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Abstract

We have recently proposed an alternative picture for the physics at the scale
of gauge coupling unification, where the unified symmetry is realized in higher di-
mensions but is broken locally by a symmetry breaking defect. Gauge coupling
unification, the quantum numbers of quarks and leptons and the longevity of the
proton arise as phenomena of the symmetrical bulk, while the lightness of the Higgs
doublets and the masses of the light quarks and leptons probe the symmetry break-
ing defect. Moreover, the framework is extremely predictive if the effective higher
dimensional theory is valid over a large energy interval up to the scale of strong
coupling. Precise agreement with experiments is obtained in the simplest theory
— SU(5) in five dimensions with two Higgs multiplets propagating in the bulk.
The weak mixing angle is predicted to be sin2 θw = 0.2313 ± 0.0004, which fits
the data with extraordinary accuracy. The compactification scale and the strong
coupling scale are determined to be Mc � 5 × 1014 GeV and Ms � 1 × 1017 GeV,
respectively. Proton decay with a lifetime of order 1034 years is expected with a
variety of final states such as e+π0, and several aspects of flavor, including large
neutrino mixing angles, are understood by the geometrical locations of the matter
fields. When combined with a particular supersymmetry breaking mechanism, the
theory predicts large lepton flavor violating µ → e and τ → µ transitions, with all
superpartner masses determined by only two free parameters. The predicted value
of the bottom quark mass from Yukawa unification agrees well with the data. This
paper is mainly a review of the work presented in hep-ph/0103125, hep-ph/0111068
and hep-ph/0205067 [1, 2, 3].
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1 Introduction: Features of 4D Grand Unification

While the manifestations of the strong, weak and electromagnetic forces are very different

in nature, these three interactions all follow from local gauge symmetry, suggesting that

they may be low energy remnants of a single large gauge symmetry at high energies.

Such a grand unified interaction would be described by a single gauge coupling, leading

to a correlation among the strengths of the three forces measured at lower energies.

Remarkably, this prediction from gauge coupling unification is highly successful, if nature

is supersymmetric above the scale of the weak interactions. It implies that the unification

of the strong, and electroweak interactions occurs at a mass scale of order 1016 GeV, but

what is the nature of the physical theory underlying this unification and how can it be

experimentally tested?

The conventional answer of four dimensional (4D) grand unification [4] shows a re-

markable dichotomy: parts of the standard model cry out for 4D unification into a gauge

group such as SU(5), while other parts abhor such a unification. For example the quantum

numbers of a generation of quarks and leptons fit beautifully into unified representations,

providing an elegant understanding of the various gauge quantum numbers [5, 4, 6], while

the Higgs doublet resists unification. The SU(5) partner of the Higgs doublet, H3, must

be heavy to avoid rapid proton decay and also because it would spoil gauge coupling

unification. Whilst the simplest picture of supersymmetric grand unification gives us a

very significant prediction for the weak mixing angle [7, 8], it also leads to a prediction

for proton decay from the exchange of the superheavy triplets H3 [9], in strong disagree-

ment with data [10]. Finally, the mass ratio of quarks and leptons in the third generation,

mb/mτ , shows a simple ratio which follows directly from grand unification [11], while light

quark-lepton mass ratios, such as ms/mµ, do not have values that follow simply from uni-

fication. Thus the minimal theory does not explain why there is a light Higgs boson, is

excluded by proton decay, and introduces flavor conundrums. Of course, this dichotomy

does not exclude supersymmetric 4D unification which has been so much discussed for

over 20 years; rather, within these theories we are led to invent a series of mechanisms

for doublet-triplet splitting, proton decay suppression, and flavor. However, the resulting

theories then acquire a certain level of complexity. Can the dichotomy be resolved more

elegantly in an alternative framework?

The prediction of the QCD gauge coupling from 4D supersymmetric unification is good

but certainly not perfect, as illustrated in Figure 1. The effect of the supersymmetric

logarithm is to greatly improve the prediction, but there is an overshoot beyond the

experimental value of αs(MZ) = 0.117 ± 0.002 [12] to αs(MZ) � 0.130 [13]. We typically

assume that most of this discrepancy comes from the unification scale, and is due to the

complications to the theory that we have been forced to add. Since these corrections



434 Plenary Lectures

αs(MZ)

0.060

0.080

0.100

0.120

0.140

αexp
s

αGUT
s αSGUT

s

SUSY log

Figure 1: The predictions for αs(MZ) in non-supersymmetric grand unification, αGUT
s ,

and supersymmetric grand unification, αSGUT
s . The solid error bar represents the thresh-

old corrections from the superpartner spectrum. Dotted error bars represent threshold
corrections from the unified scale corresponding to a heavy 5+ 5̄ representation with unit
logarithmic mass splitting between doublets and triplets.

involve additional free parameters, they cannot be numerically evaluated. In this talk

we will argue that there is an alternative picture for the physics at the unification scale,

and that all aspects of the dichotomy are reconciled in the simplest model. In the next

section we introduce the new picture of symmetry breaking defects in a higher dimensional

spacetime, and argue that the traditional problems are all elegantly solved. In section 3

we discuss the predictions from gauge coupling and Yukawa coupling unification in the

simplest model. The corrections to the QCD gauge coupling from physics at the unified

scale do not depend on any extra free parameters, and yield precisely the observed value.

