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We developthe concept of an averageaction for gauge theories in the continuum. The
averagescalarpotential of the abelianHiggs model is computedin arbitrarydimensions.

1. Introduction

The conceptof an effective action for averagesof fields (averageaction)[1,2]
has proven successfulfor a descriptionof scalar theories in two, threeor four

dimensions [31.This approachseemsappropriate to settle a variety of open
questionson spontaneoussymmetrybreakingin the standardmodel. It also should
provide the relevantscalarpotentialsneededfor the cosmologyof phasetransi-
tions and similar issues. It may be usedto overcomethe infrared problems in
finite-temperaturefield theory. The intuitive pictureof the averageof a scalarfield

x(x) overa volume k~ canbe easily formulatedin continuousspace:

~k(~JdYfk(Y~)X(Y) (1.1)

Here fk is a function of (y,
2 —x,)(y” —x~)which shoulddecreaserapidly if this

quantity becomeslarger than k
2. The average action is a functional of the

averagefield ~(x). It has beenconstructed[2] using a gaussianconstraintwhich
enforces4k(x) to be approximatelyequalto q~(x).The computationof the average
action Tk[q’] allows a transition from “microscopic variables” x(x) to “macro-
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scopic variables” ~(x). All constructionscan be generalizedto include chiral
fermions[4].

In contrast,gaugetheoriesposean obviousproblem: Undergaugetransforma-

tions the quantity~k(x) (1.1) doesnot simply transformwith a phase.As a result,
the square~~x)4k(x) is not gaugeinvariant. One can always achieve~k(x) = 0
by an appropriatespace-dependentchangeof the phasesof x. A similar problem

arisesfor the gaugefields: The averageof a gaugefield a~(x)makesno sensedue
to the inhomogeneoustransformationpropertiesof a~.For an abelian gauge
theory onemay definethe averageof the gauge-invariantfield strengthf~= 3~a~

— in analogyto (1.1). This correspondsto the intuitive picture of the average
of electricor magneticfields. This constructioncannotbe generalized,however,to
nonabeliangaugetheories.An averageof f~accordingto (1.1) doesnot simply

transformaccordingto the adjoint representation.We needa generalizationof
(1.1) which adaptsthe conceptof an averageto gaugedependentfields.

The necessarygeneralizationbecomesmostobviousin momentumspacewhere

(1.1) reads

~k(q) =f,,(q)x(q). (1.2)

Here fk(q) is the Fourier transform of fk(x). It is a function of q2 which
decreasesrapidly for q2>> k2 ~. Equivalentlywe may write (1.1) in the form

4k(x) =fk(— fl)x(x). (1.3)

The gaugecovariantgeneralizationof (1.3) replacesall derivativesby covariant
derivativesin the “background”of the “averagegaugefield” A~(x)

8~-*D~(A), cbk(x) =fk(-D2(A))x(x) (1.4)

Herewe requirethat the macroscopicgaugefield hasthe samegauge-transfor-
mationpropertiesas the microscopicfield a~.This prescriptionachievesthat the
gaugetransformationsof ~k(x) are the sameas for x(x), namely homogeneous
transformationswith phases.We also postulate the samegauge-transformation
propertiesof themacroscopicandmicroscopicscalarfields ~ andx. It is theneasy
to constructgauge-invariantquantitiesas (q(x) — 4~k(x)~(~(x)— 4k(x)). They
canbe usedto implementa gauge-invariantconstraint.
A similar prescriptioncanbe usedto definethe averageof the (nonabelian)field
strengthf~:

F~~(x)=fk(-D2(A))f~(x). (1.5)

* We use from hereon always therepresentationof fk as a function of q2. Detailson fk maybe found
in ref. [2].
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The covariantderivativeshouldnow be taken in the adjoint representation.(For
abeliangaugetheoriesone recoversD2(A) = 0.) Defining by ~ the gauge-co-
variantmacroscopicfield strengthformed from A~we can againfind gauge-in-
variant quantitiesas (F~(x)— F,~~(x))(F7(x)— F~(x)).This allows the con-
structionof a suitable constraintfor the field strength.At this stageit only remains
to implementa constraintfor the longitudinalcomponentof the gaugefield. The
longitudinalmodedoesnot contributeto f~,andthereforeremainsunconstrained
if we only employ a constraint for the field strength.For the “longitudinal
constraint”we will exploit the fact that the difference A~(x)— a~(x)transforms
homogeneously.The quantity D~C(AXA~— a~)D,c~~~(A)(A~— a~)with D(A) in
the adjoint representationis gaugeinvariant.

In this paperwe will carry out the constructionof the gauge-invariantaverage
action explicitly for the abelianHiggsmodel. We perform a oneloop computation
of the averagescalarpotentialandthe scalarkinetic term in arbitrarydimensions.
We obtain evolutionequationsfor the dependenceon the averagescalek. In four
dimensionsthese equationsagreewith the perturbativerenormalization group
equationsfor smallcouplingsif all massesaresmall comparedto the averagescale
k.The infraredbehaviourfor k smallerthan the physicalparticlemassesdepends
to someextent on the choiceof the “averagingscheme”and will be discussedin

detail. For dimensionssmallerthan four naive perturbationtheory fails for ~ = 0
due to strong infrared divergencesarising from the fluctuations of the massless
gaugeboson.Our method allows to approachthe infrared limit k —~ 0 smoothly.

The evolutionequationsshouldgive a valid descriptionof the phasetransitionsin
two andthreedimensions.In particular,this will be relevantfor the understanding
of finite-temperaturegaugefield theoriesin four dimensions.

