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We simulate non-compact QED with light dynamical Kogut-Susskind fermions and in the
quenched approximation. In both cases we confirm the existence of a second-order chiral phase
transition at strong coupling . Near the critical point the theory is shown to be well described by a
gaussian model of non-interacting scalar and pseudoscalar fields . We do not find any support for
Miransky scaling . Rather, the critical exponents are consistent with their mean field values .

1 . Introduction

It is a long-standing and fundamental question whether QED is a consistent and
non-trivial field theory in the continuum limit, i .e . when the cut-off is removed .

There is the suspicion that all theories that are not asymptotically free are trivial .
Indeed, from finite-order perturbation theory one would conclude that the renor-
malized charge of QED vanishes for all values of the bare charge in the continuum
limit [1] . This is due to an intrinsic inconsistency of the perturbatively defined
theory, known as the Landau pole . These arguments are, however, not convincing as
the bare charge is taken to be large, and one expects some change in behavior of the
theory in the strong coupling regime.
A consistent continuum limit of QED can exist only if the Callan-Symanzik ß

function [2] has an ultraviolet stable fixed point . This problem can be studied
numerically by lattice gauge theory techniques. On the lattice an ultraviolet stable
fixed point corresponds to a point of a second- (or higher-) order phase transition,
at which the correlation length diverges . A first indication of the nature of the
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continuum theory can be obtained from the critical exponents of the transition . For
a complete understanding one will need to know the renormalized parameters of the
action at the fixed point in addition .

In a series of studies Kogut et al . [3-5] have reported evidence for the existence of
a continuous chiral phase transition in non-compact massless QED* at strong
coupling . The results of the Edinburgh group [8] are also consistent with this
picture . Kogut and coworkers went on [3-5,91 to investigate the scaling behavior of
the chiral condensate at the phase transition . They claim a non-trivial scaling law
for a small number of fermions in agreement with analytic calculations of the
truncated Schwinger-Dyson equation for the fermion propagator [10] . From this
they concluded that the continuum theory is an interacting theory of bound states .

In this paper we shall investigate the critical behavior of non-compact QED in
greater detail . Our first goal is to determine the critical exponents of the chiral phase
transition . In the process we have checked the calculations of Kogut, Dagotto and
Kocic [3-5,9] . We do not find any support for non-trivial scaling behavior . Instead,
we find that the theory - with and without light dynamical fermions - can be well
described by a gaussian model in the critical region . This suggests that the contin-
uum theory is non-interacting .
As a lattice regularized version of QED we take Kogut-Susskind fermions

coupled to a non-compact U(1) gauge field A i ,, The action is S = SG + SF, where
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The lattice constant has been set equal to 1, and /3 = 1/e2 , where e is the bare
charge . In the classical continuum limit this action describes four degenerate Dirac

' Compact QED, which at small couplings is identical to ordinary non-compact QED, is known to
have a first-order phase transition for the Wilson gauge field action [6] and, therefore, has no
consistent continuum limit at strong coupling . For the mixed gauge field action with large negative
adjoint coupling, however, see ref. [7] .

SG = fl Y_ (Ai,(x)+A,(x+it)-Ai,(x+i,)- A,(x)Z, (1 .1)
, bL<

SF - Xx(M+m)xyX y , (1 .2)

with

M --1xy 2 (
-1)xl+ jeiA �(x)s

Y, x+ p
-e-iA»(Y)g

Y, X-"]
. (1 .3)

W

The partition function reads

Z= f [dX][dX ] [dA�]e-S . (1 .4)
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fermions minimally coupled to a U(1) gauge field . For finite lattice spacings the
theory has a chiral U(1) X U(1) symmetry in the limit m -, 0, while the SU(4) X

SU(4) symmetry is only approximate.
Associated with the chiral U(1) symmetry are two order parameters . One order

parameter is the chiral condensate,

(

	

) = lim lim (XX),

	

(1 .5)
n1-o V-00

where V = L3T is the space-time volume of the lattice with spatial size L and time
extent T. After the Grassmann fields have been integrated out, (XX) reads

(XX) = Zf [dA,, ] VTr(M+m) -1 det(M+m)e-SG,

	

(1 .6)

Z= f [dA,,] det(M+m)e -Sc, .

	

(1 .7)

The other order parameter is the mass of the pseudoscalar (PS) Goldstone boson,
m ps , in the limit V - oo and m - 0. This mass is given by the correlation function

Cps( 1) = Zf [ dA,, ] ~l(M+m)o,~x,r) Zdet(M+m)e-S°
x

t large
=

	

Apse-mes' + e - ^trs(T- t) ] .

From the ß and m dependence of the chiral condensate and the Goldstone boson
mass near the critical point one can derive three critical exponents . This has led us
to concentrate on these quantities in the present paper .
The remainder of the paper is organized as follows . Sect . 2 deals with the problem

of computing the order parameter (~~) on a finite lattice. We argue that the
extrapolation of (XX) to V = oc and m = 0 is most reliably done by the help of the
eigenvalue density of the fermion matrix M. In sect . 3 we discuss the effective
action and its mean field and gaussian approximations . In sect . 4 we investigate
quenched QED. Sect . 5 is devoted to the study of QED with dynamical fermions .
We conclude with a summary in sect . 6 .

2 . (XX) : Extrapolations and finite-size effects

On a finite lattice spontaneous symmetry breaking cannot occur. As a result
(XX) = 0 at m = 0 . In order to extrapolate (XX) to V = oo and m = 0, one may
proceed in two different ways . The standard procedure is to extrapolate from larger
values of m, where finite-size effects can be neglected . This usually demands that
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one has some knowledge of the m dependence of the chiral condensate . Alterna-
tively, one may start from small masses or directly from the eigenvalues of the
fermion matrix M, which is less ambiguous . In this case though one has to worry
about finite-size effects . We use both methods. In this section we shall discuss the
eigenvalue alternative .

