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Abstract 

We report on a QCD analysis of the potential between heavy quarks. Our calculation includes light quark loops and is 
carded out on a 163 x 24 lattice for couplings fl = 5.35 and 5.15 and a quark mass amq = 0.010. We generated lattice 
configurations using a hybrid Monte Carlo algorithm for Ne = 4 flavors of staggered fermions. We can explore distances 
between 0.12 fm and 0.9 fm for these parameters. The shape of the resulting potential is well described by the superposition 
of a term proportional to 1 / R  and a linear confinement potential. This full QCD potential is compared to results obtained 
from quenched approximation simulations on lattices of the same size and with the same value of the cutoff. We discuss a 
rough estimate of the QCD coupling. 

1. Introduction 

The potential between heavy quarks is an important 
nonperturbative QCD phenomenon. It is vital in un- 
derstanding the phenomenology of quarkonium sys- 
tems. The experimental analysis of charmonium and 
bottonium spectra has led to a detailed picture of the 
confining forces [ 1 ]. However, it still must be shown 
that the characteristic features of the phenomenologi- 
cal interquark potential can be derived from our micro- 
scopic theory of the strong interactions. Using the lat- 
tice formulation of QCD, the static potential has been 
extensively studied for the pure gluon theory without 
dynamical quarks [ 2,3 ] (for earlier references see e.g. 
Ref. [4] ). Only a few analyses have been carried out 
so far which address the problem of how virtual light 
quark loops affect the flux tube stretched between a 
heavy quark and antiquark [5-7] .  

Including dynamical quarks, we expect that the po- 
tential will be dominated by three different mecha- 
nisms at small, intermediate and large distances. At 
short distances perturbation theory will give a poten- 
tial determined by one-gluon exchange, with an R 
dependent color charge as prescribed by asymptotic 
freedom. At intermediate distances (of  the order of  
0.5 fm) the potential rises linearly with the quark- 
antiquark separation. This feature can be extracted 
from charmonium and bottonium spectroscopy, which 
requires a string tension of o- ~ 1 GeV/fm. For large 
distances > 1 fm, the color charges of the heavy quarks 
are expected to be screened by the spontaneous cre- 
ation of the q~ pairs possible with dynamical light 
quarks. As a result, heavy-light mesons (Q~/) can be 
created, and the interquark potential should flatten out 
at distances of the typical hadron size. (Eventually it 
will change to a Yukawa potential between the (Q?/) 
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mesons when the separation is large enough.) 
We report here on our measurement of the static 

potential in the presence of light dynamical quarks. 
Our couplings and lattice size restrict us to the inter- 
mediate range of distances between 0.12 fm and 0.9 
fm. This is also the range probed by quarkonium sys- 
tems. The analysis in full QCD is presented in some 
detail in Section 2. In order to investigate the effects 
of dynamical quarks, we also compare our results in 
full QCD with quenched analyses at about the same 
values of lattice spacing and lattice size (Section 3). 
In addition we present a rough estimate of the QCD 
coupling including quark-loop effects. We close with 
a discussion and conclusion in Section 4. 

2. The static quark potential 

Our analysis of the interquark potential is based on 
configurations generated by the MTc Collaboration on 
163 x 24 lattices. These configurations were produced 
by means of a hybrid Monte Carlo algorithm for NF = 
4 dynamical staggered quarks at coupling constants 
fl = 5.35 and 5.15 for a quark mass of ma = 0.01 [ 8 ]. 
Our data set consists of  220 measurements at fl = 5.15 
and 200 at fl = 5.35. In both cases the measurements 
are separated by two trajectories of length 1/2. The 
data were blocked over 40 trajectories while the in- 
tegrated autocorrelation time was estimated to range 
from 10 to 40 trajectories, depending on the loop size. 
Small loops have the largest values of the integrated 
autocorrelation time. We have a limited number of ef- 
fectively independent measurements. This affects the 
accuracy with which we can determine the error esti- 
mate. 

As usual, we extract the potential from Wilson- 
loops with space extent R and time extent T in the 
form 

V(R) = -  lim 1 r--.oo T lnW(R,T) (1) 

We endeavored to check the restoration of rotational 
symmetry. To do this, we computed, in addition to the 
loops with on-axis spatial paths, the 2- and 3-diagonal 
loops. This also extends the set of available distances [ 
R [ to larger and intermediate distances. This is useful 
as interpolating data. 