2. The averageaction of gaugetheories

We considerhere the abelian gauge theory describing the interaction of a
massiveor masslessphotonwith a complexscalarfield. The euclideanactionreads

S[~, a~]= fddx{~f~f~+ I D~(a)~2 + V(X*X)}, (2.1)

where

D
1~(a)~3~+iëa~, (2.2)

f~ — ~ (2.3)

and

= _~i
2(X*X)+ ~(x*x)2. (2.4)
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We shall be mainly interestedin the spontaneouslybroken regimewith ~i2 > 0.
Furthermore,thedimensionalityof space-time,d, will be kept arbitraryfor mostof

the discussion.The fundamentalaction S, dependingon the “microscopic” vari-
ablesx(x) anda,1(x), gives rise to an averageactionFk, dependingon the average
(or “macroscopic”)fields ~(x) and

exp{—Fk[co, A,1}}=f91x~a,1exp{ Sk[x, a,1; cc, A,1~}, (2.5)

Sk[X, a,1; cc~A,1} S[~, a,1] + Sconstr[X, a,1, cc~A,1]. (2.6)

The constraintimplementingthe averagingprocedureis chosenas

Z (—o)
Sconstr=fddX{~(F~~~_fk(_ o)f~)1 ) (F~—fk(— o)f~~)

1 ZG(—E)
+ ~~_0,1(A~ — a~)1 ~ — 0) 3~(A”— a~)

*D2(A)Z (—D2(A))
- [~-fk(-D2(A))x] 1 -f~(-D2(A)) [~-fk( -D2(A))~]

(2.7)

Here F,~ — 3~A,1and D,1(A) 3,~+ iëA,1 are expressedin terms of the

averagevariable A,1(x). The function

f~(q2)= exp[ _a(q2/k2)P] (2.8)
parametrizesa family of different averagingschemesdependingon the constantsa
and ~3.Obviously, Sk[x, a,1; ~, A,

1] is invariant under a simultaneousgauge
transformationof the microscopicvariables (x, a) and the macroscopicones,
(~,A). Therefore, and becausewe can specify the measure~ ~a,1 in a
gauge-invariantway, Fk[cc, A,1] is a gauge-invariantfunctional of the average
fields. Our formulation can be generalizedto nonabeliangaugetheories. One
shouldreplacein (2.7) all derivativesactingon gaugefields by covariantderivatives
in the adjoint representation.(The covariant derivativesacting on matter fields
shouldbe taken in their respectiverepresentations,of course.)We also note that
no gaugefixing is neededfor a computationof

Tk~In fact, for fixed fields (cc, A)
the constraintis not invariantundergaugetransformationsof x and a,1 alone.As

a result,no infinite factor arisesin the 9u1x~2Jaintegrationfrom thevolume of the
gaugegroup. For given macroscopicfields the constraintacts similar to a back-
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ground gauge fixing term. We finally observe that the constraint is not yet
normalizedhere.The normalizationinvolvesa determinantdependingonlyon A,1.
This issuewill be discussedin a separatepaper[5] wherewe will also presentmore
formal propertiesof the averageaction for gaugetheories.

Gaugeinvarianceandrotation andtranslationsymmetryallow us to write down
a derivativeexpansionin termsof gauge-invariantfield monomials(p = cc*cc):

Fk[cc~ A,1] = fddx{Uk(p)+ Z~k(p)D,1(A)cc 2

~ + . ..}. (2.9)

For a discussionof all relevantmonomialswith up to two derivativeswe refer to

appendixA.
In this paperwe are mainly interestedin the averagepotential Uk(p) and the

scalar wave function renormalization Z~,k(p).These quantities are needed in
order to determinethe masstermfor the vectorboson.From eq.(2.9) we readoff

M2(k) = 2~2PO(k)Zq,k(PO)Z~(PO), (2.10)

where Po is the (k-dependent)location of the minimum of Uk. The physical
vector-bosonmassin the vacuum(defined at q2 = 0) obtainsas limk.,OM(k). In
order to determineUk we evaluatethe path integral (2.5) for a real, x~~indepen~
dentconfigurationcc = const.along with A,1 0. Similarly, to find Z~,k,one uses

cc = const. togetherwith a small x~~independentvector field A,1 = const. Then
D,1(A)cc 2 = ë2A2cc2 and Z,~kcan be extractedas the coefficient of the term

which is quadraticboth in cc andin A,1 where A,1 canbe takeninfinitesimal. (For
details see appendix A.) Using this method we shall compute the one-loop
approximationof Uk and Z~k in the following sections.We do not need to
computeZFk here since it can be absorbedin the definition of a renormalized
gaugecoupling.

3. One-loopapproximation of the averageaction

In this sectionwe start the semiclassicalevaluationof the functional integral
(2.5) with

Sk = fddx{~a,1[— 0 ~ + 3~a~]a~
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[—0 ?1~”+ a~a~]
+~(A,1-fk(- E)a,1) 1-f~(- o) (A~—fk(- D)a~)

I

- [cc-fk( -D2(A))x] * 1-f~(-D2(A)) [cc fk( -D2(A))x] }. (3.1)

For the simplicity of the presentationwe haveset the various Z-factors in (2.7)
equalto unity here. More generally,their role is completelyanalogousto that in
ref. [3]. We expandthe integrationvariables x and a,1 aroundthe configuration

(Xmmn, a~’~)for which Sk assumesits minimum:

x(x) =xmm(x) +~x(x),

a,1(x) =a~(x) +~a,1(x). (3.2)

The first variation of Sk yields the following equationsfor the minimum:

- D2(A)fk(-D2(A))
[_D2(a) 2+A~x~2]x+ 1 -f~(-D2(A)) [cc-fk(-D2(A))x] =0,

(3.3a)

0 i~ + ~ + 2ë2 I x 2~~~]a

fk(—U)

— 1 —f~(— u) [—0 ~ + a~a~](A~—fk( — 0)a~)

+ f~)(A~a~)eXi0X. (3.3b)

They determine(xm111,a~’m)as a functional of (cc, A) if the solution is unique.
Otherwisethe minimumhas to be selectedamong the different extrema.For the
one-loopapproximationwe also needthe secondvariationof Sk:

o~’~+(1 _c~I)d~3~)
62Sfd~~x{~a[ 1—f~(—n) +2e(xI~j~a

D2(A)f~(-D2(A)) -

+28~ —D2(a) — 1 —f~(—D2(A)) ~2+2AIxI2 ~x
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+x[x2(~x*)2+ (x*)2(~x)2I

+4ë2a~a,1[X~X*+x*6x]

(3.4)

Insertingthe minimum (xm”~a~m)into 62Sk we obtain the quadraticactionwhich
entersthe saddle-pointevaluationof the integral (2.5). The one-loopapproxima-
tion of the averageaction reads

Fk[cc, A,1~=Sk[Xmrn, a~’~I+F~’~[cc,A,1~+ ..., (3.5)

with

exp{—F,~’~[cc, A,1J) =f92J(~x,~a,1)exp{_~2Sk[xmmn, a~”1~ ôa,1~},(3.6)

where (Xm1~~,a~’~)is consideredas a functional of (cc, A). Up to now our
formulas are completelygeneral,and no particular argument(cc, A) of Tk has
been specified. As we have explainedalready,for the determinationof Uk it is
sufficient to work with the field configuration cc = real constant,A,1 0. In this
casea solution to eqs.(3.3) is given by

