Nuclear Physics B391 (1993) 147-175
North-Holland

Average action for the Higgs model with abelian
gauge symmetry

M. Reuter !

Institut fiir Theoretische Physik, Universitidt Hannover, Hanover, Germany

C. Wetterich 2
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Received 11 March 1992
Accepted for publication 4 September 1992

We develop the concept of an average action for gauge theories in the continuum. The
average scalar potential of the abelian Higgs model is computed in arbitrary dimensions.

1. Introduction

The concept of an effective action for averages of fields (average action) [1,2]
has proven successful for a description of scalar theories in two, three or four
dimensions [3]. This approach seems appropriate to settle a variety of open
questions on spontaneous symmetry breaking in the standard model. It also should
provide the relevant scalar potentials needed for the cosmology of phase transi-
tions and similar issues. It may be used to overcome the infrared problems in
finite-temperature field theory. The intuitive picture of the average of a scalar field
x(x) over a volume ~ k™% can be easily formulated in continuous space:

(%) = [dy fi(y = x)x(¥). (1.1)

Here f, is a function of (y, —x, )X y* —x*) which should decrease rapidly if this
quantity becomes larger than k2. The average action is a functional of the
average field ¢(x). It has been constructed [2] using a gaussian constraint which
enforces ¢, (x) to be approximately equal to ¢(x). The computation of the average
action I',[¢] allows a transition from “microscopic variables” y(x) to “macro-
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scopic variables” ¢(x). All constructions can be generalized to include chiral
fermions [4].

In contrast, gauge theories pose an obvious problem: Under gauge transforma-
tions the quantity ¢,(x) (1.1) does not simply transform with a phase. As a result,
the square ¢}(x)¢,(x) is not gauge invariant. One can always achieve ¢, (x) =0
by an appropriate space-dependent change of the phases of y. A similar problem
arises for the gauge fields: The average of a gauge field aM(x) makes no sense due
to the inhomogeneous transformation properties of a,. For an abelian gauge
theory one may define the average of the gauge-invariant field strength f,, =4d,a,
—4d,a, in analogy to (1.1). This corresponds to the intuitive picture of the average
of electric or magnetic fields. This construction cannot be generalized, however, to
nonabelian gauge theories. An average of f;, according to (1.1) does not simply
transform according to the adjoint representation. We need a generalization of
(1.1) which adapts the concept of an average to gauge dependent fields.

The necessary generalization becomes most obvious in momentum space where
(1.1) reads

d(a) =fila)x(q). (1.2)

Here f,(q) is the Fourier transform of f,(x). It is a function of g? which
decreases rapidly for g% > k? *. Equivalently we may write (1.1) in the form

di(x) =fi.(—D)x(x). (1.3)

The gauge covariant generalization of (1.3) replaces all derivatives by covariant
derivatives in the “background” of the “average gauge field” A4,(x)

3,2 D(A),  (x) =fil —D*(A))x(x) (1.4)

Here we require that the macroscopic gauge field A, has the same gauge-transfor-
mation properties as the microscopic field a,. This prescription achieves that the
gauge transformations of ¢,(x) are the same as for y(x), namely homogeneous
transformations with phases. We also postulate the same gauge-transformation
properties of the macroscopic and microscopic scalar fields ¢ and y. It is then easy
to construct gauge-invariant quantities as (@(x) — ¢, (x)"- (e(x) — ¢,(x)). They
can be used to implement a gauge-invariant constraint.

A similar prescription can be used to define the average of the (nonabelian) field
strength f7,:

F/f,p.v(x) =fk(—D2(A))f:v(x)' (15)

* We use from here on always the representation of f; as a function of ¢2. Details on f, may be found
in ref. [2].
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The covariant derivative should now be taken in the adjoint representation. (For
abelian gauge theories one recovers D*(A) = 0.) Defining by F}, the gauge-co-
variant macroscopic field strength formed from Af we can again find gauge-in-
variant quantities as (F; (x) — F¢, COXF(x) — Ff%(x)). This allows the con-
struction of a suitable constraint for the field strength. At this stage it only remains
to implement a constraint for the longitudinal component of the gauge field. The
longitudinal mode does not contribute to f,, and therefore remains unconstrained
if we only employ a constraint for the field strength. For the ‘“longitudinal
constraint” we will exploit the fact that the difference Az(x) —a;(x) transforms
homogeneously. The quantity D(AXAS —al) DP(AX A} ~ay) with D(A) in
the adjoint representation is gauge invariant.

In this paper we will carry out the construction of the gauge-invariant average
action explicitly for the abelian Higgs model. We perform a one loop computation
of the average scalar potential and the scalar kinetic term in arbitrary dimensions.
We obtain evolution equations for the dependence on the average scale k. In four
dimensions these equations agree with the perturbative renormalization group
equations for small couplings if all masses are small compared to the average scale
k. The infrared behaviour for & smaller than the physical particle masses depends
to some extent on the choice of the “averaging scheme” and will be discussed in
detail. For dimensions smaller than four naive perturbation theory fails for ¢ =0
due to strong infrared divergences arising from the fluctuations of the massless
gauge boson. Our method allows to approach the infrared limit X — 0 smoothly.
The evolution equations should give a valid description of the phase transitions in
two and three dimensions. In particular, this will be relevant for the understanding
of finite-temperature gauge field theories in four dimensions.