To improve the projection of the Wilson-loop oper- 
ator onto the QQ ground state, we smeared the space- 
like links according to a variant of the APE prescrip- 
tion [9]. A multihit type of procedure that would 
decrease the noise cannot be applied here, since the 
fermion determinant is part of the Boltzmann weight. 
Due to the smearing, the finite T approximants to the 
potential 

Vr(R) = - I [ l n W ( R , T )  - l n W ( R , T + a ) ]  (2) a 

are quite stable in T for IRI values less than 5a. Here a 
denotes the lattice spacing. For definiteness, we have 
taken the potential from Eq. (2) for T = 4a. We have 
compared the result with the potential as extracted 
from correlated X 2 fits to the exponential fall-off in 
time, starting at Train = 4a. We have found that fits with 
t > 3a give reasonable X 2 values in most cases, with 
agreement within errors. As an attempt to also account 
for the systematical uncertainties, our quoted errors on 
the fit parameters cover the differences between the 
two ways of extracting the potential. 

It is well known that the potential at short distances 
contains significant lattice artifacts [ 10]. In analogy to 
the calculation of the force [ 3 ], we remove these arti- 
facts at tree level in the renormalized coupling through 
the definition 

V1(Rv) = V ( R ) ,  Rv = [ 47r ( G ( R ) ]  -1 
7r 

G(R) = a-I-~r / (27r) 3 d3k 4I-I~=lEj=13 cos(Rjkj/a)sin2(kj/2) (3) 

In principle, the potential defined in this way still de- 
pends on the orientation of R. At our level of  accuracy, 
we can neglect the effect of this direction dependence. 

We find that the R dependence of the potential 
Vt(R) is well fitted by a "Cornell" form 

e 
Vt(R) = co - ~ + o-R (4) 

where co accounts for self-energy contributions and o- 
denotes the string tension. The 1/R term may be phys- 
ically due to one-gluon exchange at short distance, 
or vibrations of the QCD string at ranges where the 
string picture is appropriate [ 13]. In the latter case, e 
is predicted to have the value e = zr/12. 

The potentials at both values of fl are dominated by 
a linear behavior beyond Rv/-~ = 3/4. Fits to the data 
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table  1 

Results in full QCD for the string tension in lattice units at the 
two couplings analyzed in this study 

/~ e o" 

5.15 ~r/12 0.103(16) 
5.35 7r/12 0.057(7) 

The coefficient of the 1/R term has been kept fixed. Only data 
for R 3- 0.3 fm were used in the fit. 

based on Eq. (4) are most stable, for both values off l ,  
when we fix the coefficient of  the 1/R term to zr/12 
and omit the data points at the lowest quark-antiquark 
separations. Our results for the string tension from fits 
to distances R > 0.3 fm are given in Table 1. The 
central value for the ratio V"~a(5.35)/v/"ffa(5.15) = 
0.75(7)  is surprisingly (and probably accidentally) 
close to the 2-loop prediction of  asymptotic scaling, 
which amounts to 0.74 at zero quark mass. Taking 
these results for the string tension in lattice units, we 
find a lattice spacing a = 0.114(6) fm at fl = 5.35 and 
a = 0.153(11) fm at fl = 5.15, provided the physical 
value for the string tension, x/~ = 420 MeV, is used to 
set the scale. On the other hand, we may equally well 
take the lattice spacing from the measured vector me- 
son masses [ 11 ]. Since these masses are determined 
at non-zero values of  the quark masses, we use the 
approximate relation my = 770 MeV 4- 396 MeV * 
(mes/mv) 2, obtained from the experimental p, K* and 
the 7 ,  K masses, and the measured pseudoscalar to 
vector meson mass ratios. In this way we arrive at a 
physical string tension V ~  = 400(25)  MeV and ~ = 
360(30)  MeV at fl = 5.35 and 5.15 respectively. 

These results are summarized in Fig. 1, where we 
plot the potentials from both couplings in physical 
units obtained from the string tension. (The potentials 
have been computed for slightly different quark mass, 
mg61 ~ 48 MeV and 33 MeV at fl = 5.35 and 5.15. q 

However, in this narrow interval we could not see a 
dependence on the quark mass in the data.) 