In the following we shall distinguish between the valence mass m and the
dynamical fermion mass m . We define

(XX)(m, m, V) = 1f[dAJ l-Tr(M+m) -l det(M+m)e -SG,

	

(2.1)

i .e . we propagate a fermion of mass m through a gauge configuration generated with
mass m . This can be written

which
that p is a

(XX)(m , m , V) = )r . da p(X , M, V) ,
ia + m

(2 .2)

where p(X, m, V) is the eigenvalue density . In this notation the quenched approxi-
mation corresponds to m = oo . We write (XX)(m, V) = (XX)(m, oo, V) and
p(X, V) = p(a, oc, V) . From eq . (2.2) we derive (~~) =7p(0,0, oc) and (~~) =
ßp_(0, oo) for the dynamical and quenched cases respectively . For the computation of
( ) it has been proven [11] to be useful to introduce the quantities

N(X,m,V)= f~'dXp(Ä,m,V),

	

(2 .3)

N(a, V) = f
0
~'d~ p(Ä, V) ,	(2 .4)

count the number of eigenvalues per unit volume between 0 and X. Assuming
simple power series at small X, we obtain in the limit V - oc

N( À,0, oc) =

	

(~~) + 0( X2)
,

	

(2.5)
77

N(Ä, oc) =- (

	

) +G(X2 ) . (2 .6)

This suggests computing the small eigenvalues of M, say the first one hundred . The
slope of N at A = 0 then gives us (

	

) . If (~ ~) = 0, we expect the slope to vanish .
However, we have to be careful about finite-size effects . In QCD the problem of

finite-size effects associated with a Goldstone boson has been extensively studied,
both on the lattice [12,13] and in the continuum [14] . Because our model has the
same chiral symmetry properties as its counterpart in QCD, it is tempting to apply
the results also here. This is justified when the photon, which is a further potential
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source of finite-size effects, decouples from the electrically neutral XxXX . We have
numerical evidence that this is the case . Jolicoeur and Morel [12] have shown in the
strong coupling limit that

(xX>(m, m, V) _ M>
Io(s)

+O(m), (2 .7)

where s = mV~). Generalizing this work to the case of unequal masses, we find

for the quenched approximation and

(XX>(m, V) = (W
Io(s) +

O(m)

	

(2 .8)

(XX>(m, m, V) = (XX>(0, m, 00)_

	

_

	

_

	

10W + O(m)

	

(2.9)
I0(s)

in the general case, where s = mV(XX)(0, m, oo) . The derivation of eqs . (2.7)-(2.9)
exploits only the chiral U(1) X U(1) symmetry of the action . It can be argued that
these expressions hold also beyond the strong coupling limit as long as the
symmetry is U(1) x U(1) . When the chiral symmetry is restored to SU(N) X SU(N),
the analysis of Gasser and Leutwyler [14] applies . For N = 2 and equal masses they
obtain a formula similar to eq. (2.7) .

Let us concentrate on the quenched approximation first . The eigenvalue density
p(X, V) is the discontinuity of (XX) across the imaginary axis :

P(Ä, V) = l~ó 2~ f(Xx>(- i>,+ E, v) - (Xx>(- iX -E, v)] .

	

(2.10)

The Bessel function IO(s) has zeroes on the imaginary axis [15], which give rise to
poles in (XX) . This leads us to

1
p(a,V)=E V&[ À

	

+O(A),
r

N(A, V) =L y0(XV(~~> - vi) + O(X2)

1
=(À(

	

>-1v
À -

	

~ O(XV(~~>-4ir)+0(X2) .

where Pi are the solutions of Io(-iv) = 0 . The number of zeroes that lie between the
real axis and Im(s) = (n + 4)7r is n . From eq. (2.11) we derive

(2.12)
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This tells us that the slope is not V dependent . Finite-size effects associated with the
Goldstone boson manifest themselves in a negative intercept . They are easy to trace
and to correct for in a single volume calculation . In a given volume the intercepts
should be the same for all values of ß in the broken phase .

In the full theory, i .e . with dynamical fermions, we proceed in a similar way .
Instead of eqs . (2.11) and (2.12) we obtain

1
P(X , m, V) = r V8

{ X -vt[
V(XX>(0, m, oo)] -1 } + 0(X),

[~

	

1
N(X , m, V)

	

_ (XX>(0, m, OO) - 4V
o [aV(XX>(0, m, 00) - 47T

	

+ 0(a2) ,

(2 .14)

where (XX)(0 , m, oo) = limm - o limt,_ .(XX)(m, m, V) . In this case the procedure
allows us to extrapolate immediately to V = oo and m = 0, while the extrapolation
to m = 0 remains to be done. The idea is that (XX)(0, m, oo) is much closer to
(%P,~) than (XX)(m, m, V) is .

3 . Mean field theory and gaussian model

(2.13)

Later on we want to compare our results with the predictions of a non-interacting
model . Such a model is the gaussian model, which is a generalization of mean field
theory to the extent that it includes gaussian fluctuations .
The gaussian model is obtained from the effective action, which we will derive

heuristically now. Following Kawamoto and Smit [16], we first integrate out the
gauge fields in eq . (1 .4) . This leaves us with an expression that depends explicitly
only on the Bose fields

The effective action has the form

- XxXx'

Next we integrate out the Grassmann fields . Replacing the composite Bose fields
.íf x by elementary auxiliary Bose fields - - X, we write

Z = f[d.~#']e- s.1, (-r') . (3 .2)

2

S(

	

') -

	

I C1Lr

	

x

	

x tt + C2 (~.~fX

	

X + ~~

	

-{- . . .

	

(33)
~ 1
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where the dots include higher non-local contributions . The measure d.ídf' has to be
chosen appropriately . Under the chiral U(1) X U(1) transformation the Grassmann
fields transform as

which results in

xX x

	

e'("')

z = ax + i77x ,	x even,

=ax - iiTx ,

	

x odd .

If we insert this into the effective action, we obtain

Seff(a,7r) = y_{1q [ \dRaxl2+(ap7Tx
)
2] -Max

2tca+4~a3 -m=0 .