2, The average action of gauge theories

We consider here the abelian gauge theory describing the interaction of a
massive or massless photon with a complex scalar field. The euclidean action reads

SLx a,1= [dx{f, f* + D) x 1>+ V(x*x)}, (2.1)
where
D,(a) =4, +iea,, (2.2)
fuow=90,a,—d,a,, (2.3)
and

V(x*x) = —B*(x*x) + 3A(x *x)°. (2.4)
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We shall be mainly interested in the spontaneously broken regime with %> 0.
Furthermore, the dimensionality of space-time, d, will be kept arbitrary for most of
the discussion. The fundamental action S, depending on the “microscopic” vari-
ables y(x) and a ”(x), gives rise to an average action I',, depending on the average
(or “macroscopic”) fields ¢(x) and A (x):

exp{—Fk[qo, A#]} =f9X Da, exp{—Sk[X, a,; ¢, A“]}, (2.5)

Selxs a5 @, A,] =Sy, 4,1+ Sconse[ X5 2,5 @5 4,]. (2.6)

The constraint implementing the averaging procedure is chosen as

d 1 ZF(_D) v v

Seonse = [ 4545 (Fo = F1(= D) o) 7= gy (P == O)F*)
1 . Zs(—0O) L
+Za“(A —a )————l_sz(_D)av(A —a)

« D*(A)Z,(—D?*(A))
1—f(-D*(A))

—[¢ —fil(=D*(A))x] [ —fi(=D*(A))x] ;-

(2.7)

Here F,,=d,4,-3,4, and DJ(A)=4, +ied, are expressed in terms of the
average variable A ”(x). The function

fi(a?) = exp[—a(qz/kz)B] (2.8)

parametrizes a family of different averaging schemes depending on the constants a
and B. Obviously, S,[x, a,; ¢, 4,] is invariant under a simultaneous gauge
transformation of the microscopic variables (y, a#) and the macroscopic ones,
(¢, A,). Therefore, and because we can specify the measure 2y Za, in a
gauge-invariant way, I'[¢, A“] is a gauge-invariant functional of the average
fields. Our formulation can be generalized to nonabelian gauge theories. One
should replace in (2.7) all derivatives acting on gauge fields by covariant derivatives
in the adjoint representation. (The covariant derivatives acting on matter fields
should be taken in their respective representations, of course.) We also note that
no gauge fixing is needed for a computation of I',. In fact, for fired fields (¢, A,)
the constraint is not invariant under gauge transformations of x and a, alone. As
a result, no infinite factor arises in the @ yZa integration from the volume of the
gauge group. For given macroscopic fields the constraint acts similar to a back-
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ground gauge fixing term. We finally observe that the constraint is not yet
normalized here. The normalization involves a determinant depending only on 4,,.
This issue will be discussed in a separate paper [5] where we will also present more
formal properties of the average action for gauge theories.

Gauge invariance and rotation and translation symmetry allow us to write down
a derivative expansion in terms of gauge-invariant field monomials (p = ¢*¢):

L[e, 4,] = [dc{Udp) + Z,.(p) | Do’

+4Zei(P)F For 4L, (2.9)

For a discussion of all relevant monomials with up to two derivatives we refer to
appendix A.

In this paper we are mainly interested in the average potential U,(p) and the
scalar wave function renormalization Z,,(p). These quantities are needed in
order to determine the mass term for the vector boson. From eq. (2.9) we read off

M?(k) =22%(k)Z, «(Po) ZF k(Po) (2.10)

where p, is the (k-dependent) location of the minimum of U,. The physical
vector-boson mass in the vacuum (defined at g2 = 0) obtains as lim, _, ,M(k). In
order to determine U, we evaluate the path integral (2.5) for a real, x*-indepen-
dent configuration ¢ = const. along with 4, = 0. Similarly, to find Z_,, one uses
¢ = const. together with a small x“-mdependent vector field A4, = const. Then
ID (A)<pl =224%p?, and Z,, can be extracted as the coefflclent of the term
which is quadratic both in ¢ and in 4, where A, can be taken infinitesimal. (For
details see appendix A.) Using this method we shall compute the one-loop
approximation of U, and Z_, in the following sections. We do not need to
compute Z, here since it can be absorbed in the definition of a renormalized
gauge coupling.

3. One-loop approximation of the average action

In this section we start the semiclassical evaluation of the functional integral
(2.5) with

S, = fddx za,[—On* +349"]a,

+x*[=D*a) =B x + 2 (x*x)°
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[-On* +a%9"]

+%(Au_fk(_D)a,L) (4, - fi(—D)a,)

1-f(~0)
1 aHaY
=5 (A —au)l—_m(/&—av)
D*(A)

o ~fl =D ()] 1= [o = fu(=D*(D)x] |- (3.1)

sz(_Dz(A))

For the simplicity of the presentation we have set the various Z-factors in (2.7)
equal to unity here. More generally, their role is completely analogous to that in
ref. [3]. We expand the integration variables y and a, around the configuration
(x™min, affi“) for which §, assumes its minimum:

x(x) =x™"(x) +x(x),
a,(x)=ay™(x) +da,(x). (3.2)
The first variation of S, yiclds the following equations for the minimum:

D*(A)fi(—D*(A)
1-fi(-D*(A))

[—Dz(a)—ﬁ2+7t|x|2]x+ )[so”fk(—Dz(A))X]:O,

(3.3a)
[— Ome + 00" + 222 x| 2] a,
fi(—D0)
- 2 o (4, - (- D))
1 oL s
+;W(AV—HV)—€X *y. (33b)

They determine (x™", aJ"™) as a functional of (¢, A4,) if the solution is unique.
Otherwise the minimum has to be selected among the different extrema. For the

one-loop approximation we also need the second variation of S,:

—On* + (1l —a YYorer
525k=fddx{8a“ { 77l—fk(z(—é) ) +28% x| °n* |3a,
DX A)fH(-D*(A) _,
x| _ N2 _ _ =2
+28x*| —D?(a) T—i-p)) P +2xlx |7 |8x
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Y 2 2 2
A28+ () (8x)’]

+4e%a*da,[ xox* + x*ox]
—21‘@5%[5)(*3#)(”*‘5“5)(]}. (3.4)

Inserting the minimum (x™", a"") into 525, we obtain the quadratic action which
enters the saddle-point evaluation of the integral (2.5). The one-loop approxima-
tion of the average action reads

Fk[cp, A#] =Sk[xmi", az‘i"] +F,§l)[<p, A#] + ..., (3.5)

with

exp{ =T, 4,]} = [Z(x, 8a,) exp{ = 1878, [ x™, am™™; 8x, 8a,]}, (3.6)
where (™", az‘i") is considered as a functional of (¢, 4,). Up to now our
formulas are completely general, and no particular argument (¢, Aﬂ) of I', has
been specified. As we have explained already, for the determination of U, it is
sufficient to work with the field configuration ¢ = real constant, 4, = 0. In this
case a solution to eqs. (3.3) is given by

x™"(x) = ¢ = const.,
ar(x)=0. (3.7)