Xm~(x) = cc = const.,

a~(x)=0. (3.7)

In appendixB we show that this stationary point is indeed a minimum (i.e.,

52Sk>0 for all ~xand ~a,1)provided

cc2>~_~cc2. (3.8)

where L1cc2 is somestrictly positive quantity and cc~ ~2/~ correspondsto the
minimum of the classicalpotential V(cc2) = —~2cc2+ ~Acp4.The precisevalue of
~1cc2dependson the choiceof the function fk. Irrespectiveof the preciseform of

fk the stationarypoint (3.7) is stable evenfor valuesof cc2 (slightly) smaller than
the classicalminimum cc~The averagepotentialaround the minimumcan there-
fore be reliably calculatedin a loop expansionaroundthe configuration(3.7). With

p = cc2 onehas

Uk(p) = V(p) + U~1~(p)+ ... (3.9)
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This argumentgeneralizesto all configurationswhich deviateonly infinitesimally
from (3.7), as for the caseof an infinitesimally small gaugefield A,1.

In order to perform the gaussianintegrationin (3.6) it is necessaryto diagonal-

ize the quadraticform ~2Skgiven in eq. (3.4). This is achievedby changingto a
new field basis in which the different modes can be decoupledmore easily. In
appendixB we give the details of this transformationfor an arbitrarybackground,
i.e. without using a particular form of (Xmm, a~1~).Then, in appendix C, we
evaluatethe gaussianintegrationsfor the specialcaseof cc = const., A,1 = const.
with infinitesimally small A,1.

4. One-loopaveragepotential

The oneloop contributionto the averagepotentialcanbe written as a sum

U~1~(p)= U~(p)+ U~,(p)+ U
1~(p), (4.1)

with

U~(p)= (d — 1)vdfdxx 2)-1 ln[P(x) + 2ë
2p1, (4.2)

U~(p)= Vdf dxx2~~ ln[P(x) + 3Ap — ~21 (4.3)

U,~(p)= Vdfd~~ ln[{P(x) +Ap ~2}

x{P(x) +2aë2p)_2aë2px], (4.4)

wherewe usethe abbreviations(x = q2)

P(x) ~x[i -f~(x)}1 (4.5)

and

[21~~d/2F(d/2)] 1 (4.6)

Here L1~and U,~are the contributionsof the transversephoton and the radial
scalar mode, respectively,and ~ is due to the coupled systemof Goldstone
boson and longitudinal photon. The x q2 integrationsin (3.11) convergefor
x —~ only after subtractionof the conventional k-independentcounterterms
which absorbthe UV divergences.We shallnot needthesecountertermsexplicitly,

sincewe areonly interestedin the k-dependenceof Uk. The derivativeaU~’~/3kis
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UV finite. (To give a well-definedmeaningto eqs. (4.2)—(4.4) themselves,and to
the formal manipulationsleading to them,we can adopt some conventionalUV
regularizationschemewhich respectsgaugeinvariance,dimensionalregularization,

say. After having performedthe derivativewith respectto k, this regularization
canbe removed.The sameremarkalso appliesto Tk as a whole.)

We want to study how the shapeof the averagepotential Uk changesas a
function of the length scalek~.In particular,we are interestedin the k-depen-

denceof the locationof the minimum at p
0(k) definedby U~(p0(k))= 0. (Primes

denotederivativeswith respectto p = cc
2.) Another quantity of interest is the

quartic scalarcoupling definedat the minimum

A(k) = U~”(p
0(k)), (4.7)

which determinesthe mass term for the radial model 2Ap0. The running of
thesequantitiesis given [31by *

— a a a
5~~j—po~k~po(k) = —A’(k)k~U,~’(p0(k)), (4.8)

— a a a
k~A(k) = k~U~’(p0(k)), (4.9)

where t = ln(k/k0). From eqs. (4.2)—(4.4)we obtain for the first derivativeswith

respectto p:

a
= 2(d — 1)vdë

2k’~2L~(2e2p), (4.10)

a
= 3vdAk”2L’~(A(3p Po)), (4.11)

a
= vdAk~2L~A(p-Pu)) + &(p). (4.12)

Similarly the secondderivativesread

a
= —4(d— 1)vdë4k~4L~(2ë2p), (4.13)

a
= —9vdA2k’~4L’~(A(3p—p

0)), (4.14)

a
= VdAkL2(A(pp0))+130(p). (4.15)

* By using the partial derivativeon the r.h.s.of (4.9) we omit an additional term bU~”(pQ)which

accountsfor thek-dependenceof the point of definition of ~ [3].
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Herewe employ the integrals

a
L~(w) k2~f dx x2~~— [P(x) + w] ~, (4.16)

0 at

which have been evaluatedin ref. [3]. We also use the renormalizationgroup
improvement[3] replacingon the r.h.s.of (4.10)—(4.15)the bare parameters~
by the k-dependentquantitiesA(k), A(k)p

0(k). (This alsoappliesto ë eventhough
we do not discussthe running of the gaugecoupling in this paper.)We observe
that the first term in (4.15) divergesfor p = Po’ k —* 0. This reflects the strong
(power law) infrared singularitydue to the “Goldstonemode” which invalidates
naive perturbationtheory in less than four dimensions. We can deal with this
problemby usinga finite infrared cutoff k and computeexplicitly the behaviour
for k —* 0 by following the evolutionequations.

The contributions 6,~and Pa vanish for a = 0. In this case ~ exactly
reproducesthe one loop contributionof the Goldstonebosonin the theorywithout
gaugeboson. Only the transversalgaugeboson contributes the term UW in
additionto the purescalartheory. For generala one finds

~

= 2vaaë
2pok’t~4G~’io(2aë2po)

— 2vaaë2A’k~2G~o
1(2aë

2po), (4.17)

Pa ~&(Po)

= 41~’aaë22~4Gto(2aë2Po)

— 4vaa2ë4k4G~’o
2(2aë

2po)

— 4vdaë2A2pok”~6G~,~(2aë2po)

— 4vda2ë4A2p~k”8G~
2O(2aë

2pO). (4.18)

The dimensionlessintegrals

G~pr(W)= k4 2rd

1 dx ~

a I x (p(X)_X)r
(4.19)at ~ P(x) [P(x)

2+w(P(x)-x)I )
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are evaluatedin appendixD. For small valuesof w/k2 (linear regime) we can
expandthe integralsL and G in powersof w andexpressG(0) in terms of L(0).