533

In eq . (3.3) S(M') is invariant under chiral transformations, while the mass term
breaks the symmetry down to U,(1). That is, Seff transforms like the original
action .
The Bose field .íf' couples to both scalar (a) and pseudoscalar (7r) particles . We

can write

+K(ax +17X) +~
(
0X +7TX)2+

	

. . ~,

(3 .7)

(3 .8)

where we have written only the lowest-order and nearest-neighbor interactions .
Note that a+ ~XX is invariant under chiral transformations . In the following we are
interested in the gaussian approximation of eq . (3 .8) . In order that this makes sense,
the coefficients 71 and ~ must be positive .
Mean field theory assumes that ax and 7x are uniformly distributed, i .e . ax = a

and 7Tx = 0, so that the chiral condensate a is given by the minimum of the resulting
effective action. If we just consider the lowest contributions, this gives

(3 .9)

In the chiral limit, m -> 0, a =

	

- k/2~ if is is negative and a = 0 otherwise . A

,,
x even,

e -i(8-c)
Xx

(3 .4)

e('-')x .,
x odd, (3 .5)

e- '("')X�

e ztE f
x x even,

e -2"(íkX x odd . (3 .6)
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further essential factor is that one tries to describe critical behavior in terms of
analytic effective actions . That means that rl, K and ~ are assumed to be analytic
functions of /3 . Because K changes sign at the phase transition point, we may write
K = k(ß - ßc ) in the lowest order . This leads to the critical behavior

aCC(PC-ß)1/2, ßC>8 .

The phase transition is of second order. (Generally speaking, this critical exponent
arises from all approximations that give a self-consistency relation of the form

a = .7(a, ß),

	

(3 .11)

where 3~- is an analytic function that is odd in a for m = 0.) Eq . (3 .9) determines
furthermore the mass dependence of a . At the critical point, K = 0, for example, one
finds

a = (m/4~)1/3 .

The gaussian model allows for fluctuations around the minimal action configura-
tion . These fluctuations are treated as independent modes with gaussian distribu-
tion . If we insert ax = a + vx and 7Tx = 0 + ~Tx into eq . (3 .8), we obtain, in this
approximation,

Seff(a , 1') - ~,,{
n [(Ógax)2+ \ ap~TxJ2, + (K+6~a2)ax

From eq . (3 .13) we can immediately read off the mass of the Goldstone boson [17] :

If we combine this with eq . (3 .9), we obtain

+(K+2~a 2 X),î 2 -ma+Ka2 +~a4} .

	

(3 .l3)

2
K +2~o2

mPs
_-

mPso = m/2 q .

	

(3 .15)

In the broken phase eq. (3.15) implies that mPS a m as m ---> 0 . In the symmetric
phase m PS does not have to vanish as m --> 0. At m = 0 eq . (3 .14) gives

M PS
=

K
- a (ß-ßI)1/2 .

(3 .10)

(3 .12)

(3 .14)

(3 .16)
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Similarly, for the mass of the scalar boson, m s , we obtain

At m = 0 this gives

Eqs . (3.10), (3.12), (3.16), (3.18) and (3.19) imply that ß = z, 8 = 3 and v = z, which
are the standard critical exponents of a gaussian model [17] .
A first-order chiral phase transition would require a Q6 term in the effective

action .

4 . Quenched QED

We shall consider the case of quenched QED first . This case comes closest to the
approximate analytic calculations of Miransky [10], on the basis of which it has
been claimed that a new source of coupling constant renormalization leads to a
fixed point with non-trivial scaling behavior.

Kogut and coworkers [3-5,91 have searched for Miransky scaling, both in the
quenched approximation and in the theory with light dynamical fermions . They find
the support for Miransky scaling to be strongest in quenched QED.

We have performed calculations on 84, 124 and 164 lattices at various values of ß
using a heat bath algorithm . We use periodic boundary conditions for the gauge
fields and antiperiodic fermionic boundary conditions . The chiral condensate
is computed from the slope of N(X, V) at a = 0. The eigenvalues are obtained by
the Lanczos method [18] . For our purposes it is sufficient to know the lowest 0(100)
eigenvalues. The computations have been done typically on 0(50) independent
gauge field configurations .

In figs . 1 and 2 we show N(X, V)V for the larger lattices . For ß < 0.25 we find a
clear signal for chiral symmetry breaking (fig . 1) . At these values of ß, N(A, V) is
well described by a straight line in the regime of small eigenvalues . The intercepts of
N(X, V )V are consistently negative . Thus, the finite-size effects are accounted for by
eqs . (2.8) and (2.12), and it appears that the photon does not introduce any new

K+6~a 2
ms = (3 .17)

11

Ms =
2K

_- (X
(PC_p)1/2, for &>ß, (3 .18)

11

ms =
K
a (~ - Pc)1/2 for ß > ß, (3 .19)

71
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Fig. 1 .

	

N(X, V )V as a function of a for quenched QED on the 124 lattice at ß = 0.22 (O), 0.23 (" ), 0.24
(o) and 0 .27 (A) . The curves through the data points at ß = 0.22, 0 .23 and 0.24 are linear plus quadratic

fits . The curve through the data points at ß = 0.27 is a Xz fit .

form of the volume dependence of (XX) . For ß > 0.25, on the other hand, the linear
term disappears, and N(X, V) shows a Xz behavior for small eigenvalues (figs . 1 and
2) . We conclude that chiral symmetry is restored in this region . The situation is
slightly more complicated at ß = 0.25 . Here we find that N(X, V) can be well fitted
by a linear plus quadratic curve (fig. 2), which gives a non-vanishing ~). This
result is supported by the fact that we see finite-size effects typical for the broken
phase . We noticed, however, that N(X, V) can also be well fitted by a W3 curve,
which would give ~) = 0. We will discuss this point further below.
We fit N(a, V) by a linear plus quadratic curve . The upper limit of X has been

chosen such that the fits are stable. It varies from 0.035 on the 84 lattice to 0.01 on
the 164 lattice at ß = 0.26 . For ß > 0.26 we find the slope always to be zero within
very small errors . The results are listed in table 1 . We find good agreement between
our results on the 84 , 124 and 16 4 lattices where they overlap, which is what we
expect on the grounds of eq . (2.12) . In fig. 3 we plot (~ ~) and in fig. 4 ~ )2 as a
function of ß . The ß dependence of (~ 4~)z is very well described by a straight line
near the phase transition point . From this we deduce that

(~~) a (PC _ ß)1i
2
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Fig. 2 . N(X, V)V as a function of X for quenched QED on the 16 4 lattice at R = 0.25 (O) and 0 .26 (") .
The curve through the data points at /3 = 0.25 is a linear plus quadratic fit . The curve through the data

points at /3 = 0.26 is a V fit.