The shape of  the lattice potential, as well as the ap- 
proximate match of  the lattice spacings from the vector 
meson mass with that from the string tension when the 
potential is fitted to Eq. (4) ,  indicate that the potential 
does not yet flatten out at distances up to ~ 0.9 fm. It 
is possible to obtain an upper bound to the distance at 
which the potential should turn over. This can be pro- 
vided through a determination of  the binding energy 
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Fig. 1. The interquark potential measured for two values/3 = 5.15 
and fl = 5.35 and mapped onto each other by setting the scale 
from the fitted string tension. 

in a bound state of  a heavy and a light quark. Cal- 
culations of  this quantity in the quenched approxima- 
tion [ 12] suggest that the energy of  two heavy-light 
mesons must become smaller than the energy stored 
in the flux tube at distances around 1.9 fm. 

Turning to the potential at small distances, we have 
already mentioned that good fits to the data are ob- 
tained when the coefficient of  the 1 /R term is fixed to 
e = 7r/12, with the data points at the shortest quark- 
antiquark separations omitted from the fit. This value 
of  e is motivated by a string picture of  the flux tube 
where the 1/R term describes the vibrations o f  a thin 
string [ 13]; it is a typical long range effect. At small 
R, we enter into the region where lattice artifacts are 
potentially large. (However, they should be consider- 
ably reduced by using the tree-level improved observ- 
able I/1.) If  we include the small distances into a fit to 
Eq. (4),  we do not observe a significant deviation of  
the coefficient e away from e = 7r/12. 

From the force, which will be discussed later in de- 
tail, we can define a renormalized coupling Otqc7 (R) = 
3F(R)R2. In an exploratory spirit, we have taken 

Otq#(R) at Rmp ~ 1, changed it to the MS scheme and 
evolved it to the Z mass energy scale. (We used the 
2-loop fl-function with nf = 4 flavors and nf = 5 fla- 
vors beyond 5 GeV.) From this, we get a~-g(Mz)  ,,~ 
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0.11 to 0.12. Since we assumed that perturbation the- 
ory is valid already at very low energies - we start 
from a value t:gq~ ~ 0 . 5  - -  we cannot give an error esti- 
mate. Nevertheless, it is interesting that a~-g(Mz) is 
roughly of the size expected. 

We also performed a fit to a QCD inspired potential 
[ 14], with a Coulomb coefficient e = 4a (R)  depend- 
ing on the distance as predicted by perturbative QCD 
[ 15]. This fit returns a value with acceptable X 2 and 
which translates into a~-g(Mz) ,~ 0.1051 . Clearly, 
more data at smaller lattice spacings are needed in 
order to establish the perturbative behavior at small 
quark-antiquark separations and to obtain a trustwor- 
thy error estimate for the coupling. 

3. A comparison to quenched potentials 

In order to assess the effects of dynamical fermions 
on the potential, and to investigate possible differ- 
ences compared to the quenched case, we carried out 
a quenched analysis on lattices of the same size, 163 × 
24. We chose couplings fl = 5.7, 5.8, 5.9 and 6.0. We 
expect values for the lattice spacing in physical units 
to be similar to those in the unquenched simulation. 
We employed an overrelaxed algorithm (OR) with 1 
Metropolis step every 5 OR sweeps. For each fl we 
allowed 2000 sweeps for thermalization and collected 
about 100 configurations, separated by 50 sweeps. 

The Wilson loops on the quenched configurations 
are of  good statistical quality, with autocorrelation 
times (.9( 1 ) per measurement, compared to O(  10- 
40) trajectories in the unquenched case. The plateaux 
in the ratio of time-consecutive loops can now be fol- 
lowed to larger T values for all R. The potential was 
extracted using the same methods as described in Sec- 
tion 2. 

The potential is very well described by a superpo- 
sition of a Coulomb and a linear term. Again, the fit 
results are most stable when the coefficient of the 1/R 
term is fixed to ~ / 1 2  while the data points at small 
R are omitted from the fit. The values are collected in 
Table 2. 

l This number might be compared to a determination of 
a~--ff(Mz ) from the long-range behavior of the potential, by means 
of the asymptotic /3 function in terms of an improved coupling 
[ 16]. Here we obtain a value of a~--g(Mz) ,~ 0.11. 
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Table 2 
Fit parameters for the string tension in lattice units for the quenched 
simulations 

/3 5.70 5.80 5.90 6.00 

o'a 2 0.161(7) 0.108(3) 0.070(2) 0.051(2) 

a has been fixed to ~r/12 and data below R = 0.3 fm were omitted 
from the fit. 