In appendix B we show that this stationary point is indeed a minimum (i.e.,
8°S, > 0 for all 8y and da,) provided

2
¢2>7—A¢2. (3.8)

where A¢? is some strictly positive quantity and o} =u’ /7\ corresponds to the
minimum of the classical potential V(¢?)= —&2p> + sA¢*. The precise value of
A¢? depends on the choice of the function f,. Irrespective of the precise form of
f. the stationary point (3.7) is stable even for values of ¢? (slightly) smaller than
the classical minimum ¢3. The average potential around the minimum can there-
fore be reliably calculated in a loop expansion around the configuration (3.7). With
p = ¢? one has

Ud(p) =V(p) + UP(p) + ... (3.9)
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This argument generalizes to all configurations which deviate only infinitesimally
from (3.7), as for the case of an infinitesimally small gauge field A,,.

In order to perform the gaussian integration in (3.6) it is necessary to diagonal-
ize the quadratic form 825, given in eq. (3.4). This is achieved by changing to a
new field basis in which the different modes can be decoupled more easily. In
appendix B we give the details of this transformation for an arbitrary background,
i.e. without using a particular form of (™", a{fi“). Then, in appendix C, we
evaluate the gaussian integrations for the special case of ¢ = const., 4, = const.
with infinitesimally small A,,.

4. One-loop average potential

The one loop contribution to the average potential can be written as a sum

UP(p) = Udp) + Up(p) + Upu(p) (4.1

with
Ulp) = (d =Dy [dxx 27" In[ P(x) +22%], (4.2)
U,(p) =Ua{fdxx("’/2)_1 ln[P(x) +3Xp—/._1,2], (4.3)

Uyo(p) = v fdx x4/ 1 in[{P(x) +2p - B2}
X{P(x) +2a52p} —ZaEpr], (4.4)
where we use the abbreviations (x = g?)

P(x)=x[1-f2(x)] " (4.5)
and
ve=[29"17421(ds2)] (4.6)

Here U, and U, are the contributions of the transverse photon and the radial
scalar mode, respectively, and U,, is due to the coupled system of Goldstone
boson and longitudinal photon. The x =g? integrations in (3.11) converge for
x — o only after subtraction of the conventional k-independent counterterms
which absorb the UV divergences. We shall not need these counterterms explicitly,
since we are only interested in the k-dependence of U,. The derivative dUSP /dk is
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UV finite. (To give a well-defined meaning to egs. (4.2)-(4.4) themselves, and to
the formal manipulations leading to them, we can adopt some conventional UV
regularization scheme which respects gauge invariance, dimensional regularization,
say. After having performed the derivative with respect to k, this regularization
can be removed. The same remark also applies to I', as a whole.)

We want to study how the shape of the average potential U, changes as a
function of the length scale k~!. In particular, we are interested in the k-depen-
dence of the location of the minimum at p (k) defined by U/(p,(k)) = 0. (Primes
denote derivatives with respect to p = ¢2.) Another quantity of interest is the
quartic scalar coupling defined at the minimum

A(k) = U/ (po(K)), (4.7)

which determines the mass term for the radial model ~2Ap,. The running of
these quantities is given {3] by *

_ d _ d

4= 3P0 = ﬁpo(k) = _)\_l(k)kﬁuk,(Po(k))’ (4.8)
9
B, = —A k—A(k) k Ul (po(Kk)), (4.9)

where t = In(k /k ;). From eqs. (4.2)—(4.4) we obtain for the first derivatives with
respect to p:

J

U (p) =2(d - o2k L (22%), (4.10)
J YNLd—=2y5d{y

2o Us(p) = 303K 2LY(RB3p — py)), (4.11)
é d=25d

S Uip) = 03K LA(X(p = po)) + 8,(p). (4.12)

Similarly the second derivatives read

d

8_tU‘”(p) = —4(d - l)UdE“kd*“L‘é(Zézp), (4.13)
J ” N2 d—4yd(y

5, Ur(p) = =90,k LY(M(3p = p0)), (4.14)
9 " 32d—47d( 3

o Uralp) = —0 A%k L3(A(p —po)) + Balp)- (4.15)

* By using the partial derivative on the r.h.s. of (4.9) we omit an additional term ~ 8U."(p,) which
accounts for the k-dependence of the point of definition of A [3].
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Here we employ the integrals
0 (9 —n
LY(w) Ekz”‘df dxx @27 [ P(x) +w] (4.16)
0

which have been evaluated in ref. [3]. We also use the renormalization group
improvement [3] replacing on the r.h.s. of (4.10)—(4.15) the bare parameters A, &’
by the k-dependent quantities A(k), A(k)p,(k). (This also applies to € even though
we do not discuss the running of the gauge coupling in this paper.) We observe
that the first term in (4.15) diverges for p =p,, k — 0. This reflects the strong
(power law) infrared singularity due to the “Goldstone mode” which invalidates
naive perturbation theory in less than four dimensions. We can deal with this
problem by using a finite infrared cutoff & and compute explicitly the behaviour
for k — 0 by following the evolution equations.

A

The contributions &, and g, vanish for a=0. In this case US) exactly
reproduces the one loop contribution of the Goldstone boson in the theory without
gauge boson. Only the transversal gauge boson contributes the term U in

addition to the pure scalar theory. For general « one finds

801 = _X_léa(p())

_2Ud“ézpokd%Gii,l,o(zaézpo)
—2v408%A k172G (2a8%,), (4.17)
By = éa( Po)
= 4v, ae’d k7 GE 1Y o(2aE%p,)
- 4Udazé4kd_4Gg,0‘2(2a52p0)
— dv a8’ Npok G 3 (2ae’p,)
— 4v,0%8 N pgk TGS, o(2ae%p). (4.18)

The dimensionless integrals

G,f,p,,(w) _ k4n—2r—dfo dx x@/2-1

r

y 9 ( X )” (P(x)=x).
at |\ P(x) [P(x)2+w(P(x)—x)]n

(4.19)
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are evaluated in appendix D. For small values of w/k2 (linear regime) we can
expand the integrals L and G in powers of w and express G(0) in terms of L(0).

