
~ a,em(~k)---~ ~-~ a, . . . .  irt a,Brems 

* r' i '  r i  * = E Re{~t'on(Yt)-/g~ (~k)[~a,em()k) -}-~al/;m()k)-t-]/NR]} 
r,i; r ' ,i '#s,Z 

sZ .yInt] ) +2 E Re{Jt'J(X)*'A/]z(x)[3£f~m()t) * + 8  . . . .  ()k)-[- 
r, iq~s,Z 

+ Re{ . A ' f  (2,)*,fft 'f ()t) [ ~aSZem()k )* + ¢~SLm(~k ) -F .gRes] ) . 

(3.23) 
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It is infrared finite but depends on the allowed photon energy zSE. The explicit 
expressions for the terms occurring in (3.23) read 

° [ z + ~ + 2 i ~  (~,o)] ~ 7  era(X) = ne~m(S) + ~ _ y.,¢ t , 
2 '  

O/ 
~t? em(X ) = He~m(t ) + " ~  [ Z  + Y +  X-{- 2IsVV(t,~)], 

3' 

sZ 0~ 
~1 ,em(~k) = [Z+X+__4I~Z(s,t.)+2D(s,t)] 

2 ~ ' 

tZ O~ 
~1 ,em(~k) = [Z-~- Y+X+4I~Z(t,~)+2D(t,s)] (3.24) 

where 

Z =  31n + 3 - 4 ,  

u ,  t u 
Y = 3 1 n  - In - i r 2 + 2 1 n  In +2~ri  In + , 

S S S S 

t D(s, t) = - I n  - ie In - s  + In M2 

+ 2 Sp( M2t +---~t  ) - 2Sp( MZu+ u ), (3.25) 

and 

a 2AE 
" y N R = a ' ~ l n - " ~ S  ( /~e+/~int) ,  

~{  M 2 - s  
ylnt = Y N R + 2  ~lnM2_s+2v~AE 

M 2 - s  ) 
+/~intln M 2 __.- s ~_- ~s-s A e , 

a{ M2-s 
"yRes = yNR + 2 fleln M2_s+2v~AE + 2/3intln 

M 2 - s  
M 2 - s + 2v~AE 

+/3eM--M~z(~-~0)/" (3.26) 
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j ~  "w--... 
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[ w 

U + U  - 
W,g ¢,X ,.--, ~,rl,X 

¢ x t + . + ~ ",-..._. + ~-~+---~ ~ + 

Fig. 8. Self-energy corrections. 

4. Weak corrections 

The weak corrections consist of one-loop diagrams with W, Z °, Higgs and ghost 
lines. In this way the full structure of the standard model as a non-Abelian 
spontaneously broken gauge theory enters. Since in Bhabha scattering we deal only 
with very light fermions we may safely neglect the Yukawa couplings of the Higgs 
fields. 

4.1. CORRECTING THE MATRIX ELEMENT 

As already mentioned, at high energies the corrections can be written as multi- 
plicative factors to the Born matrix element. The weak corrections [16] have the 
following form. 

(a) The weak self-energy corrections consist of weak photon self-energy contribu- 
tions (fermionic contributions to the photon self energy are already included in the 
electromagnetic corrections) as well as Z-self-energy and y - Z  mixing-energy contri- 
butions (fig. 8) ( r  = {s, t}) 

8~',~,z(X) = 1J~w( r ) = - 2"w( r ) / r ,  

2 
8 Cz [X~ = H Z ( r )  + HVZ(r) ,  1 , w , X \  ] g -~  

(1 ) 1 H vz 8"2 z w,~(X) = n Z ( r )  + g--( + ( r )  
3' gZ , (4.1) 
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Fig. 9. Weak vertex corrections. 

where 
s - M  2 

HZ(s)  = - 1  
s _ M ~ + 2 Z ( s )  ' 

t - M2z 
/-/z(t) = t _ M ~  + 2z( t )  - 1, 

/TvZ(r) = -2 rZ ( r ) / r .  (4.2) 

The functions ~ z  and ~vz are defined in ref. [16] and 2~Vw is given by 
ot 

~ ( s ) = - ~ { - ( 3 s + 4 M 2 ) F ( s ; M w ,  Mw)+ 2s}. (4.3) 

(b) The electron-gauge-boson vertex gets weak corrections from the diagrams 
shown in fig. 9 which lead to the vertex corrections 