Table 3 
fl shifts of planar Wilson loops for/3 = 5.35 

R T = I  T = 2  T = 3  T = 4  

1.000 0.405(16) 0.421(10) 0.428(08) 0.432(07) 
1.414 0.416(13) 0.435(08) 0.444(06) 0.449(06) 
1.732 0.424(19) 0.444(10) 0.455(08) 0.463(07) 
2.000 0.439(20) 0.457(10) 0.469(08) 0.476(07) 
2.828 0.442(18) 0.470(09) 0.487(07) 0.496(06) 
3.000 0.457(21) 0.482(10) 0.496(08) 0.504(07) 
3.464 0.446(23) 0.479(13) 0.496(10) 0.504(09) 
4.000 0.472(25) 0.497(14) 0.511(11) 0.519(10) 
4.243 0.453(26) 0.488(13) 0.507(11) 0.517(10) 
5.196 0.456(27) 0.494(14) 0.513(11) 0.523(10) 
5.657 0.463(27) 0.499(14) 0.517(11) 0.527(09) 
6.928 0.464(30) 0.505(17) 0.520(14) 0.528(12) 

The loops are not symmetric in R and T because we smeared the 
spatial links. 

In order to compare the results of full and quenched 
QCD, we first looked at the fl shifts necessary to bring 
quenched and full QCD data on top of each other. One 
might argue that the onset of screening effects shows 
up first in the Wilson loops [7] as a loop size depen- 
dence of Aft - /~quenched __ /sfull" Indeed, comparing -- /-'equivalent 
the logarithms of Wilson loops directly and determin- 
ing the equivalent quenched fl values, we do observe 
a marked loop-size dependence, Table 3. However, 
the Wilson loops include non-scaling pieces which 
dominate at small distances. These contributions fake 
screening effects. It is thus necessary to isolate and 
subtract this part, i.e. to compare only the physical 
part of the Wilson loop, the potential. 

For this purpose, we extract the shifts in fl which 
map the string tensions onto each other from Tables 
1 and 2. The results are 0.67(4) at fl = 5.15 and 
0.61(4) at 5.35, based on linear interpolations in fl 
between In x/~. (Note the difference with the Aft val- 
ues obtained from the Wilson loops, i.e. the influence 
of self-energies.) Keeping in mind that the 7r/p mass 
ratios at ma = 0.01 - and thus the physical quark 
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masses - are not precisely the same in the full and 
the quenched simulations [ 17,11], the fl shifts in the 
potential are not in disagreement with the equivalent 
shifts in the quark condensate at ma = 0.01, 0 .59(1)  
and 0.57 ( 1 ), respectively. In addition, we interpolated 
available quenched data on the p mass [18] to the 
same m~r/mp ratios as in our full QCD runs [ 11 ], as- 

2 depend linearly on the quark suming that mp and rn,~ 
mass. (The interpolation in fl was logarithmic.) Then 
we can determine the fl shifts at the same physical 
quark mass. From the appropriate vector meson mass 
at this ratio, we obtain for fl = 5.35 and mps/mv = 
0.387 a fl shift of  A/3 = 0 .63(3) ,  while for fl = 5.35 
and mes/mv = 0.508 the result is Aft = 0 .60(2) .  
Again, a mismatch could have indicated (i) the onset 
of  screening effects, (ii) a different physical value for 
the string tension and (iii) effects of  a finite lattice 
spacing. We have no evidence for any such effect. 

Note that the shift in the location of the chi- 
ral /deconfinement transition, tic, is considerably 
larger, i.e., in contrast to the above observables, the 
transition temperature is significantly influenced by 
dynamical fermions [ 19]. 