The location of matter in the higher dimension is discussed, and predictions for proton

decay are given. In section 4 we introduce a new origin for supersymmetry breaking in

unified theories. Combining this with the minimal model, predictions are given for the

superpartner and Higgs spectrum, for the bottom quark mass from Yukawa unification,

and for flavor changing lepton decays. We conclude in section 5.



5: Grand Unification 435

2 New Physics for Grand Unification

Building on the ideas and tools developed by others, over the last year or so we have

introduced a new picture for the physics in the energy range of 1015–1017 GeV [1, 2, 3].

We describe the new physical picture in this section, and the simplest model for its

implementation in the next.

At the TeV scale we live in a 4D world, spanned by the coordinates x, and the gauge

group is SU(3)C × SU(2)L × U(1)Y (3-2-1), as illustrated by the sheet on the left-hand

side of Figure 2. At the unification scale we suppose that other dimensions of size R are

resolved, described by coordinates y, as shown on the right of the figure. It is the mass

scale 1/R, rather than the expectation value of some field, that characterizes the scale

of unification. Particles moving in the y direction can be viewed as particles moving in

a box of size R and therefore have momenta py quantized in units of 1/R. To observers

in 4D, particles with different py appear as particles of different mass, so that there is a

discrete tower of particles, known as the Kaluza–Klein (KK) tower. A crucial aspect of

our physical picture is the structure of the gauge symmetries in the box of the y direction.

Interactions in the interior of the box are symmetrical under the full gauge symmetry G

of the unified theory, while those on a boundary are only symmetrical under the standard

model 3-2-1 gauge symmetries, as shown in Figure 2.

Since our own four dimensions are known, it is convenient to suppress x and display

only the extra dimensions y, as illustrated in Figure 3 for the case of three extra dimen-

sions. The space of the extra dimensions is known as the bulk, and we will also refer to it

as a box. The sizes of the extra dimensions need not be the same, although we imagine

they are not extremely different, and, while we have shown a simple box, the bulk may

have a more complicated geometry. The crucial point is that the gauge group throughout

the volume of this extra-dimensional bulk is the unified group G, while that of the stan-

dard model appears only on some lower dimensional boundary surface. In Figure 3 we

have shown the 3-2-1 surface as having dimension 1, but it could be a 2D surface, or it

could be a point at one of the corners of the box. In our picture, most of spacetime feels

the full gauge invariance of G, while there is a defect on a lower dimensional surface which

only feels the 3-2-1 gauge symmetry. The symmetry breaking therefore appears explicitly,

as a spatial defect — a complete change of viewpoint compared to 4D grand unification!

One might naively guess that such local defects could not lead to the world we see – where

3-2-1 forces are observed to be quite different from each other, and the other interactions

in G are incredibly feeble. Figure 3 gives the impression that the breaking of G is minor

and perhaps just a small correction. For short distance physics in the bulk this is certainly

true – but for long distance physics the boundary effects become all important, as they

determine the light states of the theory.
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Figure 2: Physics at high energies probes extra dimensions, y, that extend over small
sizes R. The interactions in the volume of this higher dimensional box are constrained by
a unified gauge symmetry G, but interactions on a boundary may be constrained only by
a smaller symmetry, such as 3-2-1, creating a defect of lower dimension.
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Figure 3: An example of a 3D bulk with a 1D defect.
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How does this new picture reconcile the dichotomy of 4D unification? The idea is

remarkably simple: the aspects which fit unification so well, gauge coupling unification,

quark and lepton quantum numbers and mb/mτ , should be phenomena of the regions of

the bulk where the physics is unified and should be insensitive to the 3-2-1 defect, while

the aspects which abhor unification, such as the light Higgs doublet and ms/mµ, should

probe the 3-2-1 defect in a non-trivial way. It will turn out that the suppression of proton

decay results from the enlargement of the spacetime symmetry of the bulk.

What is the origin of the 3-2-1 defect? In particular what determines its location and

why is it on a boundary of the bulk rather than somewhere in the interior? We will answer

this in the context of the effective higher dimensional field theory. We do not explain the

origin of the extra dimensions nor their size, but, given this enlarged spacetime, we write

the most general theory subject to a set of symmetries. The new ingredient here, compared

with familiar 4D theories, is that because our spacetime has boundaries we must specify

boundary conditions to define the theory. The boundary conditions are chosen not to

spoil the consistency of the theory, and, within the effective field theory description, the

3-2-1 defect originates from these boundary conditions. Specifically, in 4D theories we

take the gauge parameters for transformation a to be arbitrary functions of spacetime,

ξa(x), but with a finite bulk we must specify boundary conditions for these parameters.

In particular, at some boundary y = yb we can specify different conditions on the 3-2-1

gauge parameters, ξ321(yb), and the remaining gauge parameters of G, ξX(yb), inducing

the G-breaking defect on this boundary. For example, if ξX(yb) = 0 and ξ321(yb) �= 0 then

the unified gauge bosons X do not have interactions on this boundary, while the 3-2-1

gauge bosons of the standard model do. This is illustrated for the case G = SU(5) in a

1D bulk in Figure 4. In this example the fields and interactions at the y = πR boundary

need only respect 3-2-1 gauge symmetry — they explicitly break the SU(5) symmetry [1].