3{iw,V(X ) = 2F'w(r, X), (4.4) 

3'~,w,V(h ) = F~( r, +) + F,~( r, - ). (4.5) 

The form factors F w read 

G ' Fwr(S, - )  = (4.6) 

= a_a_ { ( Mz)} (4.7) Fi(s ' + )  gZ)ZA2(s ' z , 
e4~ 

a {(gZ)2Az(s ,M~)+ 1 FZ(s ,  - )  = 2Sw(2S w _ 2  2 1) A2(s 'M2)  

3c2 . } 
~_2-1)A3(s ,M2)  (4.8) 

Sw(2Sw2 _ 

ot 
FZ(s, + ) =  ~__~ {(gZ )2A2(s ' M2)},  (4.9) 

where the functions A 2 and A 3 are given in ref. [16]. 
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Fig. 10. Weak box diagrams. 
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(c) The evaluation of the weak box diagrams [27] (fig. 10) leads to the correction 
factors 

= g~,) C+ (s, t )+(g~,)  C+ (s,t) ,  ~ , Y w , B ( ~ )  ( Z 4 ZZ W 4 WW 

~.'w., ( x ) = ( gZ f (  g~ )~ c_Z~(s.t ), 

sZ . . . .  B(?~) = 0 .  (4.10) 

The corrections of the t-channel boxes are obtained by substituting s o t and 2 ~ 3. 
The functions C can be decomposed in the following way 

cZZ(s, t)  = IZZ(s , t ,M 2) - IZZ(s,u, M2z) +_ ( IZZ(s,t, M2z) + IsZZ(s,u,M~)), 

WW C+ (s , t )=IZZ(s , t ,  M2)+IZZ(s  , ~ ,t,M~v ). (4.11) 

Again the explicit expressions for the functions I zz and i z z  are given in ref. [16]. 

4.2. ORDER a 3 WEAK CORRECTIONS TO THE BHABHA CROSS SECTION 

Collecting the weak one-loop results for the matrix elements gives as weak 
correction to the cross section 

do (X) = ~ E 

~ a, w, virt r , i , r ' , i '  

ri r'i" , Re{~g:'(h)~gr"'*(h)[~,.w(~.) +8~,.w (2,]) 

(4.12) 
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with 

ri ri ri 
~21w,virt (~k) = ~ . . . .  ,~(~k) + 8 . . . .  V(x) + 8 . . . .  , ( a ) .  (4.13) 

This concludes the calculation of the (virtual and soft real) radiative corrections 
to the Bhabha cross section with longitudinally polarized initial beams. The final 
result is obtained by adding up the contributions of eqs. (2.6), (3.23) and (4.12) 

(do 
~-~) (X) : (dd--~) (X) + 8(dd--~) (X, + 8 (  dO 

a a, Born a,em d- -~)  . . . .  virt(~k). (4.14) 

5. Numerical results and discussion 

In sect. 3 we have given explicit analytical expressions for virtual electromagnetic 
and weak corrections and real soft photon bremsstrahlung. Adding hard photon 
emission yields the complete correction to the differential cross section of order a 3. 

In this section we present the results of a numerical evaluation using the following 
set of parameters for the electroweak model 

Mz = 93.0 GeV, Mw = 82.1GeV, (s2 = 0.22). (5.1) 

Lepton masses are taken from ref. [28]. For the top quark mass we take m t = 35 
GeV, for the Higgs mass Mn we consider 100 GeV as a reasonable value. Since we 
have calculated the W and Z self-energies in the one-loop approximation only, we 
use the corresponding values for the widths of these particles 

F z = 2.538 GeV, F w = 2.537 GeV. (5.2) 

The soft bremsstrahlung is calculated with an energy cutoff AE = 0.05vrS- to the 
photon energy. The results for the electromagnetic corrections obtained here are 
approximate and will be supplemented in part II of this paper by hard bremsstrah- 
lung effects. 