For large w/k? (Goldstone regime) only the “Goldstone boson” contributes in
leading order for a = 0:

8= —uv,k??L4(0),
B, = —v A%k 4L(0). (4.20)

For d > 2 the running of p,(k) becomes negligible in the Goldstone regime. Then
the model is in the spontaneously broken phase with a well defined “expectation
value” {p) =1lim, _, ,p,(k) which determines the gauge-boson mass (2.10). This
picture changes, however, for a > 0. The leading term in & for k? < 2a&?%p, is now
given by the first term of (4.17):

8 =4dv,gtac’p k4. (4.21)

In four dimensions (g} = 1) the minimum of the potential moves even for k2 <
2aé’p, according to

52

ka )= <2, (k 2
ﬁpo( )—8—772%( )- (4.22)

The mixing between longitudinal gauge boson and Goldstone mode drives p,(k) to
zero for k - 0

po(k) ~ ke /87 (4.23)

and the vacuum expectation value vanishes in this formulation. We will discuss the
physics of these different pictures once wave function renormalization effects are
included in sect. 5.

Similar as in ref. [3] we introduce the dimensionless quantities (with Z,=
Z,:(po), Zp=Zp,(py)

k(k) =k>4Z py(k), (4.24)
Ak) =k**Z22x(k), (4.25)

e2(k) =ki9Z;e%(k). (4.26)
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In the linear regime, for k2 > 2&%p,, 2aé’p,, 2Ap, we find the following evolution
equations:

3
a—tKEBK
=(2-d-n)«
+4(d — Vvylfe? /A — 8(d — Vv dé(e' /M )k
+ 8u,lf — 12v,18A K
+dvgallf —1472]e?/A
+ 4v, aldt e’
— 8u a?[1f — 21472+ 1{ 4 (e /M), (4.27)
a
a_t)\ =0,
=(d—-4+2n)A

+8(d — 1) v, lde’

+200,19A°

— 8v el ?re?

+8u,?[1f — 204+ + 1874 e (4.28)

Here I¢ are positive constants of order one which depend in general on the
averaging scheme [3]. Only for special values of n and d are they independent of

B:
2n=1. (4.29)
The anomalous dimension
a
n= - E;In Z,

will be computed in sect. 5. For k2 < 2&%,, 2aé’p,, 2Ap, one finds in leading
order

B.=[2—d—n+4v,8fae? |k + 20,1 (4.30)



M. Reuter, C. Wetterich / Average action for the Higgs model 159

Finally, we evaluate the scale dependence of the potential at the origin. This is
relevant for the “symmetric regime” where the potential minimum occurs at
po=0. We define

my(k) = U{(0),
7‘o(k) = Uk”(o)’ (4-31)

and insert the relevant arguments in eqs. (4.10)—(4.15). One obtains

a
E’T’% = 20,k?72{(d — 1)2*L1(0)

+a@?[ L4(0) — L4*%(0)]

+2X,Li(m3)), (4.32)

Ko = —20,k44{2(d - 1)&*L4(0)

—2a#h,L42(0)
+2(a2?)’[ L4(0) — 2L472(0) + L4 *4(0)]
+5X5 L4(73) ) (4.33)

Due to the massless gauge bosons we observe in eq. (4.33) the well-known infrared
power singularity for d <4 and k — 0. This singularity forbids the naive perturba-
tive treatment of the origin in less than four dimensions. It constitutes one of the
major problems in finite-temperature field theory in four dimensions. In our case
we can smoothly follow the evolution for £ — 0. Defining a dimensionless coupling
A as in (4.25) we recover the evolution equation (4.28) in the limit 5 < k2. For
mi > k? the term ~ A? effectively drops out since it is now multiplied by the
threshold function s4 = L4(#?)/L4(0). The renormalized mass term is defined as

mi(k)=Z,'mi(k), (4.34)
and the corresponding dimensionless quantity is obtained by multiplication with
k2.

5. Wave-function renormalization and anomalous dimensions

In this section we calculate the one-loop approximation of the renormalization
constant Z, ,(p) defined in eq. (2.9). We evaluate I'[¢, A4,] for constant fields ¢
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and A, and extract Z,, as the coefficient of e’p°4> It is sufficient to consider
infinitesimally-small fields A,,. In order to determine the minimum of §,, we have
to solve the egs. (3.3a) and (3.3b) for constant average fields. For our purposes it is
sufficient to find the solution in second order in A,. Keeping in mind that
f.(—=D?(A)) = f,(2%4%) when applied to a constant function, and that according to
(2.6) the denominators [1 — f2(%4%)] are of order A*# for small values of A2, it is
not hard to see that

X" =+ O(A%),
ayt=A, +0(A%), (5.1)

is a solution of eqgs. (3.3). (The correction terms are proportional to A* for g =2
and higher order in A4, for larger values of B.) An infinitesimally-small A4 . field
cannot cause instabilities and the stationary point (5.1) is a true minimum provided
the condition (3.8) is met. (See also appendix B.) In order to write down the
Gaussian integral for the one-loop contribution I'("” we have to insert the
minimum (5.1) into the second variation §2S,. The resulting quadratic form is
displayed in eq. (B.7) of appendix B, and the integration is performed in appendix
C. There we find

Mo, A,] = [¢x{UL(p) + 84,470, (p) + O(4L)},  (52)

with

zO=2,+2,+Z2,,, (5-3)

where (recall that p = ¢?)
Z(p) = —8v,(1-d )& [dxx /D[ P(x) +28%] '
x[P(x) +3%p -] (5.4)
Z,(p) =v4p™" [dx x4/ P(x) +2d7'xP(x))

x[P(x)+3%p -], (5.5)
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Z,(p)= Udp"lfdx x(‘i/z)_l[P2 +2a8%p(P —x) + (Ap —E*)(P+ 2aé2p)] B

|

8 P—2xP'+Xp—jj}

2 . 4 xP?

xP— ———— |(P +2aé?
d d P+3\p —i? ( )

- —qée?

a*’ P+3Xp —?