This is clearly a radical departure from the familiar Higgs mechanism for spontaneously

breaking gauge symmetries. There is no Higgs field — in the effective field theory the

phenomena are geometrical rather than dynamical. In cosmology, as the temperature

T of the universe cools through 1/R, there is no phase transition; rather the symmetry

breaking effects gradually grow in importance. At T � 1/R they are important only very

close to the defect, and irrelevant everywhere else. At lower temperatures they become

ever more dominant, and the symmetries of the bulk cannot be resolved. Remarkably,

this explicit breaking of gauge symmetry does not destroy calculability of the theory. The

unitarity behavior of the theory is no worse than when the boundary conditions preserve

SU(5) [14].

What happens when fields φ(x, y) propagate in such a higher dimensional spacetime

with a gauge symmetry defect induced by non-trivial boundary conditions? The geometry
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Figure 4: In the fifth dimension, space is a line segment with boundaries at y = 0 and at
y = πR. Solid and dotted lines represent the profiles of gauge transformation parameters
ξ321 and ξX , respectively. Because ξX(y = πR) = 0, a point defect occurs in the symmetry
at the y = πR boundary, explicitly breaking SU(5) to SU(3)C × SU(2)L × U(1)Y .
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Figure 5: A bulk, having boundary conditions leading to a defect, can be viewed as a
“machine” for creating a mass spectrum of 4D particles, known as a KK tower.

of the box together with the boundary conditions determine the allowed normal modes.

This is just the field theory analogue of quantizing a particle in a box, but now the allowed

p2
y correspond to the allowed m2 for a 4D observer. Thus the box and boundary conditions

can be viewed as a machine for creating a KK tower of massive states, as illustrated in

Figure 5.

The typical spacing or discreteness, 1/R, for the masses of the KK tower is determined

by the size of the box, while the gauge quantum numbers at each level is determined

by the boundary conditions. The important point is that modes having different 3-2-1
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quantum numbers q1, q2, · · ·, have different spectra, because of the G-breaking boundary

conditions. At high energies the discreteness is not so important and the local symmetry

G of the bulk is restored, but at low energies the discreteness is crucial and the gauge

quantum numbers of the lowest lying states are all important. At very low energies, only

the zero mass modes can be excited, and hence a crucial question is how the boundary

conditions determine the quantum numbers of these “zero modes”. We can turn this

around: at the scale of unification we want only the particles of the standard model and

their superpartners to be zero modes, so that running the machine backwards we can find

out what geometries and boundary conditions are of interest for nature. The remarkable

thing is that we can start with a pure gauge theory in the box — there are no mass terms

or spontaneous symmetry breakings — and the 4D mass terms of the KK tower arise

from the kinetic energies in the extra dimensions. What are the consequences of this new

viewpoint for gauge coupling unification, the lightness of the Higgs doublet, proton decay,

and quark-lepton mass ratios? We will not be surprised to see large changes from the

standard picture.

2.1 Gauge coupling unification

Since the unified symmetry G is explicitly broken by boundary conditions, it is not ob-

vious that gauge coupling unification is preserved. In fact, gauge coupling unification is

generically destroyed due to the presence of local G breaking on the y = yb boundary.

To see this, consider the effective field theory above 1/R. Since the higher dimensional

gauge theory is non-renormalizable, this effective theory must be cut off at some scale

Ms, where the theory is embedded into a more fundamental theory such as string theory.

At the scale Ms, the most general effective action for the gauge kinetic terms is

S =
∫
dx dy

[
1

g2
5

F 2 + δ(y − yb)
1

g̃2
a

F 2
a

]
, (1)

where the first term arises from the interior of the box and is G invariant, while the

second term represents non-unified kinetic operators located on the y = yb boundary (F

is the field strength, and a = 1, 2, 3 represents the standard model gauge groups). This

form is ensured by the y-dependent gauge symmetry of our effective theory, regardless of

the unknown ultraviolet physics above Ms. The standard model gauge couplings in the

equivalent 4D theory, ga, are then obtained by integrating over the extra dimensions:

1

g2
a

=
Rd

g2
5

+
Rd′

g̃2
a

, (2)

for d extra dimensions of size R and defects of dimension d′ < d. This shows that ga

depend on the coefficients of the localized kinetic operators, g̃a, and are not universal at

the scale Ms — in general there is no gauge coupling unification! However, if the extra
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Figure 6: The energy dependence of the strengths of the gauge interactions.

dimensions have a large size, we find that the Rd factor dominates over Rd′ , ensuring

the unified contribution dominates over the 3-2-1 defect contribution, and gauge coupling

unification is recovered [1].

The energy dependence of the gauge couplings in our scheme is shown in Figure 6. The

estimate for the compactification scale, Mc ≡ 1/R ≈ 1015 GeV, and for the fundamental

scale, Ms ≈ 1017 GeV, are for the particular 5D theory with G = SU(5) discussed in the

next section, but the general behavior of the running of these couplings is generic to our

framework. The couplings do not unify at the compactification scale; rather they continue

to evolve even above the compactification scale where the physics is higher dimensional.