For largew/k2 (Goldstoneregime)only the “Goldstoneboson”contributesin
leadingorder for a = 0:

~= dkI~~i(O),

13k— )dAkL
2(0). (4.20)

For d> 2 the running of p0(k) becomesnegligible in the Goldstoneregime.Then
the model is in the spontaneouslybrokenphasewith a well defined“expectation
value” <p) = lim~ 0p~(k)which determinesthe gauge-bosonmass (2.10). This
picturechanges,however,for a > 0. The leadingterm in ~ for k

2 <<2aë2p
0is now

given by the first termof (4.17):

= 4v~g~aë
2p

0k”
4. (4.21)In four dimensions(g~= 1) the minimum of the potential moves evenfor k2 ~

2aë2p
0accordingto

3 ae
2

k—p
0(k) = —~p0(k). (4.22)3k

The mixing betweenlongitudinalgaugebosonand Goldstonemodedrives p0(k) to

zero for k —‘ 0

p0(k) =k~
2~/8~2 (4.23)

andthe vacuumexpectationvaluevanishesin this formulation.We will discussthe
physics of thesedifferent picturesoncewave function renormalizationeffectsare
includedin sect.5.

Similar as in ref. [3] we introduce the dimensionlessquantities(with Zq,
ZQk(po), ZF ZFk(po))

K(k) =k2~Z~po(k), (4.24)

A(k) =k~4Z~2A(k), (4.25)

e2(k) =k’~4Z~a2(k). (4.26)
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In the linear regime, for k2>> 2ë2p
0,2aë

2p
0,2Ap0 wefind thefollowing evolution

equations:

a PK

=(2—d—~)K

+ 4(d — 1)vdl~’e
2/A — 8(d — 1)vdl~’(e4/A)K

+ 8vdl~— 12vdl~AK

+ 4vda[l~— ld+21e2/A

+ 4vdal~2e2K

— 8vda2[l~ —

213d~2+ l~4](e
4/A)K, (4.27)

a

~f3~

= (d — 4 + 2i~)A

+8(d— 1)vdl~’e4

+ 20vdl~’A2

— 8vdal~2Ae2

+ 8vda2[l~— 2l~2 + l~4}e4. (4.28)

Here l~are positive constantsof order one which depend in general on the
averagingscheme[3]. Only for specialvaluesof n and d are they independentof
f3:

lx” = 1. (4.29)

The anomalousdimension

a

= — —ln ~

will be computedin sect. 5. For k2 <<2ë2p
0, 2aë

2p
0, 2Ap0 one finds in leading

order

= [2— d — s~+ 4v~g~ae2}K+ 2vdl~’. (4.30)
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Finally, we evaluatethe scaledependenceof the potentialat the origin. This is
relevant for the “symmetric regime” where the potential minimum occurs at

p0 = 0. We define

= U~(0),

A0(k) = U,~”(0), (4.31)

andinsert the relevantargumentsin eqs. (4.10)—(4.15).Oneobtains

= 2v~k~{(d— 1)ë
2L~(0)

+aë2[L~(0) —L~2(0)]

(4.32)

= _2vdk”4{2(d — 1)ë4L~(0)

— 2aë2A
0L~

2(0)

+2(aë2)2[L~~(0)— 2L~2(0)+L~4(0)]

(4.33)

Dueto the masslessgaugebosonsweobservein eq.(4.33) the well-known infrared
powersingularityfor d < 4 and k —~ 0. This singularityforbids the naiveperturba-
tive treatmentof the origin in less than four dimensions.It constitutesoneof the
major problemsin finite-temperaturefield theory in four dimensions.In our case
we cansmoothlyfollow the evolutionfor k —~ 0. Defining a dimensionlesscoupling
A as in (4.25) we recoverthe evolution equation(4.28) in the limit ~ <<k2. For

>> k2 the term A2 effectively drops out since it is now multiplied by the
thresholdfunction s~= L~ñ2)/L’~(0).The renormalizedmassterm is definedas

m~(k)=Z~~1iñ~(k), (4.34)

and the correspondingdimensionlessquantity is obtainedby multiplication with
k2.

5. Wave-function renormalization and anomalousdimensions

In this sectionwe calculatethe one-loopapproximationof the renormalization
constantZc,,k(P)definedin eq.(2.9). We evaluateFk[cc, A) for constantfields cc
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and A,1, andextract Z~kas the coefficientof e2cc2A2.It is sufficient to consider
infinitesimally-small fields A,1. In orderto determinetheminimumof Sk, wehave

to solve the eqs.(3.3a)and(3.3b)for constantaveragefields. Forour purposesit is
sufficient to find the solution in secondorder in A,1. Keeping in mind that

fk(—D2(A))=fk(ë2A2)whenappliedto a constantfunction,andthat accordingto
(2.6) the denominators[1 —f,~(ë2A2)]are of orderA2~for smallvaluesof A2, it is
not hardto seethat

= cc + O(A2’~),

(5.1)

is a solution of eqs.(3.3). (The correctionterms are proportionalto A4 for f3 = 2
andhigherorder in A,1 for largervaluesof f3.) An infinitesimally-small A,1 field
cannotcauseinstabilitiesandthe stationarypoint (5.1) is a true minimumprovided
the condition (3.8) is met. (See also appendixB.) In order to write down the
Gaussianintegral for the one-loop contribution pJ~1) we have to insert the
minimum (5.1) into the secondvariation 52Sk. The resulting quadratic form is
displayedin eq.(B.7) of appendixB, andthe integrationis performedin appendix
C. Therewe find

F~’~[cc,A,1] = fd~~x{U,~1)(p)+ e2A,1A~pZ~,l~(p)+ O(A~)}, (5.2)

with

(5.3)

where(recall that p cc2)

Z~(p)= —8vd(1 — d_1)e2fdxx~2~1[P(x) + 2ë2p] 1

(5.4)

Z~(p) = vap_hfdxx 2)-’{P(x) + 2d’xP(x)}

(5.5)
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Z~(p) = vaphfdxx 2)_1[P2 + 2aë2p(P—x)+ (~p—P2)(P+ 2aë2p)] 1