(5.6)

The subscripts t, o and /w designate the contributions of the transverse vector
field, the radial scalar mode, and the coupled system of Goldstone bosons and
longitudinal photons, respectively. Again, as they stand, the integrals (5.4)—(5.6)
are divergent for x — o, but they become UV finite by subtracting a set of
k-independent counter terms. In practice this is not necessary because we are only
interested in the anomalous dimension

0
0=~ 2n Z,.(po), (57)

which is finite. Recalling that Z,, =1+ Zg}( + higher loops, we obtain in lowest
order

d
n=- E[Zt(Po) +Z,(po) +Z/w(P0)]

=N+ N T Ny (5.8)

(We neglect here the contribution —Z‘;'k(po)g from the running of py(k).) The
t-derivative of Z, and Z _, can be expressed as

7, =8u,(1 —d~")e*k?*L{ |(22°p,, 2Ap,). (5.9)
M, = —2d " vgpq 'k M{(22p,), (5.10)

with

L3 (wi, wy) = kXmn=d [Ty
1:712
0

d —-n —n
X;[(P(x)+wl) (P(x) +w,) 2], (5.11)
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0
d _ . 2n+n,—1)—d d/2
ME (wy, wy) = kXm=m fodxx /

J 3 2 ! —ny
x—a—t[P(x) (P(x) +w,) "(P(x)+w,) "], (5.12)
The integrals M, , are discussed in ref. [3] whereas the integrals L

related to the integrals LY of eq. (4.16), with LY (0)=L3 |, (0).
The contribution 7, can be divided into

d
w.n, 1€ closely

P

Mo = Nrw + Ma> (5.13)
with n, =0 for a« = 0. The part
B =2d " 'vgpy k2 2M (2 p,, 0) — Mo (0)] (5.14)
can be combined with 7,
N =My + o= —8d ™ 0Nk MS,(24py, 0), (5.15)

in order to reproduce the result for the pure scalar theory. For @ =0 only the
contribution from the transverse gauge bosons, 7,, has to be added. For a # 0
there is an additional piece

N, = 4a’"udaézfdx x@/-1

d _ -1
X (P?+2ae’py(P —x))

x(P—x)P? 2P2—2xPP-i-xZI52
+ =
P? P(P+2Ap,)

X

PP2 + 2xP? — PP + 2a&%,(P* - P)
o e : (5.16)
P2+ 2ae%y(P —x)

In the linear regime, for k2> 2&%,, 2Ap,, 2a&°p, we can neglect 7, in leading
approximation and find

n, = —16(1 —d v lde?,

N, =8d v a[mit?+ (3d — 2)1§]e2. (5.17)
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The constants m? can be found in ref. [3] with m2"~?=1 (n>2). Eq. (5.17)

n

equally applies to the symmetric regime for k2> m3. For d = 4 the anomalous
dimension reads

62

n=-5g=(-a). (5.18)

Inserting 7 = 1, + 1, of (5.17) into (4.27) and (4.28) we arrive at the final result for
B, and B,. One finds

B, = (d— A+ 200,15\
=32(1—d Yu,lde’r + 8(d — 1)v,lge?

+8v,a2[ 14 — 21472 + 18 +4]

3 4
+ SUda[2d_1mﬁ4’+2+ (5 - E)l;‘—lg”z]e% (5.19)

In particular, 8, becomes independent of « in four dimensions
1
B, = = [5)* — 6€?A + 6¢*] (5.20)
87

and we reproduce the standard one loop result for the running of the quartic
scalar coupling. The mass term for the radial scalar mode

m? =2xk?, (5.21)

evolves according to

am?
B2 =51
=8y, k>{21{A + (d — 1) Ife* + a(lf — 1§+%)e?}
+20,m*{415A — 8(1 —d ") Ife?
+a[(3—8d ") +4d ' mi? - 214" ?]e?}. (5.22)
This allows to compute the anomalous mass dimension w:

d

w = a—rnzﬁmz. (523)
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In four dimensions, w is again independent of « and reproduces the result of the
standard perturbation theory

1
w=2—(20-3). (5.24)

In contrast, the term ~ k2 in (5.22) (“quadratic mass renormalization”) depends
on a and also on B. We finally note that the constant term in B, (lim, _ ,8,)
receives no contribution from the anomalous dimension. In two dimensions it is
independent of a:

2
e
Bo=8uy| 1+ —1 +0(x). (5.25)

As a result, k runs to zero whenever it has entered the linear regime.
For small values k%< 2%, 2aé’p,, 2Ap, we can neglect 7,. The scalar
contribution 7, is proportional to p;

n,=4d 'vymi k7, (5.26)

where the constants m‘zi,2 can be found in ref. [3]. For nonzero a the leading
contribution arises from n, which is evaluated in appendix E:

n, =4dv,glae’. (5.27)

As a result, the renormalized minimum value Z, ,(p,) py(k) becomes essentially
independent of k& for d>2 (compare (4.21)), and « evolves according to its
canonical dimension (4.30):

B.=(2—d)«. (5.28)
The gauge-boson mass term (2.10) reads
M?(k) =2e%kk?. (5.29)

In the spontaneously broken phase in four dimensions lim, M *(k) does not
vanish despite the fact that py(k) runs to zero for @ > 0, cf. eq. (4.23). Different
choices of « give rise to a different anomalous dimension but do not change the
physical properties of the system. The symmetric and the spontaneously broken
phase can be distinguished by a vanishing or nonzero value of xkk? as k — 0. The
spontaneously broken phase in three dimensions is also characterized by
lim, ,,Z,p,> 0. No running of &°Z;" is expected for k* < 2Ap,,. Again, there is
a transition between the symmetric and spontaneously broken phase with massless
and massive gauge boson.
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Finally, we continue the evolution equations in the symmetric regime for
m} < k?. The evolution equation for A is still given by (5.19). The running of the
mass obtains from (4.32), (4.34), (5.17) by expanding L{(73) in first order in 3

67:? = —dv k208N + (d - D)Ife* + a(lf — 1§77)e?}
+ 20,m3{4I5x — 8(1 —d~")ide?
+a[(3-8d7")I4 +4d 'mi*?]e?). (5.30)
With the identification u?> = —m3 for the symmetric regime and u® = im? for the

spontaneously broken regime eqgs. (5.22) and (5.30) describe the same evolution of
the scalar mass term on both sides of the transition between the two regimes. This
transition (at u?=0) is smooth and the vanishing of the gauge-boson mass does
not pose a particular problem even for dimension smaller than four.