The higher dimensional behavior of the theory is apparent because of the rapid growth of

the interaction strength with energy. Above Mc the couplings continue to approach each

other because of the G-violating effects of the 3-2-1 defect. Unification finally occurs at

the fundamental scale. It is well known that a unification with two mass scales, such as

Mc and Ms, leads to a loss of predictivity of the low energy gauge couplings, since they

depend on the extra parameter Ms/Mc. We overcome this by assuming that the theory

at Ms is strongly coupled, so that this mass ratio is predicted [2]:

(
Ms

Mc

)d

≈ 16π2

Cg2(Mc)
, (3)

where C is a group theory Casimir; for example C ≈ 5 for G = SU(5). Given the rapid

growth in the gauge couplings above Mc, and the strong coupling of the theory at Ms,
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Figure 7: A 2D bulk with SO(10) gauge symmetry allows for an interesting set of defects.
There are two 1D defects, one having the usual SU(5) unified gauge symmetry and the
other having the left-right SU(4)C × SU(2)L × SU(2)R symmetry introduced by Pati
and Salam. At the intersection of these two defects a point defect arises with the 3-2-1
symmetry of the standard model, together with an extra U(1)X symmetry.

one may wonder whether the unification can be reliably computed. Remarkably, however,

the framework turns out to be extremely predictive. The strong coupling requirement

allows us to reliably estimate the size of non-unified corrections from unknown ultraviolet

physics, and the precise prediction for the low energy QCD coupling is obtained as long

as the volume of the 3-2-1 defects is sufficiently small [2, 15]. The uncertainties in the

estimate of Eq. (3), for example from power-law corrections to gauge couplings [16], are

also well under control and have little effect on the prediction [2].

In our scheme, the leading power correction to the gauge couplings, which is not a

calculable quantity in the effective field theory, is universal and thus does not contribute

to the low energy prediction [1, 17]. The relative running of the gauge couplings, which

is crucial for the prediction, is then reliably computed if the volume of the defects is

sufficiently small – that is, if the defects can effectively be viewed as points in the bulk:

d′ = 0. In such a setup, the low energy QCD coupling can be predicted in terms of the

geometry of the bulk and the boundary conditions imposed on the bulk fields φ(y):

αs = αs (d, geometry, boundary conditions, φ(y)) . (4)

As we go to a higher dimensional bulk, many more possibilities open up for the structure

of gauge symmetry breaking by boundary conditions. A variety of defects can be incor-

porated. An example of a G = SO(10) theory in a 2D bulk [18] is shown in Figure 7.

There are two 1D defects: a line where the gauge symmetry is SU(5) × U(1)X and a

line where the gauge symmetry is the Pati–Salam subgroup SU(4)C ×SU(2)L × SU(2)R.

The intersections of these lines gives a point defect where the reduced symmetry is that
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Figure 8: The minimal structure: SU(5) gauge symmetry in a 1D bulk with a single 3-2-1
point defect.

of the standard model, augmented by an extra U(1)X . Other SO(10) models with a 2D

bulk are also possible [19, 18], but generically it is hard, though not impossible [20], to

reduce the rank by boundary conditions.

The prediction from gauge coupling unification differs in all these variations. As shown

in section 3, the minimal SU(5) theory with a single extra dimension agrees most precisely

with data, and this suggests that in theories with higher gauge unification, such as SO(10)

in 6D, one dimension of the box is larger than the others [21].

2.2 Split multiplets

If the unified multiplet H which contains the Higgs doublet of the standard model is

described by a bulk field H(y), then the “machine” of Figure 5 will automatically lead

to a splitting of order 1/R between the SU(2) doublet component, h2, and other compo-

nents. The “doublet-triplet splitting” puzzle of 4D unified theories is gone: indeed, mass

splittings between components of bulk multiplets are unavoidable! This phenomenon has

been known since the mid 80s [22, 23]. However, the implementation of this for the Higgs

multiplet is not obvious — there are many possible geometries and boundary conditions;

and with supersymmetry in the higher dimensional bulk, as needed for gauge coupling

unification, the field H(y) contains many more superpartners than the 4D case. In 2000,

Kawamura discovered an extremely elegant solution [24]: he studied a G = SU(5) theory

in 5D and constructed boundary conditions which broke the gauge symmetry to 3-2-1

such that only the massless modes of H(y) were the Higgs doublets and their usual 4D

superpartners. The colored triplet components, whose exchange leads to proton decay,

and all the 5D superpartners were found to only have massive modes.

In our language of defects the geometry following from his boundary conditions appears

almost trivially simple: a 1D SU(5) bulk, having a 3-2-1 defect at one boundary but not

at the other, as shown in Figure 8. This case was also illustrated in Figures 2 and 4.

One might object that the whole idea of geometrical defects in gauge transformations

is ugly, destroying the beauty of complete symmetry in the underlying theory broken only

spontaneously by a dynamical choice of the vacuum. It is our contention that nature

appears to prefer such defects, and the first hint of this was the understanding of the light

Higgs doublets given by Kawamura.
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Figure 9: Baryon number violation is generated in 4D supersymmetric unified theories
via the exchange of massive colored Higgs triplets.

2.3 Proton decay

In 4D supersymmetric SU(5) grand unified theories, the two Higgs doublets, h2, h̄2 are

accompanied by their SU(5) partners H3, H̄3, which are color triplets. The exchange of

the heavy colored Higgs fermions yields a proton decay amplitude at dimension five via

the diagram shown in Figure 9. The cross on the internal line represents the Dirac mass

that couples the fermions in H3 and H̄3. In the minimal theory this is the only way these

fermions can get heavy, and the model is excluded by the resulting large amplitude for

proton decay [10].