2 . 4 xF2
X —xP—— — (P+2aë2p)

d dP+3Ap—Z12

8 P—2xP+Ap—~2
aep — —2 (5.6)

d P+3Ap—a

The subscriptst, u and tw designatethe contributionsof the transversevector
field, the radial scalarmode, and the coupled systemof Goldstonebosonsand
longitudinal photons, respectively.Again, as they stand, the integrals(5.4)—(5.6)
are divergent for x —‘ ~, but they become UV finite by subtracting a set of
k-independentcounterterms. In practicethis is not necessarybecausewe areonly
interestedin the anomalousdimension

a
= — ~-ln Zq,k(PO), (5.7)

which is finite. Recalling that Z,~k = 1 + Z~+ higher loops, we obtain in lowest
order

a
= — ~—[Z~(p

0) +Z~,(p0)+Z~(p0)]

(5.8)

(We neglecthere the contribution —Z,k(po)~ from the running of p0(k).) The
t-derivativeof Z1 and Za canbe expressedas

‘~7tS0d(l _d )ë
2k~4L~,i(2ë2p

0,2Apo), (5.9)

= — 2d~vdp~kM2o(2Apø), (5.10)

with

L~~2(w1,w2) = k2l2dfdxx(d/2)_1

x ~[(P(x) + w1)~(P(x) + w2)~2I, (5.11)
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M~~2(w1,w2) = k
2 h121)_’if dx xd/2

x — [~(x)2(P(x) + w
1)~’(P(x)+ w2)]. (5.12)

The integrals~ are discussed in ref. [3] whereas the integrals ~ are closely
related to the integralsL~of eq. (4.16), with L~,~2(0)= L~1~~2(0).

The contribution~ canbe divided into

= ~ + ~, (5.13)

with ~7a= 0 for a = 0. The part

= 2d_lvdp~1k~~2[2M~1i(2Apø,0) —M~o(0)I (5.14)

canbe combinedwith ~,

m + ~ = —8d’vdA
2pOk”6M~

2(2ApO,0), (5.15)

in order to reproduce the result for the pure scalar theory. For a = 0 only the
contributionfrom the transversegaugebosons,m~has to be added.For a ~ 0
thereis an additionalpiece

= 4d1vdaë2fdxx/2~1

x ~{(P2+ 2aë2po(P_x))’

x(P—x)P
2 P2—2xPP+x2P2

x +2 -p2 P(P+2Ap
0)

PP
2+ 2xP2—PP + 2aë2p

0(P
2—~)

—x - . (5.16)p2 + 2ae2p
0(P—x)

In the linear regime,for k
2>> 2ë2p

0,2Ap0,2aë
2p

0we canneglect~ in leading

approximationandfind

m= —16(1—d~)vdl~’e
2,

= 8d_bvda[m~2+ (~d— 2)l~]e2. (5.17)
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The constantsm~can be found in ref. [3] with m~’~2= 1 (n > 2). Eq. (5.17)

equally applies to the symmetric regimefor k2 >> ~ For d = 4 the anomalous
dimensionreads

e2
i~= ——----~(3—a). (5.18)

8~

Inserting~= m + ~ of (5.17)into (4.27) and(4.28)we arrive at the final resultfor
f3~and f3~.Onefinds

= (d — 4)A + 20vdl~A2

— 32(1 — d1)vdl~’e2A + 8(d — 1)vdl~e4

+ 8vda2[l~ — 2l~2 + l~4]e4

+8vda[2d1m~2+(~— ~)l~_l~2Ie2A. (5.19)

In particular,~ becomesindependentof a in four dimensions

1
l3~=~—~[5A2—6e2A+6e4] (5.20)

and we reproducethe standardone loop result for the running of the quartic
scalarcoupling. The masstermfor the radial scalarmode

m2= 2AKk2, (5.21)

evolvesaccordingto

3m2
Pm2~

= 8vdk2{2l~A+ (d — 1)l~’e2 + a(l~’ — l~2)e2}

+ 2vdm2(4l~A— 8(1 — d’)l~e2

— 8d~’)l~+ 4d~m~2— 2l~2Ie2}. (5.22)

This allows to computethe anomalousmassdimensionw:

a
0) = ~~f3m2 (5.23)
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In four dimensions,w is againindependentof a andreproducesthe result of the
standardperturbationtheory

1
~o=~—~(2A—3e

2). (5.24)

In contrast,the term k2 in (5.22) (“quadraticmassrenormalization”)depends

on a and also on /3. We finally note that the constantterm in f~K(limk.,
0f3K)

receivesno contributionfrom the anomalousdimension. In two dimensionsit is
independentof a:

e
2

13K=8v
2 1+ ~— +O(K). (5.25)

As a result, K runs to zerowheneverit hasenteredthe linear regime.
For small values k

2 <<2ë2p
0, 2aë

2p
0, 2Ap0 we can neglect m. The scalar

contributions~is proportionalto p,5’

= 4d’vdm~2K’, (5.26)

where the constants m~2can be found in ref. [3]. For nonzero a the leading
contributionarisesfrom i~ which is evaluatedin appendixE:

?la = 4v~g~ae
2. (5.27)

As a result, the renormalizedminimumvalue Z~,k(po)p
0(k) becomesessentially

independentof k for d> 2 (compare(4.21)), and K evolves according to its
canonicaldimension(4.30):

PK=(2d)K. (5.28)

The gauge-bosonmassterm (2.10) reads

M
2(k) =2e2Kk2. (5.29)

In the spontaneouslybrokenphasein four dimensionslimk ~M(k) does not
vanish despitethe fact that p

0(k) runs to zero for a> 0, cf. eq. (4.23). Different
choicesof a give rise to a different anomalousdimensionbut do not changethe
physical propertiesof the system. The symmetric and the spontaneouslybroken
phasecanbe distinguishedby a vanishingor nonzerovalueof Kk

2 as k —* 0. The
spontaneouslybroken phase in three dimensions is also characterized by
limk.~)Zq,po>O.No running of ë~Z

1Yis expectedfor k
2 -~ 2Ap

0. Again, thereis
a transitionbetweenthe symmetricandspontaneouslybrokenphasewith massless
andmassivegaugeboson.
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Finally, we continue the evolution equations in the symmetric regime for
~szk2. The evolutionequationfor A is still given by (5.19). The running of the

massobtainsfrom (4.32), (4.34), (5.17) by expandingL~(ii~) in first order in Thi~:

am2
= —4vdk2{2l~A+ (d — 1)l~’e2 + a(l~ — l~2)e2)

+ 2vdm~{4l~A— 8(1 — d~)l~e2

— 8d~)l~+ 4d_1m~2]e2}. (5.30)

With the identification j~2= —m~for the symmetric regime and ~2= ~m2 for the
spontaneouslybrokenregimeeqs.(5.22) and(5.30) describethe sameevolutionof
the scalarmasstermon bothsides of thetransitionbetweenthe two regimes.This

transition(at ~2= 0) is smooth and the vanishingof the gauge-bosonmass does
not posea particularproblem evenfor dimensionsmallerthanfour.