TABLE 1

(~~) for quenched QED for various values of /3 on the 84 , 124 and 16 4 lattice. The numbers are
obtained from the eigenvalue density of the fermion matrix M

R 84 124 16 4

0.15 0 .494(18)
0.19 0.356(7)
0.21 0.276(6)
0 .22 0.239(6) 0.236(5)
0 .23 0.202(8) 0.194(6)
0 .24 0.141(9)
0 .25 0.062(9) 0 .060(7)
0 .26 0 .000(6) 0 .000(5)
0 .27 0 .000(3) 0 .000(3)
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0 .5

where

0 .4

0 .3

0.2

0

0 .15 017 019 0.21 0 .23 025 0.27
R

Fig. 3 .

	

as found from N(X, V), as a function of ß for quenched QED on the 8° (O),0),124 (0) and
16 ° (a) lattice.

for ßc > /3 . The critical coupling comes out to be ßc = 0.252 . Thus, we confirm the
occurrence of a second-order chiral phase transition . We find, however, no support
for non-trivial scaling behavior . The behavior (4.1) agrees with mean field theory,
and that is what we expect for a non-interacting theory.
We can seek a closer connection to mean field theory by fitting N(X, V) with the

mean field prediction . We do this by using eq. (2.10), which relates p to the
discontinuity of (XX) for imaginary mass . Solving the mean field equation (3.9) for
imaginary mass, where

v=(XX)(m'cc),

we find that the eigenvalue density is given by the positive real solution of

(P 2 +B)(p2 +B/4) 2 -X2A2 =0,

	

(4.3)

27 1

	

tc 1
A=2~3 -,

	

B=2J'72 .

(4.2)

(4.4), (4.5)
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4.2 . (XX) AND MEAN FIELD EXTRAPOLATION

,

0 .15

	

0.17

	

019

	

021

	

0.23

	

0.25 ß 0.27

Fig. 4 . ~)2 , as found from N(a, V), as a function of ß for quenched QED on the 8 4 (0),124 (") and
16 4 (A) lattice . The dashed line is a linear fit to the data for /3 > 0.21 .

The solutions of eq . (4.3) are shown in the inset of fig . 5 . At ß = /3, (B = 0) we
have p a X1 / 3 and N a A~/ 3 , which is, as we noted, a good description of the
ß = 0.25 data . In the symmetric phase B is positive and the discontinuity, and
therefore p, is zero for X < áB 3/ 2/A . There is no easy way of taking finite-size
effects into account in this approach . Therefore we limit ourselves to the data from
the 12 4 and 16 4 lattices and ignore finite-size effects . Fig . 5 shows a fit to our data
for N with p taken from eq . (4.3) . We have parametrized the mean field coefficients
as defined in appendix A. The coefficients are allowed to vary quadratically with ß.
This fit gives ß~ = 0.2495(6), which is very close to the previously obtained value .
The small difference could be due to finite-size effects neglected in the second
approach or to the curvature in a p proportional to X1 / 3 at ß = ß,, not taken into
account in the first approach. The ß = 0.25 data is very well described by the
predicted X4/ 3 behavior .

We have computed (XX)(m,V) as well . For this purpose we have used a
stochastic estimator, which employs one inversion of the fermion matrix for a source
vector of random numbers of mean zero . The calculations have been done on
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10 3 N

1 .25

-5

1 . "n

Fig . 5 . N(X, V) as a function of a for quenched QED. The symbols refer to the different values of /3 :
/3 = 0.22 (" ), 0 .23 (v), 0 .24 (*), 0.25 (0, 0.26 (v) and 0 .27 (0) . The data at /3 = 0.25 and 0 .26 are taken
on 16 4 lattices, the rest on 124 lattices . The curves are fits coming from the mean field expression for p .
The inset shows p as given by eq . (4 .3) in the broken phase, at the critical point and deep in the
symmetric phase . The units are arbitrary . Whenever no error bars are shown, they are smaller than the

symbols.

typically 0(100) independent gauge field configurations . The ß values have been
chosen close to the critical value . The results are compiled in table 2 . The improve-
ment on previous calculations [4,9] is that (XX) has been computed at up to six
different mass values at the various values of ß. We do not see any finite-size effects
for V >_ 124 and m >_ 0.01 . We take this as further evidence that the photon does not
give rise to visible finite-size effects in (X-

X)-The result of the previous section suggests fitting the mass dependence of (XX)
by mean field theory, identifying (XX) with a . The parametrization of the mean
field coefficients is given in appendix A. The fit is based upon the results on the
largest lattices . We assume all coefficients to depend linearly on ß . The result of
the fit is shown in fig . 6 . The parameters are given in the first row of table 3 . We
find that (XX) is consistent with mean field behavior. The critical coupling comes
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TABLE 2

(XX)(m, V) for quenched QED for various values of ß and m on the 12 4 , 16 4 and 22 4 lattice . We have
used a stochastic estimator to compute these numbers

out to be ,ß,, = 0.2485(2), which is slightly smaller than the value obtained from the
eigenvalue density .

It is tempting now to fit our data together with the data of Kogut, Dagotto and
Kocic [4,91 . Because of the large span of ß values covered by the latter data, we
allow the coefficients to vary quadratically with ß . The data and the fit are shown in
figs . 7 and 8 . The parameters are listed in the second row of table 3 . We obtain
ßc = 0.2482(1) in agreement with the fit based on our data alone . The data are
surprisingly well described by mean field theory, even quite a distance away from
the critical point .

Fig . 8 shows also that (XX) oc m 1/3 at and near the critical point, as predicted by
mean field theory . A linear or quadratic extrapolation of (XX) to m = 0 is certainly
not justified.