What happens in higher dimensional unified theories with symmetry breaking defects?

At first sight the situation looks very bad: although we understand why the Higgs triplets

are heavy and the Higgs doublets are light, the mass of the Higgs triplets will be deter-

mined by geometry and will be of the order of the compactification scale, 1/R. From

gauge coupling unification we do not expect this to be large enough to avoid disastrous

proton decay from H3 fermion exchange. The origin of the masses of the modes in the

KK towers is easily understood by considering the wavefunctions of the particles in a box

with appropriate boundary conditions. For example, for the 5D SU(5) theory, the curves

of Figure 4 can be reinterpreted, with the solid curves being the wavefunction of the Higgs

doublet modes and the dotted curves being the wavefunctions of the Higgs triplet modes.

Since E2 = p2
x + p2

y, the momentum py is interpreted as a mass in 4D, so that the only

massless mode is that of the Higgs doublet having the flat wavefunction. All the Higgs

triplet modes have non-zero py because boundary conditions force their wavefunctions to

vanish at the 3-2-1 defect, and the corresponding 4D fields have masses of order 1/R. In

the minimal theory discussed in the next section 1/R ≈ 1015 GeV, which is less than the

unified mass scale in the conventional 4D theory. Hence one might expect a very large

proton decay amplitude.

In 5D, the form of the mass terms for the H3 and H̄3 fermions is dictated by the higher

dimensional spacetime symmetry of the bulk. Since the smallest fermion representation
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in 5D is a Dirac fermion, both H3 and H̄3 fermions are accompanied by their conjugated

fermions, Hc
3 and H̄c

3. The 5D kinetic terms for these fermions contain H3∂yH
c
3 and

H̄3∂yH̄
c
3. From the viewpoint of 4D the masses arise from ∂y, so that the Dirac mass for

H3 couples it to Hc
3 rather than to H̄3. The cross in the diagram of Figure 9 does not

exist; H̄3 must be replaced by Hc
3. On the other hand, an R symmetry arising from higher

dimensional supersymmetry forbids any coupling of Hc
3 to quarks and leptons. Hence, we

find that the proton decay amplitude from the exchange of the color triplet Higgs fermions

necessarily vanishes in higher dimensional unified theories [1].

We have shown that the absence of all proton decay from operators in the low energy

theory of dimension four or five is guaranteed by an R symmetry [1, 2]. Hence the leading

contribution will come at dimension six from the exchange of the heavy X gauge bosons.

This depends sensitively on the mass of these gauge bosons, which is also given by 1/R.

The precise value of 1/R is model dependent, and we will return to this issue in section 3.

2.4 Quark-lepton mass relations

So far we have assumed that particles are free to propagate throughout the volume of the

bulk. However, it may be that some particles are restricted to subspaces of the bulk. For

example, in the box of Figure 3, quarks and leptons could be chosen to propagate in the

entire 3D bulk, on a given 2D surface, a 1D line, or they may even be restricted to a point.

A quark or lepton which propagates on a defect with lower gauge symmetry will only feel

this lower symmetry: it will not live in a multiplet of the higher gauge symmetry of the

full bulk. It would therefore seem less attractive to place quarks and leptons precisely on

a 3-2-1 defect, since one would lose the immediate understanding of the gauge quantum

numbers of a generation given by the higher gauge symmetry.1

What distinguishes one generation from another? Could it be that they propagate in

differing numbers of dimensions in the bulk? This is an attractive idea because it leads to

a geometrical understanding of the hierarchy between the masses of the generations. The

quark and lepton masses arise from Yukawa couplings, but these interactions are forbidden

by supersymmetry in dimensions higher than 4. Hence the Yukawa coupling between

fermion ψi and fermion ψj must be located at a point y0 on the surface of the box where the

higher dimensional Lorentz and supersymmetry is broken: LYukawa = δd(y−y0)ψiψjH(y).

Since the quarks and leptons that we observe are zero mass modes in the box, they have

flat wavefunctions with normalizations 1/
√
V , where V is the volume of the subspace of

the bulk in which they propagate. Integrating over the volume of the bulk to get the

1On the other hand, placing the Higgs on a 3-2-1 defect is an alternative way to understand the
absence of a color triplet Higgs in the low energy theory [25].
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equivalent 4D theory then leads to an entry in the fermion mass matrix

mij ∝ 1√
ViVj

, (5)

providing both subspaces cover the point y0.

The above relation implies that the heaviest fermions propagate in only a small sub-

space of the bulk. This makes it likely that their Yukawa coupling is located far from the

G-breaking defects, so that they will exhibit unified mass relations between quarks and

leptons. On the other hand, lighter fermions must live in a larger subspace of the bulk,

and are more likely to propagate past the defects. Yukawa couplings located on these

defects will destroy any unified mass relations. Unified mass relations between quarks and

leptons are expected only for the heaviest generation [2, 26, 27, 15].

To conclude: higher dimensional grand unified theories with symmetry breaking de-

fects offer a remarkable possibility. The conventional successes of grand unified theories

(quark-lepton gauge quantum numbers, gauge coupling unification, and mass relations

for heavy fermions) can be retained as phenomena of the symmetrical bulk, while con-

ventional difficulties (mass splitting between h2 and H3, proton decay, and light fermion

mass relations) are automatically resolved as phenomena of the defects.