6. Conclusions

We have formulated in this paper the average action for an abelian gauge
theory. We also have demonstrated how this formulation can be used for the
computation of the average scalar potential. This overcomes one of the main
obstacles to deal with realistic theories as the standard model with the help of an
average action. Our formulation is manifestly gauge invariant and also maintains
rotation and translation symmetry. No gauge fixing is needed for the computation
of the average action. On the other hand, the average action depends on the
“average scheme”, i.e. on the choice of the averaging procedure. In particular, we
have introduced a parameter « specifying the averaging of the longitudinal modes
of the gauge field as compared to the transversal modes. In a certain sense this
parameter mimics the role of the gauge-fixing parameter a in the conventional
covariant gauges. Furthermore, our formulation is adapted for a generalization to
nonabelian gauge theories.

We have derived evolution equations for the scale dependence of the average
scalar potential as well as for the relevant scalar kinetic terms. Together with the
evolution equation for the gauge coupling (which will be discussed in a separate
paper [5]) these equations determine completely the phase structure of the system
and many physical properties like particle masses, interactions or critical indices.
In the limit of vanishing gauge coupling e we recover the evolution equations of
the pure scalar theory with global U(1) symmetry. For a =0 only the transversal
gauge field fluctuations add to the evolution equations. (Their contributions to the
relevant B-functions can be expressed as a power series in e? as long as the gauge
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boson mass is small compared to the averaging scale k.) In the limit « = 0 the
scalar fluctuations in the Goldstone direction give exactly the same one-loop
contribution as in the ungauged model. This implies a nontrivial infrared be-
haviour even for scales much smaller than the masses of the gauge boson and the
radial scalar mode. For a > 0 the Goldstone mode mixes with the longitudinal
gauge boson. In this case the infrared effects turn out to be much stronger than for
vanishing « *

In particular, we find in four dimensions that the position of the minimum of
the average scalar potential moves to zero as k — 0 according p,(k) ~ ae® /8,
The “vacuum expectation value” p,(0) always vanishes for a > 0. In contrast, p,(0)
has a nonzero limit for & = 0 in the spontaneously broken phase **. This apparent
paradox is resolved by taking into account the anomalous dimension arising from
the wave function renormalization in the kinetic term. Expressed in terms of
renormalized fields, pgp(k)=Z (k)py(k), the essential features of the average
potential become independent of «. There exists always a spontaneously broken
phase with nonvanishing pg(0). (In this case Z, increases ~ k=xe* /87 and
compensates for the decreasing magnitude of p,(k).) The gauge boson mass
obtains then as M? = 2ep(0).

The phase transition between the symmetric and spontaneously broken phase is
more complicated than for the pure scalar theory since B8, has no fixed point for
A =0. We will address in a separate publication the question whether the transi-
tion is second or first order and discuss in more detail the form of the average
potential for “Coleman—Weinberg symmetry breaking”.

Appendix A

In this appendix we first list the invariants involving two derivatives in an
N-component scalar theory with internal SO(N) symmetry and d-dimensional
rotation and translation symmetry. They can be constructed by contractions with
the tensors 3, and 3,, as well as €,, for N=2 and ¢,, for d =2. Consider N
even such that ¢ is an N /2 component complex field. For N > 2, d > 2 the most
general invariant reads

Z(¢p)a.00"0 + 1Y (¢'0)d¢'e)" (') (A1)

* It would be interesting to study the infrared behaviour for an average scheme which resembles the
unitary gauge. There should be no massless modes but one may suspect complications due to the
kinetic terms.

** We note that p,(0) may be related to a gauge-invariant order parameter.
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For SU(N /2) symmetric models we can also write the term
—X(‘PT‘P)A N AH,
5
For N =2 we may use a real basis ¢ = (1/v2 X¢, +i¢,) where
A, =ip%,,0,0". (A3)

There is no independent invariant of the type (A.2) in SO(N) symmetric models,
however, since for N=2

I(p*@)o*(@*p) — A&, A* =4(9%¢)d, @ g, (A4)

whereas the construction (A.3) does not exist for N > 2. For d =2 and N = 2 there
exist two additional invariants

T(¢.0°)3,0%, 0% €, (A5)
S(eqs0?) .0, 0,e%0"(@.0). (A.6)

The invariant (A.5) is parity odd, and both (A.5) and (A.6) are odd under charge
conjugation. We omit in the following these two invariants which only arise in
models violating C and/or P.

For a U(1) gauge theory we simply replace derivatives by covariant derivatives in
(A1) 4, » 3, +ieA,. We note that the gauge invariance of the constraint ensures
that the coupling of 4, occurs always in this combination. The only renormaliza-
tion of the gauge coupling arises from the kinetic term for the gauge boson (Z ;).