The fact, that quenched QED is consistent with mean field theory at the critical
point, can be demonstrated further by plotting the quantity (ß - ßc)/(XX)2 against

(XX)/mt/3 . Near the critical point all data points should fall on one universal
curve . This scaling plot is shown in fig . 9 for ßc = 0.2485 . We find good agreement
with mean field theory . The nice thing about this plot is that only ßc needs to be
taken from a fit . The data from ß near ß, are very sensitive to ß, so this is good
evidence that we have located the critical point correctly .

p m V (XX)(m, V) 18 ni v Q0-, V)

0.2400 0.002 16 4 0.1467(16) 0.2500 0.010 12 4 0.1353(23)

0.2400 0.010 164 0.1717(20) 0.2500 0 .020 12 4 0.1749(13)

0 .2400 0.040 16 4 0.2521(13) 0.2500 0 .002 16 4 0.0773(37)
0 .2430 0.020 16 4 0.1975(9) 0 .2500 0 .004 164 0.1012(16)

0.2430 0 .040 16 4 0 .2477(7) 0.2500 0.010 164 0.1361(16)
0.2430 0 .010 22 4 0.1634(10) 0.2500 0.020 16 4 0.1768(11)

0.2455 0.010 16 4 0.1534(8) 0.2500 0.030 164 0.2021(9)
0.2455 0.040 16 4 0 .2387(8) 0.2500 0.040 16 4 0.2261(18)

0.2460 0.004 16 4 0 .1183(28) 0.2500 0.002 22 4 0.0819(15)
0.2460 0.010 16 4 0 .1464(16) 0.2500 0.004 22 4 0.1004(12)
0.2460 0.040 16 4 0 .2381(18) 0.2500 0.010 22 4 0.1354(12)

0 .2460 0.004 224 0.1199(13)
0 .2460 0.010 224 0.1524(9)

0.2480 0.010 16 4 0.1454(11)
0.2480 0.020 16 4 0.1830(11)
0.2480 0.030 16 4 0 .2096(13)
0.2480 0.040 16 4 0.2323(9)



542

	

M. Göckeler et al. / Chiral phase transition
0 .10

0 .06

0 .04

0 .02

0 .0

We shall now

0

0 .235

	

0 .240

	

0 .245

	

0 .250

	

0 .255

Fig. 6 . a 2 as a function of /3 for quenched QED . The data of table 2 are compared with a mean field fit .
The parameters of the fit are given in the first row of table 3 . Whenever we have more than one result for
a given value of ß and m, that on the largest lattice is shown . The dashed line is the extrapolation to
m = 0 . The symbols refer to the different masses : m = 0.06 (o), 0 .04 (t0), 0 .03 (0), 0.02 (7), 0 .01 (0),

0 .004 ( G ) and 0.002 ( (9 ) . Whenever no error bars are shown, they are smaller than the symbols.

TABLE 3
Parameters of the mean field and gaussian model fits to the data. The parameters are defined in
appendix A . The first row is a linear fit of a to the quenched data in table 2 . The second row is

a quadratic fit of a to the data in table 2 and the quenched data in ref. [9] combined. The
third row shows a linear fit to a and mrs in dynamical QED . The fourth row shows a

linear fit to á in dynamical QED . The errors shown are purely statistical

0

5 . QED with light dynamical fermions

investigate QED with one set of dynamical Kogut-Susskind
fermions . The calculations are done on 84 and 124 lattices for fermion masses
between 0.02 and 0.16 at various values of ß . We have used the hybrid Monte Carlo
algorithm [19] for generating the gauge field configurations .

K1 K2 110 111 WO Wl W2 ß. X2/d .f.

-0.81(3) 1 .21(1) 1 .7(7) 0.2485(2) 8 .8
-0.84(l) -1 .32(3) 1 .24(1) 0.5(1) -2.65(28) 0.2482(1) 3 .5
-1.42(1) 0 .428(2) -0.88(2) 1 .90(1) -2.8(1) 0.1950(2) 14 .7
-1 .23(4) 0 .37(3) 1 .8(3) 0.1948(8) 1 .0
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Fig . 7 . a Z as a function of ß for quenched QED . We compare the combined set of quenched data given
by our calculations in table 2 and those of Dagotto et al . [9] with a mean field fit. The parameters of the
fit are given in the second row of table 3 . The open symbols are the same as in fig . 6 . A solid symbol

indicates the data from ref. [9] . The dashed line is the extrapolation to m = 0.

The hybrid Monte Carlo algorithm is exact, but unlike other exact algorithms it is
fast enough to be used on larger lattices [20] . It has only one possible source of
error, and that is due to incomplete convergence of the fermion matrix inversion .
We use the conjugate gradient algorithm without preconditioning for that purpose .
The stopping parameter per site is taken to be r2 < 10 -8. In test runs we have
checked that increasing the accuracy does not change the fermionic energy. To
achieve this, we need on the 84 lattice and for ß < ßc between 60 (m = 0.16) and 350
(m = 0.02) conjugate gradient iterations . The precise value is slightly ß dependent.
For /3 > ßc the number of iterations needed is approximately mass independent,
reflecting the fact that mps does not vanish as m - 0. On the 124 lattice these
numbers increase by 5-8%. The molecular dynamics step size ST has been adjusted
such as to obtain reasonable acceptance rates . On the 84 lattice and for P <,8,, we
have chosen 8T between 0.04 (m = 0.16) and 0.015 (m = 0.02), which leads to
acceptance rates of 88% and 71%, respectively . We find the adjustments one has to
make in order to keep the acceptance rate constant somewhat weaker than asymp-
totic estimates would suggest [20] . For ß > ß. we can keep ST at a constant value of
0.04 . In order to maintain the same acceptance rate on the 124 lattice, the step size
has to be lowered approximately by 30%, which is in accord with the anticipated
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Fig . 8 . 03 as a function of m for quenched QED . We compare the combined set of quenched data given
by our calculations in table 2 and those of Dagotto et al . [9] with a mean field fit . The parameters of the
fit are given in the second row of table 3 . The symbols refer to different values of /3 : /3 = 0 .20 (A), 0.21
(" ), 0 .22 (" ), 0 .23 (v), 0.24 (*), 0.243 ((D), 0 .246 (o), 0 .248 (O), 0 .25 (O), 0.26 (v), 0 .27 (0) and 0.28

(®) . The data for /3 = 0.2455 are not shown . They coincide with the data for ß = 0.246.