Comparing the potentials directly, it is clear from 
the fit results that both sets of  data can be mapped 
onto each other very well provided the string tension is 
used to set the scale and the self-energies are properly 
adjusted. The same holds true when the vector meson 
mass at fixed mt,s/mv ratio is used. Alternatively, we 
compared the force in full and quenched QCD 

e ( g  + d) - V(R) 
F(RF) = (5) Idf 
For the intermediate distance RF we adopted the pre- 
scription [ 3] 

RF= ( 4 7 r G ( R + d ) ~ G ( R ) )  -1/2 
i d (6) 

such that F ( R F )  is a tree-level improved observable. 
(For the linear part of  the potential the exact definition 
of  Re is of  course not important.) In contrast to the 
potential, the forces can be compared directly once a 
common scale is chosen - the p mass, for example. It 
is not necessary to perform a fit to the potential in order 
to subtract the self-energies. In this way, correlations 
between the fit parameters can be avoided. We again 
took the vector meson mass at fixed pseudoscalar to 
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Fig. 2. The forces in full and quenched QCD at /3 = 5.35 and 
5.90 respectively, normalized to the vector meson mass at fixed 
mps /mv ratio. 

vector meson mass ratio mes/mv [ 11,18] as our mass 
scale. In Fig. 2 we plot the dimensionless quantities 
R2F(R) vs. Rmv for flfuU = 5.35, compared to the 
quenched data at  fftuenched = 5.90 and 6.00. 

The data is somewhat noisy because the error on 
the force is dominated by the potential results at the 
larger distances. Still, the data confirm our conclusion 
that at a fixed value of  the lattice spacing there is 
no difference between quenched and full QCD within 
our errors. This is particularly remarkable since the 
quenched results alone show a significant dependence 
on the cutoff. To this end we note, that the fl = 5.7 
results fall significantly below the points plotted in 
Fig. 2. 

Finally, we list the results for the ratio of  the string 
tension to the vector meson mass at fixed mps/mv 
in Table 4. Comparing various quenched fl values, 
(known) scaling violations are apparent. However, 
comparing full and quenched QCD at the appropriate 
vector meson mass or string tension in lattice units, 
no difference in their ratio is visible. So we observe 
that, at a fixed value of the cutoff and within our pre- 
cision, this ratio is not affected by the four flavors of  
dynamical quarks. 
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Table 4 
Vector meson mass, (square root of) the string tension and their ratio, at fixed pseudoscalar-to-vector meson mass ratio 

raps~my = 0.387 mps/mv = 0.508 

mva av~ vr~/,nv mva a ~  v~/mv 

5.70 0.92(5) 0.401(9) 0.44(3) 1.00(4) 
5.80 0.7l(2) 0.329(5) 0.46(2) 0.76(2) 
5.90 0.56(2) 0.265(4) 0.47(2) 0.59(2) 
6.00 0.42(2) 0.226(5) 0.54(3) 0.45(2) 

5.15 0.75(2) 0.321(24) 0.43(3) 
5.35 0.52(1) 

0.40(2) 
0.43(2) 
0.45(2) 
0.50(3) 

0.239(14) 0.46(3) 

4. Conclusion 

Using a lattice simulation, we have analyzed the 
static potential between heavy quarks in full QCD in- 
cluding four flavors of dynamical staggered quarks. 

The potential is well described by a superposition of 
a Coulomb term plus a linear confinement potential 

in the quark separation range 0.12 fm < R < 0.9 fm. 

Within this range, the observed shape of the potential 

is in accord with heavy quarkonium spectroscopy. A 
screening behavior does not set in at distances up to 
< 0.9 fm. When the data for small quark-antiquark 
separations are omitted, the strength e of the Coulomb 
term comes out close to the value ~r/12 predicted in 
effective string field theories. Below R < 0.3 fm the 
data can be parametrized by a perturbative ansatz, but 
more data at smaller lattice spacings are needed to 
firmly establish this. Taken at face value, our analyis 

leads to ot~-g(Mz)  ~ 0.11 for five flavors of dynam- 
ical quarks. 

The comparison with results from a related 
quenched analysis yields the following picture. At 
a fixed value of the cutoff, e.g. m v a  = 0.52, the 
presence of dynamical quarks leads to small effects 
(below our statistical precision) in the force between 
static quarks. Apart from the screening of the bare 
charge (an overall/3-shift)  no physical effect of dy- 
namical quarks is visible. This observation is relevant 
to cont inuum QCD, since we have investigated dis- 
tances R < <  1/mq and momenta large compared to 
our quark masses. We believe that this allows our 
conclusions to apply to the real case of vanishing 
quark mass. 

Note added 

After finalizing this letter we received a paper [ 20] 
in which the interquark potential for 2 quark flavors 
has been analyzed; the conclusions are similar. 
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