The functions Z(p) and Y(p) can be computed by evaluating I', for appropriate
configurations (¢, A ”). For example, a real constant scalar field ¢y = const. and
an infinitesimally small constant gauge field 4, contributes

Ark=52Z(qo§)go§A#A”. (A7)

If we take instead of A, an infinitesimally small space dependent imaginary field
d¢(x) one finds

AFk=Z(¢§)8#6<p[6”6(pI. (A.8)

Evaluating I', in quadratic order in A4 .. in the first case, or in quadratic order in
8¢, and lowest order in momentum squared Q2 in the second, yields in both cases
the function Z(p). A space-dependent real field d¢y instead of 8¢; gives the
combination Z + Yp and allows the determination of Y(p).
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Appendix B

The diagonalization of the quadratic form §2S, of eq. (3.4) and the evaluation
of the gaussian integral (3.6) is greatly facilitated by decomposing the quantum
fluctuations 8y and da, according to

Sy =2""o+iw],
da,=t,+4d,¢, (B.1)

where o, w and ¢ are real scalars, and t, is a transverse vector: d*t, = 0. For
small fluctuations around a real constant scalar field, o corresponds to the radial
(“Higgs”) mode and o to the angular (“Goldstone”) mode. Inserting (B.1) into
(3.4) we obtain for the second variation in a generic background:

85, = [ax{1,[P(~0) + 2% x 1]
—¢|a"'P(-DO) +28% | x|*] e
—28%(2t, +8,0)* | x|?
+o[{=D(a) + F(=D*(A))}y — B+ XIx1*+ IA(x +x*)’]0
+o[{-D*(a) + F(~D*(A))gm - B + A1 x1” = 2h(x —x*)] 0
+2w{-D*(a) + F(-D*(A))},c
—ido|x*—x*?|o
+2V28%(t, +0,0)a*o(x +x*) —iw(x — x*)]
—iVZe(1, +9,¢)| 08 (x —x*) —iw‘ﬁﬂ(xu*)]}. (B.2)
Here and in the following we frequently use the functions
F(x) =xf2(x)[1-f2(x)] 7,

P(x)=x+F(x)=x[1-f2(x)] ", (B.3)
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whose k-dependence will not be indicated explicitly. In eq. (B.2) we also intro-
duced the symmetrization and antisymmetrization with respect to 4 ,,

F(=D*(A))ym = 5[F(~D*(A)) + F(-D*(-4))],

1
F(=D*(4))s, = 5[ F(=D*(4)) —F(-D*(=4))], (B.4)

and similarly for a,,.
Eq. (B.2) is valid for any background configuration (x, a,). In the present paper
we shall need it only for constant fields:

m

X = x™" = ¢ = real constant,

a,=ay,"=A, = constant. (B.5)

Inserting (B.5) into eq. (B.2) yields (p = ¢?, p, =E>/A):
828, = [d'x{1,[P(- D) +22%] e~
—¢la”'P(-0O) +2e%p|O¢
+0 [ P(—D*(A))ym +A(3p — py)| o
+0[ P(—D?(A))gym +A(p — pg)] @
+2wP(—D*(A)),0o
+4/28%(t, +d,¢) A4
~222p0w0 ¢} (B.6)

This quadratic form will be needed for the calculation of Z,,. To find Uy, we
further put 4, =0 and eq. (B.6) boils down to

825, = [d’x(t,[ P(—O) +28%] >
—¢[a”'P(—0O) +2e%]|0O/¢
+a[P(—0O) +X(3p — py)|o
+o[ P(=0) +A(p —py)|w

-22epw 0t} (B.7)



170 M. Reuter, C. Wetterich / Average action for the Higgs model

Finally let us address the question whether the stationary point (B.5) is actually
a stable minimum of S,, i.e., whether 8°S, >0 for arbitrary excitations
(o, w, ¢, tM). Consider first 4, = 0 where it is sufficient to investigate the stability
properties of (B.7). The transverse vector field ¢,(x) does not couple to any other
field, so that its stability can be analyzed separately. Going over to momentum
space, — O becomes g,q* =g > 0, and the condition for 5§25, > 0 reads

P(q*) +2&% >0. (B.8)

From (B.3) with (2.8) it is obvious that P(g?) is strictly positive. Hence (B.8) is
fulfilled for any value of ¢, i.e. the transverse fluctuations are always stable.
Similarly, the stability of the o-mode requires

P(a*) +X(3p —py) > 0. (B.9)

The most “dangerous” mode is the one with the momentum for which P(g?)
assumes its minimum

Pon=min{P(x)|x>0} =k>~ k2. (B.10)

the o-modes are stable for any g2 provided p is large enough:

1 _
p> = (B —F). (B.11)

In particular, no instabilities occur in the interesting region near the classical
minimum, p = &?/A. The coupled system of w and ¢ is stable if

[P(q%) +2p -] - [ P(a®) + 2a&%] - 2a&%q> > 0. (B.12)
In the limiting case a&?=0 this inequality gives rise to the condition P(g?) +
A(p — py) > 0, implying
1 _
p> T(W—k?), (B.13)

which is more stringent than (B.11) already. Moreover, allowing for «é> > 0, the
domain of stability becomes even smaller. Nevertheless, it is obvious that (B.12) is
equivalent to a condition of the form

p>p,— Ap? (B.14)

for some strictly positive quantity A¢>. Hence there exists a neighborhood of the
classical minimum p,, for which all /w modes are stable. Hereby the exact value of
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the allowed deviation A¢? depends on the form of the cut-off function f, and on
the parameter a.

We conclude that the stationary point (B.6) is a stable minimum if p is not too
much smaller than the minimum p,. We finally mention that for small A, # 0 the
lowest eigenvalue of the quadratic form characterizing 825, depends continuously
on A,. A finite positive mass gap remains positive for infinitesimally small A4,.
The stability condition (B.14) therefore applies to the calculation of Z, as well.

Appendix C

In this appendix we evaluate the one-loop contributions U" and Z{!) to the
average potential and to the scalar wave-function renormalization, respectively.

The quadratic action 82, resulting from the background configuration (3.7)
has been given in eq. (B.7). Inserting this expression into (3.6) and performing the
gaussian integrals, we obtain the average potential U’ = Q7Y Q = [d’x, as
the sum of the following terms:

U(p) = 3(d—1)Q " Indet[ P(— O) +2&%], (C.1)
U,(p) = 307" In det| P(— O) +3Xp - ], (C.2)
U, (p)=32""1n det[{P( —-0) +Xp - 1%}

X{P(—0O) +2a&%} +2aé’ D]. (C.3)

(We discard irrelevant constants.) Evaluating the determinants in momentum
space, and making use of

d

d o
f Gyaa) = ), (C4)

with v, defined in (4.6) and x = g2, we finally arrive at the expressions (4.2)~(4.4)
which are further discussed in sect. 4.