V-1I4 behavior . The length of the trajectories has been chosen between 0.35 and
0.70 . This results in autocorrelation times of 9 and 2.5, respectively, for Wilson
loops up to size L/2 x T/2 .

5 .2 . ~XX)(n1, rn, V) AND ni ps

Our data sample consists of 0(3000) trajectories on the 84 lattice and 0(1000)
trajectories on the 124 lattice at each value of ß and each mass, starting from
equilibrium . Independent configurations are separated by 25 or 50 sweeps . To
compute (XX)(m, m, V) we have used the stochastic estimator of subsect . 4.2 . We
compute this quantity every trajectory . We find the autocorrelation time to be
significantly smaller than in the case of, e.g . any Wilson loop . The results of the
calculation are given in table 4 . In order to compute nips , we use the conjugate
gradient algorithm to invert the fermion matrix . This is done on the independent
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Fig. 9. Scaling plot of (p - /3C)/a2 versus a/m1/3 for ßc = 0.2485 for quenched QED. This ß. value is
taken from the mean field fit in the first row of table 3 . If the critical indices have mean field values, all

data taken near the phase transition should lie on a universal curve . The mass values of the data are
indicated by the same symbols as in fig. 6. The dashed curve is the expected curve according to the fit in

the first row of table 3 . The two sites that lie furthest from the curve are those for m =0.002, which is our
smallest mass value.

configurations and for up to three well-separated source points . Typical examples of
the correlation function are shown in figs . 10 and 11 . We fit Cps(t) for 1 < t < T - 1
by a single mass term . There is no sign of an excited state beyond t = 1, as can be
seen in figs . 10 and 11, nor is there any sign of a continuum. Chiral symmetry says
that at m = 0 the Goldstone boson cannot decay into photons (the lattice U(1) does
not have the anomaly responsible for the decay of the physical a°) . The other
possible continuum contribution comes from the decay to two fermions when
energetically allowed . The absence of the continuum is perhaps a hint that the
renormalized fermion mass is large . The pseudoscalar masses are collected in
table 4 .
The chiral condensate (XX)(m, m, V) and the correlation function Cps(t) are

related by the Ward identity

T

(XX)(m, m, V) = m r- CPS (t) .

	

(5 .1)
t=0

In the limit m - 0 only the Goldstone boson contributes to eq . (5 .1) . We may
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TABLE 4

(Sc)/(Vß), (XX)(m, m, V), (XX)w(m, m, V) and mrs for dynamical QEDfor various values of /3

and m on the 84 and 124 lattice. (SG is the gauge field action)

ß

	

m

	

(Sc)/(Vß)

	

(XX)(m,m,V)

	

(XX)w(-, m, V)

	

nies

84

0.16 0.02 1.3617(22) 0.3804(16) 0.381(3) 0.360(3)
0.16 0.04 1 .3739(11) 0.4062(12) 0.392(2) 0.508(2)
0.16 0.09 1 .4018(8) 0.4470(7) 0.460(3) 0.720(3)
0.16 0.16 1 .4280(8) 0.4782(5) 0.470(4) 0.941(3)

0.18 0.02 1 .1873(20) 0.2790(18)
0.18 0.04 1 .2031(9) 0.3281(11) 0.314(2) 0.543(3)

0.18 0.09 1 .2287(8) 0.3907(7) 0.390(3) 0.749(8)

0.18 0.16 1.2583(5) 0.4380(5) 0.436(3) 0.961(4)

0.19 0.02 1 .1166(11) 0.2255(15) 0.218(2) 0.447(4)

0.19 0.04 1.1331(13) 0.2850(13)
0.19 0.09 1 .1589(6) 0.3619(6) 0.356(3) 0.768(3)
0.19 0.16 1.1872(6) 0.4172(5) 0.414(3) 0.974(3)

0.20 0.02 1.0592(6) 0.1694(10) 0.163(2) 0.498(8)
0.20 0.04 1 .0731(7) 0.2483(18) 0.248(3) 0.583(5)
0.20 0.09 1 .0000(7) 0.3361(5) 0.328(3) 0.787(5)
0.20 0.16 1 .1244(5) 0.3975(5) 0.395(4) 0.990(4)

0.21 0.09 1.0466(5) 0.3124(5) 0.310(2) 0.804(4)
0.21 0.16 1 .0205(5) 0.3798(4) 0.378(2) 0.996(3)

0.22 0.04 0.9771(8) 0.1808(10) 0.185(2) 0.676(7)

0.22 0.09 0.9972(4) 0.2887(5) 0.291(4) 0.824(5)
0.22 0.16 1.0205(5) 0.3618(5) 0.350(3) 1.014(4)

0.23 0.04 0.9357(5) 0.1574(6) 0.157(3) 0.707(9)

0.24 0.04 0.9009(5) 0.1416(7) 0.143(2) 0.726(8)

0.25 0.04 0.8673(5) 0.1255(3) 0.125(1) 0.792(7)

0.26 0.02 0.8342(4) 0.0595(3) 0.060(1) 0.787(13)

0.26 0.04 0.8373(3) 0.1139(4) 0.113(2) 0.812(7)

124
0.19 0.020 1.1163(8) 0.2298(9) 0.233(3) 0.419(3)
0.19 0.040 1.1320(10) 0.2866(6) 0.284(2) 0.556(4)

0.20 0.020 1.0619(8) 0.1880(8) 0.176(2) 0.454(4)

0.20 0.040 1.0757(7) 0.2535(9) 0.262(5) 0.576(4)

0.20 0.090 1.0998(5) 0.3369(5) 0.341(4) 0.781(4)
0.20 0.160 1.1263(6) 0.3986(2) 0.398(3) 0.987(3)
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ß=0 .16

0 7
t

Fig. 10 . The pseudoscalar correlation function Cps(t) as a function of t for dynamical QED on the 8 4
lattice in the broken phase at /3 = 0.16 and m = 0.16 (0), 0.09 (v), 0.04 (O) and 0.02 (A) . The solid

curves are single mass fits to 1 S t _< 7 . The error bars are smaller than the symbols.