6. Conclusions

We have formulated in this paper the averageaction for an abelian gauge
theory. We also have demonstratedhow this formulation can be used for the
computation of the averagescalar potential. This overcomesone of the main
obstacles to deal with realistic theoriesas the standardmodel with the help of an
average action. Our formulation is manifestly gaugeinvariant and also maintains

rotation andtranslationsymmetry.No gaugefixing is neededfor the computation
of the averageaction. On the other hand, the averageaction depends on the
“averagescheme”,i.e. on the choiceof the averagingprocedure.In particular,we
haveintroducedaparametera specifyingthe averagingof the longitudinalmodes
of the gaugefield as comparedto the transversalmodes.In a certain sensethis
parametermimics the role of the gauge-fixingparametera in the conventional
covariantgauges.Furthermore,our formulation is adaptedfor a generalizationto
nonabeliangaugetheories.

We havederivedevolution equationsfor the scaledependenceof the average
scalarpotential as well as for the relevantscalarkinetic terms.Togetherwith the
evolution equationfor the gaugecoupling (which will be discussedin a separate
paper[5]) theseequationsdeterminecompletelythe phasestructureof the system
andmany physical propertieslike particle masses,interactionsor critical indices.
In the limit of vanishing gauge coupling e we recover the evolution equations of

the pure scalar theorywith global U(1) symmetry.For a = 0 only the transversal
gaugefield fluctuationsaddto the evolutionequations.(Theircontributionsto the
relevant13-functionscanbe expressedas a powerseriesin e2 aslong as the gauge
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boson massis small comparedto the averagingscalek.) In the limit a = 0 the

scalar fluctuations in the Goldstone direction give exactly the same one-loop
contribution as in the ungaugedmodel. This implies a nontrivial infrared be-
haviour evenfor scalesmuch smallerthan the massesof the gaugebosonandthe
radial scalar mode. For a > 0 the Goldstonemode mixes with the longitudinal

gaugeboson.In this casetheinfrared effectsturn out to bemuch strongerthan for
vanishinga

In particular,we find in four dimensionsthat the position of the minimumof
the averagescalarpotential moves to zero as k —~ 0 accordingp0(k) k~

2/8~2.

The “vacuum expectationvalue” p
0(O) alwaysvanishesfor a> 0. In contrast,po(

0)
hasa nonzerolimit for a = 0 in the spontaneouslybrokenphase~. This apparent
paradoxis resolvedby taking into accountthe anomalousdimensionarising from
the wave function renormalization in the kinetic term. Expressedin terms of
renormalizedfields, pR(k)= Z~(k)p

0(k),the essentialfeatures of the average
potential becomeindependentof a. There exists always a spontaneouslybroken
phasewith nonvanishing pR(0). (In this case Zç~, increases ke

2,~’8~2and

compensatesfor the decreasingmagnitude of p
0(k).) The gauge boson mass

obtainsthenas M
2 = 2e2pR(0).

The phasetransitionbetweenthe symmetricandspontaneouslybrokenphaseis
more complicated than for the pure scalartheorysincep~hasno fixed point for
A = 0. Wewill address in a separatepublication the questionwhetherthe transi-
tion is secondor first order and discussin more detail the form of the average
potential for “Coleman—Weinbergsymmetrybreaking”.

Appendix A

In this appendixwe first list the invariants involving two derivatives in an

N-componentscalar theory with internal S0(N) symmetry and d-dimensional
rotation and translationsymmetry.They canbe constructedby contractionswith

the tensors~ and 3ab as well as Cab for N= 2 and for d = 2. ConsiderN
evensuch that cc is an N/2 componentcomplexfield. For N> 2, d> 2 the most
generalinvariant reads

~ + ~ (A.1)

* It would be interestingto study the infrared behaviourfor an averageschemewhich resemblesthe

unitarygauge. Thereshould be no masslessmodesbut onemay suspectcomplicationsdue to the
kinetic terms.

~ We note that po(0) may be relatedto a gauge-invariantorder parameter.
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For SU(N/2) symmetricmodelswe canalso write the term

_X(cctcc)A,1~

I.

A,1cca,1cc(3,1cc)cc (A.2)

For N = 2 we may usea realbasis cc = (1/ V~)(cci+ 1cc2) where

= icc~~Eaba,j.ccb. (A.3)

There is no independentinvariant of the type (A.2) in S0(N) symmetric models,
however,sincefor N = 2

a,1(cccc)a(cccc)— A,1 ~ = 4(cc*cc)a,1cc*a/lcc, (A.4)

whereastheconstruction(A.3) doesnot exist for N> 2. For d = 2 and N = 2 there
exist two additional invariants

(AS)

~ (A.6)

The invariant (A.5) is parity odd, andboth (A.5) and(A.6) areodd undercharge
conjugation.We omit in the following these two invariantswhich only arise in
modelsviolating C and/orP.

For a U(1) gaugetheorywe simply replacederivativesby covariantderivativesin
(A.1): a,1 —~a,1 + iëA,1.We note that the gaugeinvarianceof the constraintensures
that the coupling of A,1 occursalways in this combination.The only renormaliza-
tion of the gaugecoupling arisesfrom the kinetic term for thegaugeboson(ZFk).