5.1. SURVEY OF WEAK CORRECTIONS 

In order to give an impression of the energy dependence of the different 
contributions to these corrections we present in table 1 our results for a scattering 
angle of 90 ° and energies from 44 to 1000 GeV. The numerical results for the cross 
section to order a 3 in different renormalization schemes should differ mostly by 
terms which are of the order of magnitude of the next order correction, if the same 
set of input data is used. This need not be true for the separate contributions. In 
order to make possible a detailed check of our calculations we present the numerical 
results for all of them separately. The electromagnetic corrections (em), given here 
with soft bremsstrahlung, are rather large but will become smaller outside the 
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TABLE 1 
Radiative corrections at 90 ° scattering angle in permille of the Born cross section 
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~/s/GeV 
em 
weak 
Zz 
F z 
rest 
~vz 

Zr  
F ~ 
cWW 
czz  

44 60 80 91 93 95 110 150 200 1000 
-219.7 -223.7 -251.2 -441.5 -434.7 121.9 -205.9 -202.4 -197.2 -178.8 

- 1 . 7 4  0.05 25.92 103.93 -10.47 74.90 -18.20 -41.33 -50.56 -128.48 
-1.57 0.37 27.51 111.52 -0.82 85.55 -16.62 -40.87 -48.85 -70.34 
-0.11 -0.38 -2.14 -9.59 -12.08 -13.23 -2.20 -0.32 -2.59 -36.76 
- 0.07 0.05 0.54 2.00 2.43 2.58 0.62 - 0.14 0.88 - 21.38 
- 0.07 - 0.06 0.15 1.54 2.14 2.57 0.74 0.38 0.49 0.87 
-0.10 -0.18 -0.26 -0.08 -0.02 -0.02 -0.66 -1.38 -2.29 -12.47 
- 0.06 -0.04 0.05 0.05 0.00 - 0.05 0.16 0.93 1.72 4.63 

0.12 0.26 0.56 0.52 0.29 -0.03 0.00 -0.41 0.85 -13.26 
0.04 0.06 0.05 - 0.02 0.01 0.10 0.38 0.33 0.11 - 1.14 

r e sonance  reg ion  when hard  p h o t o n  emission is included.  The  weak correc t ions  

(weak)  do  no t  depend  on  exper imenta l  cuts bu t  test the gauge theory  charac te r  of  

the s t a n d a r d  model .  Therefore,  the ma in  interest  of  this pape r  lies on the discussion 

of  these  h igher  o rde r  weak effects. The most  i m p o r t a n t  con t r ibu t ion  is the Z °-boson 

se l f -energy ( Z  z)  which reaches abou t  10% of  the Born cross sect ion in the vicini ty  of 

the  resonance .  I t  is domina t ed  by  the fermion loop diagrams.  Al l  o ther  weak 

cor rec t ions  wi th  except ion of the Ze-ver tex correc t ion  ( F  z)  a round  the resonance  

give ra the r  smal l  (10 -3 )  cont r ibu t ions  in the energy range up to 200 GeV. (Their  

sum is d e n o t e d  by  " re s t "  in table  1). I f  an accuracy of  1% is sufficient it  is enough 

to t ake  in to  account  the Z 0 self-energy only. This  al lows a very s implif ied discussion 

of  weak  rad ia t ive  correct ions  since their  effect then is to replace,  in the reduced  

p r o p a g a t o r  (2.4), the denomina to r  by  the cor respond ing  comple te  expression.  If, in 

add i t ion ,  the  Ze-ver tex  (3.25) is inc luded an accuracy of 0.3% is ob ta ined  for 

energies  up  to 200 GeV. This is no more  the case for energies which are large 

c o m p a r e d  to M z, as can be seen f rom the results  for 1000 GeV. 

F o r  fu r the r  i l lus t ra t ion of the impor t ance  of  the separa te  weak correct ions  we 

show in fig. 11 and  fig. 12 the con t r ibu t ions  of  the Z°-self-energy,  Ze-ver tex and the 

rest  of  the weak  correct ions  to the unpola r ized  different ia l  Bhabha  cross section, in 

the  r e sonance  region and above  the resonance  up to 1000 GeV. 

5.2. ENERGY AND ANGULAR DEPENDENCE 

(a) Smal l  energies,  s << M z  2 . 

A t  P E T R A / P E P  energies the weak con t r ibu t ion  to the Born cross sect ion is 

r a the r  small .  Therefore,  we expect  also t iny weak radia t ive  correct ions.  This is 

c o n f i r m e d  by  the results of  the explici t  calculat ions  presented  in fig. 13. 

(b)  R e s o n a n c e  region, s -- M 2. 