T

(XX)w(m, m, V) = m r_ Aps(e'-+ e-(T-t)mp5)
r=0

= mApscoth(mps/2)(1 - e-Tm-)

	

(5 .2)

as an alternative estimator for (XX) . The results of the calculation are given in table
4. The difference from (XX)(m, m, V) is very small . We shall base our further
analysis on (XX)(m, m, V), because it has the smaller statistical errors .

In order to compute (XX)(0, m, oo), we proceed in the same way as in sect . 4 . The
calculations are done on the independent gauge field configurations . In figs . 12 and
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ß -- 0.22

6

Fig . 11 . The pseudoscalar correlation function Cps (t) as a function of t for dynamical QED on the 84
lattice in the symmetric phase at ß = 0.22 and m = 0.16 (O), 0.09 ("), 0 .04 (O) and 0.02 (" ) . The solid

curves are single mass fits to 1 _< t < 7 .

13 we show N(X, m, V)V for the 124 lattice at ß = 0.19 and 0.20, respectively . The
phase transition point will turn out to lie between these two values of /3 . At /3 = 0.19
we find that N(X, m, V) can be well approximated by a straight line in the regime
of small eigenvalues . At ß = 0.20, on the other hand, N(X, m, V) gets more and
more curved with decreasing m . The intercepts of N(X, m, V)V are negative, as we
expect on a finite lattice . They are smaller though than in the quenched case (cf .
figs . 1 and 2), which indicates that finite-size effects of the kind discussed in sect . 2
are less pronounced here .
We fit N(X, m, V) by a linear plus quadratic curve . The upper limit of X has

been chosen such that the fits are stable . As in the quenched case, (XX)(0, m, cc) is
obtained from the slope of the linear term according to eq . (2.14) . The results are
listed in table 5 and are drawn in fig . 14.

Fig . 14 shows that the extrapolated value (X- X)(0, m, oc) is still subject to
finite-size effects at m = 0.02 . This is not surprising . On the 84 lattice at ß = 0.20
and m = 0.02 we find that there are, on the average, only = 1 .5 eigenvalues that are
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Fig . 12.

	

N(,\, m, V)V as a function of X for dynamical QED on the 12 ° lattice at P=0.19 and
m = 0.04 (") and 0 .02 (O) . The curves are linear plus quadratic fits to the data.

smaller than 0.02 . Thus, the 84 lattice is unable to respond properly to masses
m < 0.02 . In the following we take the result on the largest lattice for (XX)(0, m, 00) .
With more data, especially on larger lattices, it will be interesting to fit N with

the behavior of eq . (4 .3) .

We shall ask now whether our data can be described by the gaussian model . We
have

For the condensate dealt with in subsect . 5 .3 we write

a = (n >(m, m, 00) .

	

(5 .3)

a = (WO, m, 00) .

	

(5 .4)

If the m dependence of a is given by eq . (3.9), the following relationship holds :

2KQ + 4~á3 = 2rca + 4~a 3 + O(M).

	

(5 .5)
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Fig . 13 .

	

N(a, m, V )V as a function of X for dynamical QED on the 124 lattice at p= 0 .20 and
nz = 0.09 (A), m = 0.04 (") and 0 .02 (O) . The curves are linear plus quadratic fits to the data .

TABLE 5
(XX)(0, m, oo) for dynamical QED for various values of p and m on the 84 and 124 lattice. The

numbers are obtained from the eigenvalue density of the fermion matrix M

p ni 84 124 p ni 84 12 4

0 .16 0.02 0.350(6) 0 .20 0.02 0.100(16) 0.078(8)
0 .16 0.04 0.362(6) 0 .20 0.04 0.118(14) 0.116(8)
0 .16 0.09 0.383(6) 0 .20 0.09 0.169(12) 0.172(4)
0 .16 0.16 0 .413(6) 0 .20 0.16 0.215(11)

0 .18 0.02 0.235(10) 0 .21 0.02
0 .18 0.04 0.258(6) 0 .21 0.04
0 .18 0.09 0.295(6) 0 .21 0.09 0.086(10) 0.172(4)
0 .18 0 .16 0 .328(9) 0 .21 0.16 0.128(8)
0 .19 0 .02 0.174(14) 0.157(8)
0 .19 0 .04 0.186(12) 0.180(7)
0 .19 0 .09 0.227(10)
0 .19 0 .16 0.267(10)
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4
4
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This leads to the mean field formula for á:

2uá+4~á 3 -wm=0 .

ß
4 0-16

0 .18

0.19

0.20

0.21

Fig. 14 . (XXi(0 , m, V), as obtained from N(X, m, V), as a function of m for dynamical QED on the 8 °
(O) and 12° (") lattice . Finite-size effects are not large.

(5 .6)

We find that w << 1, which means that the extrapolation to m = 0 is much easier .
Let us first consider the quantities a and mPs . We identify (XX)(m, m, oo) with

the value of (XX)(m, m, V) on the largest lattice . Near the critical point the ,ß and
m dependence of a and m Ps is given by eqs . (3 .9) and (3.14) according to the
model . We parametrize the coefficients in the effective action as stated in appendix
A. All fits in the following figures assume a linear ß dependence of these coeffi-
cients . In figs . 15-17 we show the simultaneous fit of a and m Ps . The values at
m = 0.16 are not fitted because they fall obviously outside the range of applicability
of eqs . (3 .9) and (3.14) . They are included in the figure for illustration . The
parameters of the fit are listed in the third row of table 3 . We find that a and m Ps
are well fitted by the gaussian model* : The parameters are mainly fixed by the a

* Horowitz [211 has made a mean field fit based on the gap equation of a Nambu-Jona-Lasinio model
[22] to the Edinburgh data [8] on a . He finds a good fit too.