3 The Minimal Model

Up to now we have concentrated on the conceptual advantages of higher dimensional

unified theories. We now show that these theories are remarkably predictive if they are

valid over a large energy range, i.e. if Ms/Mc is large, and present a minimal model [2]

which is highly successful in describing physics over a wide energy interval between Ms

and Mc.

3.1 Preferred by gauge coupling unification

The numerical test for any unified theory is gauge coupling unification, so we intend to

use this as a tool to guide us in searching for a particular higher dimensional geometry.

Recall from Figure 1: while conventional supersymmetric unification does well, it is not

perfect. We have also seen from Figure 5 that the box and boundary conditions are a

“machine” for creating KK towers of particles. Could the difference between the central

value of the conventional prediction, αs(MZ) = 0.130, and experiment, αs(MZ) = 0.117,

be due to the virtual effects of these KK modes? If so, are there any geometries that are

simple enough that they are numerically predictive?

We have performed a detailed study of supersymmetric theories with d extra dimen-

sions with equal radii. For d ≥ 3 there are no corrections from the KK modes because
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of cancellations forced by the large amount of supersymmetry in higher dimensions. For

d = 1, 2 the leading logarithmic correction is [2]

δαs � − 6

7nπ
α2

s ln
Ms

Mc
, (6)

where n = 2 for d = 1, and for d = 2 it is a positive integer ≥ 2, describing the geometry of

the box. Here, δαs is defined by the difference of our prediction, αKK
s , and the conventional

prediction, αSGUT
s : δαs = αKK

s − αSGUT
s . This result applies only if the Higgs doublets

propagate in the bulk, and are not contained in the vector multiplet; otherwise the sign of

the correction is changed, increasing the discrepancy with data. While this result is very

simple, and the sign is very encouraging, apparently we cannot evaluate it numerically

because of the unknowns Ms/Mc and n. However, using our assumption that the theory

is strongly coupled at the fundamental scale, Ms/Mc can be estimated as in Eq. (3).

From this we discover that for most values of (d, n) the correction |δαs| is too small to

give perfect agreement with data. Only in the case that it is maximized does the central

value of the theoretical prediction agree with data, and this occurs for the simplest case

of a single extra dimension, d = 1 (hence n = 2). In this case the unified gauge group

should be SU(5), since larger unified groups cannot be broken by boundary conditions in

a single extra dimension to 3-2-1-G′, so that gauge coupling unification would depend on

further symmetry breaking and predictivity would be lost. These considerations lead to

the effective theory below Ms as given in Figure 10.

Note that we are able to go much further than conventional supersymmetric unification

which simply identifies a single scale Mu � 2 × 1016 GeV as the threshold for unified

physics. We can determine both the compactification scale, Mc � 5 × 1014 GeV, and the

scale of strong coupling, Ms � 1 × 1017 GeV, and consequently the masses of all the KK

modes of gauge bosons, Higgs and matter in this energy interval.2 Apart from discrete

choices, such as the location of the quarks and leptons of the various generations, we

determine the entire effective theory that is valid over an energy range spanning a factor

of 200.

In Figure 11 we show the effect of the logarithm from the KK modes in the minimal

model — the prediction is strikingly successful. Because the higher dimensional theory

is valid over such a large energy interval, the uncertainties to this correction are small,

as shown in the figure. The dominant uncertainty in the prediction now comes from the

supersymmetric threshold, which ultimately will be fixed by data.

At energies approaching Ms, our 5D effective theory will break down. It could be

that a higher dimensional structure emerges, such as that of Figure 7, with the vertical

dimension much less than the horizontal one. At this scale it may be possible to interpret

2Here and below, Mc represents the length scale of the extra dimension, Mc = (πR)−1, which is
denoted as M ′

c in Refs. [2, 3].
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energy

Mc � 5 × 1014 GeV

Ms � 1 × 1017 GeV

UV (string?) theory

SU(5)

SU(5) 3-2-1

MSSM

Figure 10: The scheme preferred by gauge coupling unification: the minimal supersym-
metric standard model (MSSM) is the effective theory up to Mc ≈ 5 × 1014 GeV, while
the effective theory for the next factor of 200 in energy is the minimal 5D SU(5) theory
with a single 3-2-1 defect.

the Higgs as arising from a vector multiplet, for example as a component of the higher

dimensional gauge field [21, 26].

3.2 Yukawa coupling unification

In section 2 we have argued that heavier quarks and leptons should propagate in subspaces

of the bulk with lower dimension. In the minimal theory the heavy third generation should

reside at a boundary of the fifth dimension. To retain the SU(5) understanding of quan-

tum numbers, this should be the “SU(5) boundary” rather than the “3-2-1 boundary”,

giving the usual tree-level SU(5) mass relation: mb = mτ . In conventional unified theories

the corrections to this relation from running of the Yukawa couplings can be accurately

computed, but there are also corrections from both unknown physics at the unified scale,

and from supersymmetric corrections at the weak scale. In our theory the unified physics

is known, and hence we can compute the corrections at the unified scale. The resulting

correction to the prediction for the b quark mass is [3]

δmb

mb
� −5(4g2 − y2

t )

112π2
ln
Ms

Mc
. (7)

As in Eq. (6) for the radiative corrections to αs, the sign improves agreement with data.