The functions Z(p) and Y(p) canbe computedby evaluatingTk for appropriate
configurations(cc, A). For example,a real constantscalar field ccR = const. and

an infinitesimally smallconstantgaugefield A,1 contributes

= ë2Z(ço~)ço~A,1A~. (A.7)

If we takeinsteadof A,1 an infinitesimally small spacedependentimaginaryfield
ôcci(x) one finds

= Z(cc~)a,1~ccla~ccI. (A.8)

Evaluating Fk in quadraticorder in A,1 in the first case,or in quadraticorder in
dcci andlowest order in momentumsquaredQ2 in the second,yields in bothcases

the function Z(p). A space-dependentreal field ~ccRinsteadof 6cc
1 gives the

combination Z + Yp and allows the determinationof Y(p).
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Appendix B

The diagonalizationof the quadraticform 62Sk of eq. (3.4) and the evaluation
of the gaussianintegral (3.6) is greatly facilitated by decomposingthe quantum
fluctuations&~and öa,1 accordingto

= 2~”2[o + iw],

(B.1)

where if, (0 and t are realscalars,and t,1 is a transversevector: at,1 = 0. For
small fluctuationsarounda real constantscalarfield, if correspondsto the radial
(“Higgs”) mode and w to the angular(“Goldstone”) mode. Inserting (B.1) into
(3.4) we obtain for the secondvariation in a genericbackground:

82Sk= fddx{t,1[P( — o) + 2ë21xl

— o) + 2ë2 Ix 21 ~

—2ë2(2t,1 +y)a~I~l2

+u[(_D2(a) +F(~D2(A))}sym 2~lxI2+~A(x+x*)2]if

+w[{_D2(a) + F(~D2(A))}sym~2 +X Ix 12_ ~(x _x*)21

+2o{—D2(a) +F(—D2(A))}u

_iAw[x2 x*21u

+2V~ë2(t,1+a~8)a~[if(~+x*) — iw(x _x*)]

_i~e(t,1+a~t)[ifa~(x_x*)_iwa~(x+x*)]}. (B.2)

Hereandin the following we frequentlyusethe functions

F(x) ~xf~(x)[1 -f~(x)]-1

P(x)~x+F(x)~x[1-f~(x)1’, (B.3)
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whose k-dependencewill not be indicatedexplicitly. In eq. (B.2) we also intro-
ducedthe symmetrizationand antisymmetrizationwith respectto A,1,

F(—D2(A))~~, ~[F(—L2(~)) +F(—D2(—A))],

F(~D2(A))as ~ [F(_D2(A)) - F(-D2( -A))], (B.4)

andsimilarly for a,1.

Eq.(B.2) is valid for anybackgroundconfiguration(x, a). In thepresentpaper
we shall needit only for constant fields:

x = xm~= cc = realconstant,

= a~m=A,1 = constant. (B.5)

Inserting(B.5) into eq.(B.2) yields (p = Po =

62Sk= fddx{ç[P(_ 0) +2e2p]t~

_e[a1P(_u)+2e2p]o (

+U[P(D2(A))sym + ~(3p —

+W[P(_D2(A))sym +A(p ~o)I

+ 2WP(~D2(A))astT

+ 4’/~Je2cc(t,1+ a,1 ~)A~ff

_2V~Ieccw0~}. (B.6)

This quadratic form will be needed for the calculation of Z~k.To find Uk, we
further put A,1 = 0 and eq.(B.6)boils down to

= fddx{t,1[P( — u) + 2ë2p~t~

_e[a1P(_o)+2e2pIo (

+u[P(— 0) +A(3p —p
0)]cr

+(0[P(_E)+A(p—po)]W

—2~/~eccw0}. (B.7)
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Finally let us addressthe questionwhether the stationarypoint (B.5) is actually
a stable minimum of Sk, i.e., whether 52Sk>0 for arbitrary excitations

(o~,w, 8, t,). Considerfirst A,1 = 0 whereit is sufficientto investigatethestability
propertiesof (B.7). The transversevectorfield t,1(x) doesnot coupleto any other
field, so that its stability can be analyzedseparately.Going over to momentum
space,— 0 becomesq,1q~ q2 > 0, andthe conditionfor ô2Sk>0 reads

P(q2) + 2ë2p> 0. (B.8)

From (B.3) with (2.8) it is obvious that P(q2) is strictly positive. Hence(B.8) is

fulfilled for any value of cc~i.e. the transversefluctuations are always stable.
Similarly, the stability of the if-mode requires

P(q2) + A(3p — p
0) > 0. (B.9)

The most “dangerous” mode is the one with the momentumfor which P(q
2)

assumesits minimum

Pmin~min{P(x)Ix>0} ~k2=k2. (B.10)

the if-modesare stablefor any q2 providedp is largeenough:

1 —

p>
3=-(p

2—k2). (B.11)

In particular, no instabilities occur in the interesting region near the classical

minimum, ~ ~2/~ The coupledsystemof w and 8 is stable if

[p(q2) + — p2] . [p(q2) + 2a32pJ — 2aë2pq2> 0. (B.12)

In the limiting case aë2= 0 this inequality gives rise to the condition P(q2) +

— Pu)> 0, implying

1 —

p> =-(p2—k2), (B.13)

which is more stringent than (B.11) already.Moreover, allowing for aë2> 0, the
domainof stability becomesevensmaller.Nevertheless,it is obviousthat (B.12) is

equivalentto a conditionof the form

p>p
0—L1cc

2 (B.14)

for some strictly positive quantity4cc2. Hencethereexists a neighborhoodof the
classicalminimum Pu for which all 8w modesare stable.Herebythe exactvalueof
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the alloweddeviation ~cc2dependson the form of the cut-off function fk and on
the parametera.

We concludethat the stationarypoint (B.6) is a stableminimum if p is not too
much smallerthan the minimum Po~We finally mentionthat for small A,1 * 0 the
lowest eigenvalueof the quadraticform characterizing62Sk dependscontinuously
on A,1. A finite positive mass gap remainspositive for infinitesimally small A,1.
The stability condition(B.14) thereforeapplies to the calculationof as well.

Appendix C

In this appendixwe evaluatethe one-loopcontributions~ and Z~’~to the
averagepotentialand to the scalarwave-functionrenormalization,respectively.