552
0 .0

0 .2

0 .0

0 .8

0 .6

0 .4

0 .2

0 .0

M. Göckeler et al. / Chiral phase transition

0 .16 0 .18 0 .20 0 .22 0 .24 0 .26

Fig . 15 . 02 as a function of ß for dynamical QED . We compare the data of table 4 with a combined fit
to a and ni ps . The parameters of the fit are given in the third row of table 3 . The dashed curve is the
extrapolation to n1 = 0 . The symbols refer to the different masses : m = 0.16 (o), 0 .09 (0), 0 .04 (O) and

0.02 (v) . The fit did not include the data values at ni = 0.16. All errors are smaller than the symbols_

Fig . 16 . n12

	

as a function of /3 for dynamical QED. We compare the data of table 4 with a combined fit
to a and mps . The parameters of the fit are given in the third row of table 3 . The dashed curve is the
extrapolation to m = 0 . The mass values are denoted by the same symbols as in fig. 15 . The fit did not
include the data values at m = 0.16 . Whenever no error bars are shown, they are smaller than the

symbols.
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Fig. 17 . 03 as a function of in for dynamical QED . We compare the data of table 4 with a combined fit
to a and nips. The parameters of the fit are given in the third row of table 3 . The symbols refer to the
different values of /3 : ß =0.16 (A), 0 .18 ("), 0 .19 ("), 0.20 (v), 0.21 (*), 0.22 (o), 0.23 (1]), 0.24 (O), 0.25

(7) and 0 .26 (Q) .
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Fig . 18 . 62 as a function of ß for dynamical QED . We compare the data of table 5 with a mean field fit
to á . The parameters of the fit are given in the fourth row of table 3 . The dashed curve is the
extrapolation to ni = 0 . The symbols are as in fig. 15 . Whenever no error bars are shown, they are smaller

than the symbols.
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Fig . 19 . Q3 as a function of m for dynamical QED . We compare the data of table 5 with a mean field fit
to á . The parameters of the fit are given in the fourth row of table 3 . The ß values are denoted by the

same symbols as in fig. 17 .
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Fig. 20 . amps/m as a function of ß for dynamical QED . The mass values are denoted by the same
symbols as in fig . 15 . The gaussian model predicts that all data should lie on a single curve.



data (because it is so accurate) . With the small error bars on a a X2/d.f . of 15
corresponds to a difference between fit and data of only 1% . Much of this seems to
arise from the m = 0.09 data (a mass value larger than that we could work with in
the quenched case) . The m = 0.16 data shows definite deviation from mean field
behavior, which warns us that there are probably also small deviations in the
m = 0.09 data. The dashed lines in figs . 15 and 16 represent the values extrapolated
to m = 0 . We obtain ß~ = 0.1950(2) . From fig . 17 we can read off, even without a fit,
that a a m1/3 at the critical coupling .
We shall now consider the quantity á . Its ß and m dependence is governed by eq .

(5 .6), according to mean field theory . The difference from a is that the mass
dependence is somewhat diminished, while the coefficients is and ~ should be the
same . In figs . 18 and 19 we show the fit . The corresponding parameters are given in
the fourth row of table 3 . We obtain a very good fit in this case as well . Fig . 18
shows that á is indeed much closer to (~ ~) (dashed line) than a was, which does
not leave much ambiguity in the extrapolation of the data . We certainly can rule out
Miransky scaling [10] . The critical coupling comes out to be ßc = 0.1948(8), which
coincides with the previous value . Fig . 19 shows that á a m1/3 at the critical
coupling all the way up to m = 0.16 .
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Fig. 21 . Scaling plot of (/3 -'ac)/02 versus a/m1/3 for ,ßc = 0.1950 for dynamical QED . This & value is
taken from the gaussian model fit in the third row of table 3 . If the critical indices have mean field
values, all data taken near the phase transition should lie on a universal curve . The mass values of the
data are indicated by the same symbols as in fig. 15 . The dashed curve is the expected curve according to

the fit in the third row of table 3 .
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A further test of the gaussian model interpretation of the data is provided by the
quantity me sa/m, which, according to eq . (3.15), should only depend on ß . We
have plotted this quantity in fig . 20 . If one considers that m varies by almost an
order of magnitude, the agreement between the data and the predictions of the
gaussian model is good. In fig . 21 we have plotted furthermore the quantity
(,ß - ßC )/a z versus a/M l/3 for ßc = 0.1948 . As in the quenched case, we find that
our data scale in agreement with mean field theory .

6 . Summary

We have investigated non-compact QED in the quenched approximation and for
one set of dynamical Kogut-Susskind fermions . So far we have calculated the chiral
condensate and the mass of the Goldstone boson. Particular effort was spent on the
extrapolation of our data to the infinite volume and to zero mass. We find evidence
for a second-order chiral phase transition . Near the critical point our results agree
very well with the predictions of a gaussian model, which is an indication that QED
is non-interacting in the continuum limit.
Compared with refs. [4,5,9] we find a lower & in both quenched and dynamical

QED. We see no sign of the essential singularity tail predicted by Miransky [10] .
These discrepancies come mainly from the extrapolations to m = 0 . Before rejecting
mean field exponents, one should use mean field theory to extrapolate to m = 0 . Our
graphs of m dependence clearly show mean field behavior, whereas a polynomial fit
is certainly ruled out .
Our gaussian model has a chiral U(1) symmetry . In the continuum limit we expect

the SU(4) symmetry to be restored, in which case the gaussian model should be
extended . It would be desirable to confirm these results on larger lattices and with
higher statistics .

Let us now turn to some speculations as to the effective theory at the fixed point .
Our mean field fit is based on a a model, and such a model could be the effective
theory one is seeking . It has a U(1) symmetry corresponding to the chiral symmetry
of QED. This model can be given a chirally symmetric coupling to the fermion field,
leading to a fermion mass proportional to (XX) near the critical point . Another
model in the same universality class might be the Nambu-Jona-Lasinio model, as
was suggested by Horowitz [21] .

We would like to thank A.N. Burkitt for helpful discussions . The calculations
have been done on the Cray X-MP of the HLRZ. We are grateful for their generous
support .



PARAMETRIZATION OF MEAN FIELD FITS

We divide the effective action (3.13) by ~. The reason for this choice is that
a 2 = - K/2~ for ß <,8c and m = 0 . We choose the parametrization :

equation (5.6) for á .
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