In  subsect .  5.1 we have seen that  the weak correct ions,  in general ,  are d o m i n a t e d  

b y  the Z°-se l f -energy  correct ion.  Since, on top of  the resonance  in an on-shell  
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Fig. 11. Z ° self-energy (small dashes), Ze-vertex (medium dashes), the rest of the weak corrections (long 
dashes) and their sum (solid line) to 90°Bhabha scattering in the resonance region as a percentage of the 

Born cross section. 

renormalization scheme, the self-energy has to vanish, the weak corrections should 
be small. Fig. 14 shows that this is indeed the case. The situation is different already 
for energies 2 GeV above or below the resonance. With the exception of the forward 
direction the weak corrections lower considerably the differential cross section (see 
fig. 15). The energy dependence of the differential cross section at 90 ° in the Born 
approximation, including electromagnetic and weak corrections, is shown in fig. 16. 
The reduction by almost a factor of two will be partly compensated by inclusion of 
hard bremsstrahlung. 

(c) High energies s >> M~. 
Fig. 17 shows the differential cross sections at 200 GeV. The weak corrections are 

important for scattering angles larger than 90 ° where they reduce the cross sections 
considerably. At even higher energies the weak corrections become as important as 
those which are electromagnetic. This can be explicitly seen in fig. 18 for 90 ° 
scattering. 

5.3. SMALL ANGLE SCATTERING 

The precise knowledge of the theoretical predictions for small angle scattering is 
of special importance since this enters the determination of the luminosity of e +e-  
storage rings. Bhabha scattering in the forward direction is dominated by the 
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93, 95 GeV. 
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t-channel ,/-exchange matrix element. Therefore, we compare the effects of radiative 
corrections with the results of one-loop radiatively corrected pure QED. In the 
following figures we show the angular and energy dependence of the so defined 
relative corrections coming from Z°-exchange and the corresponding photonic 
corrections and from purely weak radiative corrections. 

In the resonance region these corrections vanish of course for 0 --> 0. In fig. 19 we 
present them for energies of 91, 93 and 95 GeV. For cos 0 > 0.97 the corrections to 
pure QED amount to 8, 5, and -6%,  respectively. For smaller angles they become 
smaller. We show the results for 0 = 5 ° for energies between 75 and 115 GeV in fig. 
20. They show the behaviour typical for a resonance and reach up to 1%. The weak 
corrections become more important at high energies also in the forward direction. 
This is shown in fig. 21 for a scattering angle of 5 ° and energies up to 1 TeV, but 
their absolute value remains smaller than 0.1%. 

6. Conclusion 

We have presented in this paper a complete set of analytical formulae for the 
one-loop electroweak corrections to Bhabha scattering without hard photon emis- 
sion. The results of this paper are used as an input for Monte Carlo calculations of 
the two-particle cross section [17]. We have discussed the numerical values of the 
weak corrections for energies below, on top and far above the Z ° resonance. Off 
resonance, the by far largest effect results from fermion-loop contributions to the Z ° 
self-energy. The next important contributions are the weak vertex corrections which 
amount  up to 1% around the Z ° resonance. Since the Z°-boson self-energy is 
subtracted on-shell, these vertex corrections become the dominant weak ones on the 
Z ° peak. All other weak corrections remain smaller than 0.3% for energies up to 200 
GeV. Here, we want to add a more general remark on the correction coming from 
the Z-boson self-energy: since the dominant effects (for m t not too big) come from 
the light fermions, they can be absorbed into an improved tree-level cross section by 
replacing the fine structure constant a by 

a(M2w) 1-Zlr  er GFM2wsin2Ow' (6.1) 

(which is not the QED running a) which contains the large fermionic contributions 
via the radiative correction Zlr to the ~ lifetime (and therefore to the Fermi constant 
GF), [29]. Then, the remaining weak corrections are everywhere of the order of a few 
percent (as long as no heavy particles or new physics contributions are considered). 
Theoretical uncertainties in the weak corrections from the hadronic vacuum polar- 
ization and unknown higher order effects, as estimated in ref. [30], result in an 
uncertainty of 0.0013 in the correction from the Z self-energy and of - 0.3% in the 
cross section. The electromagnetic corrections are rather large, in particular in the 
resonance region. In order to obtain results which are reliable within 1% a careful 
study of the leading contributions of higher loops is necessary. 
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