The quadraticaction 52Sk resulting from the backgroundconfiguration(3.7)
hasbeengiven in eq.(B.7). Insertingthis expressioninto (3.6) andperformingthe
gaussianintegrals,we obtain the averagepotential ~ Q 1F~1),(1 fd~’x,as
the sumof thefollowing terms:

(J~(p)= +(d— 1)Q’ ln det[P(— 0) +2e2p], (C.1)

U~(p)= ~Q’ ln det[P(_ 0) +3Ap _p21, (C.2)

U
1~(p)= ~ ln det[{P(— n) +Ap ~

2}

X{P(_D)+2aë2p}+2aë2p0]. (C.3)

(We discard irrelevant constants.)Evaluating the determinantsin momentum
space,andmaking use of

d”
~f ~~J(q2) Vdf dxx2~~I(x), (C.4)(21T)

with Vd definedin (4.6) and x = q2, we finally arrive at the expressions(4.2)—(4.4)
which are further discussedin sect.4.

In sect.5 the determinationof ~ requiresa similar calculation,but this time
with A,1 ±0. The correspondingquadraticaction 32Sk,which has to be inserted
into the functional integral (3.6), is given in eq. (B.6) of appendixB. Due to the
non-diagonalterms, an exact diagonalizationof this quadratic form would be
rathercumbersome.The calculationsimplifies considerablyif we keeponly terms
which are second order in A,1. In this case the modes decouplepartially, andone
finds for the gaussianintegrals

4F~’~[cc,A,1] = fd”x{K~+K~+K
1J, (C.5)
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where

8ë4pA~
K~= ~Q’ In dettrans[(P( — o) + 2ë2p)3~— 1, (C.6)

P(—D) +3Ap—~2]

K~=~fl’ ln det[P(_D2(A))sym +3Ap ..p21, (C.7)

4ë2P2(—0)A~A~a,1a~
K~=~fl’ In det[{P(_D2(A))sYm+AP p2+ J

P(— 0) +3Ap—~2

X {(_ D)[a~P(— o) +2e2p] + 8e4pA~A~a,1a~
P(-0) +3Ap_p2J

21
4ë2P(—o)A~A~a,1a~\ i

_2e2P(0 — ______________ I I, (C.8)
P(_D)+3Ap_P2)]

and I~(x)= aP/ax. In the expressionfor K, [the contributionof the transverse
vectorfield t,1 (x)] the subscript“trans” refersto the projection

In dettrans[ . . .1 = Tr{PT ln[ . . . 1)’ (C.9)

which is a consequenceof the constrainta,1t~= 0. Here

DtL =~,1__~_ (C.10)
v 0

is the usualtransverseprojector.Now it is a matterof straightforwardalgebrato
rewrite the determinants(C.6)—(C.8)as tracesin momentumspace,to expandup

to secondorder in A,1 and to perform the symmetric integrationin q,1~Finally,
defining Z, K

1/(ë
2A2p)for i = t, ~, 8w, one arrives at the integrals(5.4)—(5.6)

given in sect.5.

Appendix D

In this appendixwe evaluatethe integrals

a ( x (P_x)r
G:pr(W) = k4~2T~f dx x2~~ — ~(~)[~2+ w(P —x)}~} (D.1)at
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for n > 0, r ~ 0. They obeythe relations

Gn’~p_i,r(W)= Gndpr(W) + G,~~+1(w), (D.2)

G~~2~(w)= G~i~p,r(W)- (w/k
2)G~+

1(w), (D.3)

a

~__Gndpr(W) = —nk
2G~+ipr+i(w). (D.4)

For w ~ k2 we expand

Gn~p,r(W)=G,~pr(0) —nwk2G,~’+,pr+i(0)+ ..., (D.5)

andusethe integrals(4.16)

G~~
0(0)=L~~(0),

jd+2p irn — ,d+2p±21rn

n,p,lk I — 2n+p—1~. ) 2n+p ‘. I’

G~~2(0)=L~~~2(0)—2L~i~(0)+L
4(0). (D.6)

For k2 .‘s~w we split the integrationinto threeregions:(i) x <x
0 <<k

2,(ii) x k2

and (iii) x >x, >> k2. Consider first the third region where G ~(P—x)/x —

exp[—2a(x/k2)~]~z 1. The integral

G~~~2(w)= — 2k42~fdx~x(d/2)+T~

x {GT(x + wG) ~) (D.7)

is dominatedfor r = 0 or r = n by a small region x wG where we can approxi-
mate x(G) by a constant.~ definedby

i=wG(i) =w exp[_2a(Vk2)~J,

ln(w/k2) 1/~
(D.8)

2a

Oneobtainsin leadingorder

(d/2)—2n

G~)(w) _2(~) (D.9)

k2 “ d/2
G~(w)~2(_) (~) (D.10)
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The contribution from the region x k2, G 1 is obviously at most of order

(k2/w)~.It canbe neglectedfor r = 0 or for r = n, p = 0. Finally, we use for the
small-x region(G>> 1) the approximations

a p p a~
x<<P x——

ax x 13—lax

The integral

2/3 xo ap

G,~~(w)= — 13 ~~ dx—x~’2~

—n
x—jP~~‘~(P+w)a~

= 2/3 (2a) (d+2p)/2(~ l)k4 2r+2p++2p)/(~— 1)
13—1

x JdP P2~2~ 1~{P~’~(P + w) ~} (D.11)

is dominatedfor p + n — r + (d + 2p)/2(f3 — 1)>> 0 by the integrationboundary
at P

0 = P(x0) and canbe neglected.In summary,we find for k
2 ~ w

G,~~
0(w)=

G~’0~(w)= 2(k2/w)~g~(w), (D.12)

with

ln(w/k
2) (d—4n)/213

2a (D.13)

Appendix E

Hereweevaluates~of eq. (5.16)for k2 ~sz2aë2p
0,2Ap0. We considerfirst the

integrationregion(iii) of large x > x1 >> k
2 wherewe canapproximateP = 1. Only

the last term in (5.16)contributesin leadingapproximation

~(tii) = — 8d 1 vdaek G
200°‘°(2aê

2p
0)

— 8d’vda
2ë4poHt”°(2aë2po), (E.1)
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with

a
H(w)~fdxxc~2_

at

H~°(w) _jdx x2~O(x + wG) -2 (E.2)

Thisintegral is dominatedby a small regionwherewG(x) x andwe approximate
x(G) =x as in (D.8):

a
11(iii)( w) —w

1
1(d/2)~2

—(d—4)wk”
4g~. (E.3)

It is easyto verify that (E.1)with (E.3)givesthe only contributionsto ~1awhich are
not suppressedby (k2/2aë2p

0).Hencewe find

= 4~~ag~e
2. (E.4)
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