In sect. 5 the determination of ZS,?( requires a similar calculation, but this time
with 4, # 0. The corresponding quadratic action 828, which has to be inserted
into the functional integral (3.6), is given in eq. (B.6) of appendix B. Due to the
non-diagonal terms, an exact diagonalization of this quadratic form would be
rather cumbersome. The calculation simplifies considerably if we keep only terms
which are second order in A,,. In this case the modes decouple partially, and one
finds for the gaussian integrals

ATOle, 4,] = [d'x(K, +K, +K,,}, (C5)
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where

8e'pA*A,
P(-D) +3xp — 2

K,=20""'In det"ans[(P( —0) +2&%)8* — J (C.6)

o

K,=10"" In det| P(—D*(A))ym +32p — 2], (C.7)

K,,=302""In det

w

P(—D*(A))gm+Ap—E*+

42?P*(— D) A*4"3,9
P(—-0)+3xp -1

8e%p.A*4%d d,
X{(-O) e 'P(—DO)+28%] + —— e
P(=O) 3% =@’

2

422P(— 0) A*4%3,9,
P(-0) +3xp — 12

D_

—-2e% (C.8)

and P(x) =9P/dx. In the expression for K, [the contribution of the transverse
vector field ¢, (x)] the subscript “trans” refers to the projection

In det . [...]=Tr{P; In[...]}, (C.9)
which is a consequence of the constraint d,/* = 0. Here

a*3

v

P, =5t

(C.10)

is the usual transverse projector. Now it is a matter of straightforward algebra to
rewrite the determinants (C.6)—(C.8) as traces in momentum space, to expand up
to second order in A, and to perform the symmetric integration in g,. Finally,
defining Z, = K,/(e°A%) for i=t, o, /o, one arrives at the integrals (5.4)—(5.6)
given in sect. 5.

Appendix D

In this appendix we evaluate the integrals

d _pdn=2r—d [~ d2—li _f P (—P_-i)_r
Cinp.r (W) =k d/o dex /9 8[{(P) [P2+w(P-x)]" (D)
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for n > 0, r = 0. They obey the relations

Gl o1 (W) =GY (W) + G2 (W), (D.2)
Gh,2,(W) =Gz}, (W) — (w/k?)GI 5 (W), (D.3)
;;G;’,p,r(W) = —nk72GY,, , . a(w). (D.4)
For w < k? we expand
G, (W) =GZ, (0) —nwk G2, (0)+ ..., (D.5)

and use the integrals (4.16)
G ,.0(0) = L5330(0),

G pa(0) = L5320 1(0) — L52772(0),

2n+p
Gy ,2(0) = L3320 5(0) = 214735 73(0) + Lg, 357 4(0). (D.6)

For k% <w we split the integration into three regions: (i) x <x, < k?, (i) x = k*
and (i) x >x, > k% Consider first the third region where G=(P—x)/x =
expl —2a(x/k?)P] < 1. The integral

© 0G
Gr{zi,l(;,‘;)(w) — _2k4n~2r—df dxax(d/2)+r~n
X1

XE{G’(x+wG)-"} (D.7)

is dominated for r =0 or r =n by a small region x = wG where we can approxi-
mate x(G) by a constant X defined by

wG(%) =w exp| —2a(x/k*)"|,

I=
In(w/k?2y\"*
= H(M) . (D.8)
2a
One obtains in leading order
F \(d/D-2n
Gison = —2{ 5] (D9)

. k? 7 \9?
G,;{;;gy(w)zz( )(—2) (D.10)
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The contribution from the region x =k?, G =1 is obviously at most of order
(k2/w)™. It can be neglected for r =0 or for r =n, p = 0. Finally, we use for the
small-x region (G > 1) the approximations

3 (P) B P
x <P, x—|—|==—>—
ax \ x B—1dx
The integral
GAO (w) = — 28 k4n—2r—dfx0dx£x(d/2)+p
e B—1 Y

d —n
X a—};{P””‘"(P +w) '}

2
B—él (2a) —(d+2p)/2AB— 1)k4n—2r+2p+(d+2p)/(ﬁ— D

o 3
X [ dP P~@+2p/2AB-D__fpr-p-npy )" D.11
J, A G B GREY

is dominated for p+n —r+(d+2p)/2(B — 1) > 0 by the integration boundary
at P,= P(x,) and can be neglected. In summary, we find for k? <w

Gyl po(w) = —2g5i(w),

Glya(w) =2(k2/w) " gd(w), (D.12)
with

(d—4n)/2B
(D.13)

g,‘fz(M)

2a

Appendix E

Here we evaluate 7, of eq. (5.16) for k? < 2aé’p,, 2Ap,. We consider first the
integration region (iii) of large x > x, > k? where we can approximate P = 1. Only
the last term in (5.16) contributes in leading approximation

(i) — _ 8d'lvdaézkd_4G‘2{3‘8 (iii)(zaé2p0)

[e4

- 8d‘ludazé4p0H(iii)(2aEZp0), (E.1)
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with

d P*-p
H(W)Efdxxd/z— 3
I [P2+w(P—x)]

F . -
H(m)(w) ~ a_tf dxx(d/Z)—lG(x+wG) 2_ (Ez)
Xy

This integral is dominated by a small region where wG(x) = x and we approximate
x(G)=x as in (D.8):

0
w2
ot

u

H(iii)(w)

U

—(d— 4)w—1i(d/2)—2

u

—(d - 4w ki gt (E.3)

It is easy to verify that (E.1) with (E.3) gives the only contributions to 1, which are
not suppressed by (k%/2a&’%p,). Hence we find

N, =4v,agfe’. (E.4)
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