However, unlike gauge coupling unification, the prediction for the b quark mass receives

large supersymmetric corrections [28], and hence we leave the comparison with data until

section 4 where we incorporate supersymmetry breaking.
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αs(MZ)

0.060

0.080

0.100

0.120

0.140

αexp
s

αGUT
s αSGUT

s αKK
s

SUSY log

KK log

Figure 11: The predictions for αs(MZ) in the three frameworks: non-supersymmetric
grand unification αGUT

s , supersymmetric grand unification αSGUT
s , and higher dimensional

grand unification αKK
s . Solid error bars represent the threshold corrections from the super-

partner spectrum. Dotted error bars for αGUT
s and αSGUT

s represent threshold corrections
from the unified scale corresponding to a heavy 5+ 5̄ representation with unit logarithmic
mass splitting between doublets and triplets. The dotted error bar for αKK

s is the theo-
retical uncertainty (other than from superpartner masses) for our theory, as estimated in
Ref. [2].

Since the minimal theory has only a single extra dimension, all of flavor cannot be

understood in terms of volume factors. Nevertheless, some of the quarks and leptons will

have suppressed masses because they propagate in the bulk, and these light fermions will

not exhibit unified mass relations. For example, if the right-handed up quark, u, and elec-

tron, e, reside in the bulk they will be the zero modes of a 10-dimensional representation

of SU(5): T (u, e), where the zero modes are written in parenthesis. However, in this case

a light quark doublet q does not arise from this multiplet; rather it arises from another

10-plet having boundary conditions with opposite sign: T ′(q). This may appear to be

a step backwards — the light quarks and leptons are not as unified as in conventional

SU(5). However, it can also be viewed as a virtue: disastrous unified mass relations for

light matter are avoided, while the understanding for quark and lepton quantum num-
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y = 0 y = πR

T3
F1,2,3

T1,2
H, H̄, V

Figure 12: Locations of SU(5) matter, Higgs and gauge multiplets in the fifth dimension.

bers is preserved. To see the absence of a mass relation, consider the fermion Yukawa

couplings in the case where the right-handed down quark, d, and the lepton doublet, l,

are unified into the same 5-dimensional multiplet: F (d, l). In this case the mass terms

for the electron and down quark arise from two distinct interactions TFH̄ and T ′FH̄,

respectively, so there is clearly no SU(5) relation between these masses.

One plausible possibility is that the lightest two generations of 5-plets F1,2 are located

on the boundary, while the corresponding 10-plets T1,2 are bulk modes [3], as depicted

in Figure 12. There is no flavor distinction between the three F , so that large neutrino

mixing angles are expected. Small neutrino masses can be understood by introducing

right-handed neutrinos N1,2,3, through the conventional see-saw mechanism [29]. Flavor

hierarchies in masses and mixings arise from the T , both from volume factors [2, 26, 27, 15]

and from distortions of the wavefunctions caused by bulk mass terms [30]. Potential

brane-localized anomalies are canceled by a certain bulk term made out of the bulk gauge

field [31]. This gives a larger hierarchy for up-type quark masses (from TT ) than for down-

type and charged lepton masses (from TF ). The absence of unified relations amongst the

lighter two generation quarks and leptons is entirely due to T1,2 (which really represent

T1,2(u, e) and T ′
1,2(q)).

3.3 Predictions for proton decay

In section 2 we saw that higher dimensional theories possess a U(1)R symmetry that for-

bids proton decay from operators of dimension five resulting from the exchange of the

colored triplet Higgs. This R symmetry arises from a phase rotation of the coordinates

of superspace — it is an unavoidable consequence of supersymmetry in the higher di-

mensional bulk. In 4D supersymmetric theories one must impose a discrete symmetry

by hand to avoid baryon- and lepton-number violation at the weak scale arising from the

superpotential interactions udd, qdl, lle and lh. In higher dimensional theories this parity

can be understood as a subgroup of the continuous R symmetry. Of course, one cannot

prove that these interactions must be absent — after all there might be an R symmetry

breaking defect on the boundary; however, we can say that in higher dimensional theories

there is a very plausible origin for the conventional discrete symmetry.
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Do these theories predict proton stability? No — in general the heavy gauge bosons

of the unified theory can induce proton decay, and hence we must study the masses and

couplings of these gauge bosons in models of interest. In the 5D SU(5) theory there is a

KK tower ofX gauge bosons with the lightest mode having mass 1/2R = πMc/2. We have

seen that a calculable weak mixing angle requires a large value of Ms/Mc, and therefore

a small value for Mc. The observed values of the gauge couplings strongly suggest that

Ms is the scale of strong coupling, so that Mc � 5 × 1014 GeV. Hence this gauge boson

has about the same mass as in the 4D Georgi–Glashow SU(5) theory. It appears that

we have come around a full circle, and are excluded, like the non-supersymmetric SU(5)

theory, by searches for proton decay. However, we have not yet investigated the couplings

of X in the 5D theory. We have argued that since the electron and up quark are so light

they should reside in the bulk; thus these states are described by two 10-plets T1(u, e)

and T ′
1(q). This means that the conventional interactions of the X boson, q†uX, e†qX are

not generated by the bulk gauge interactions of the 5D theory, at least for the lightest

generation, and hence in the absence of CKM mixing between the generations the proton

would be stable [1]. The mode expected from CKM mixing is p → K+ν̄, but the rate is

now highly dependent on the flavor structure of the theory [15, 32], and while the rate is

no longer too large, it is not guaranteed to be in reach of future detectors.

Remarkably there is an additional source for the q†uX, e†qX interactions. They result

from a boundary localized contribution to the gauge interactions, and therefore have

a size which is suppressed relative to the usual gauge coupling by the volume factor

Mc/Ms. The proton lifetime cannot be precisely predicted since the boundary gauge

interaction involves a dimensionless coupling that is not predicted. If this coupling is of

order unity then τp ≈ 1034 years, with comparable branching ratios for the decay modes

e+π0, µ+π0, e+K0, µ+K0, π+ν̄ and K+ν̄ [3]. The most promising discovery mode is e+π0.

A large mixing angle between F1 and F2 implies that the e+π0 and µ+π0 modes have

comparable branching ratios and that

Γ(p→ µ+π0)

Γ(p→ e+π0)
� Γ(p→ e+K0)

Γ(p→ µ+K0)
, (8)

independent of the sizes of hadronic matrix elements [3]. This analysis for proton decay

depends on matter location, but is completely independent of supersymmetry breaking.

4 Supersymmetry Breaking

Theories with weak scale supersymmetry will lead to a plethora of new particles and

couplings to be measured in the TeV domain. The supersymmetry breaking interactions,

like the gauge and Yukawa interactions, may encode information about the unified the-

ory [33]. For this to happen they must remain as local interactions up to the unification
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α

S S ′

Figure 13: The breaking of supersymmetry by the misalignment of boundary defects.

scale — we say that the messenger scale of supersymmetry breaking must be at least as

large as the unification scale. If this happens in higher dimensional theories, then the soft

supersymmetry breaking operators will provide a window on the physics of the bulk [3].

In particular, the flavor symmetry of the bulk SU(5) gauge interactions U(3)T × U(3)F

will be modified by the locations of the three T and three F fields. This will lead to

non-universal squark and slepton masses, and to flavor changing neutral currents from

superpartner exchange, allowing experiment to probe the geometry and matter locations

in the bulk.

Such signals will depend on the mechanism for supersymmetry breaking. In this sec-

tion we discuss the possibility that boundary conditions in the bulk break supersymmetry

as well as the unified gauge symmetry [34]. In the minimal 5D SU(5) model there is a

unique way to accomplish such a breaking [35]. In the 5D bulk there are two indepen-

dent supersymmetry transformations and they form a doublet of the SU(2) R symmetry.

However, the boundaries are four dimensional and can support only a single supersym-

metry. Thus the boundaries can be viewed as defects in the space of supersymmetry

transformations, and the key question is whether the two supersymmetries, S and S ′,
respected by the two boundaries are the same or not, as illustrated in Figure 13. In the

limit that the relative orientation angle α vanishes, S ′ = S and the single supersymmetry

S is preserved everywhere and must therefore be a symmetry of the low energy 4D the-

ory. On the other hand, if there is a misalignment of the two defects characterized by a

non-zero value of α, then supersymmetry is broken in the low energy theory, with the su-

persymmetry breaking mass scale given by m̃ = αMc. The appearance of the continuous

parameter α describing the defects represents an important difference compared with the

case of SU(5) gauge symmetry breaking, where the breaking scale is necessarily Mc. The

parameter α can also be viewed as the vacuum condensation of a component of the higher

dimensional gravitational supermultiplet [36], implying that the supersymmetry breaking

is spontaneous and the hierarchy of the scales, m̃� Mc, can naturally be obtained.

The tree-level form of the supersymmetry breaking soft operators is very simple [3].

All bulk superpartners have mass m̃, all boundary-located superpartners are massless,
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and the size of the trilinear scalar interaction is m̃, 2m̃ or 3m̃, counting the number of

bulk scalars:

Lsoft = −1

2
(m̃λλ+ h.c.) − m̃2h†h− m̃2f̃ †B f̃B

+
(
yfm̃f̃bf̃bh + 2yfm̃f̃B f̃bh+ 3yfm̃f̃B f̃Bh+ h.c.

)
, (9)

where λ, h, f̃B and f̃b collectively represent the gauginos, two Higgs doublets, squarks/sleptons

in the bulk and squarks/sleptons on the brane, respectively, and yf is the value of the

corresponding Yukawa coupling. Since supersymmetry breaking effects from boundary

conditions are shut off above the compactification scale, the soft supersymmetry breaking

masses in Eq. (9) must be regarded as the running mass parameters at the compactifica-

tion scale Mc. Incidentally, this type of theory can also generate the weak-scale µ and B

terms naturally through the vacuum readjustment mechanism [37].

Applying these results to the minimal model yields two immediate consequences: first

the flavor changing neutral current effects induced by superpartner exchange are too

large unless the squarks (sleptons) of the first two generations are degenerate. This

means that T1 and T2 must have the same location, and similarly for F1 and F2. When

coupled with constraints from proton decay and from fermion mass relations, the location

assignments of Figure 12 become unique. Hence, we are now able to predict that the

neutrino mixing angles are large. Secondly the Higgs potential and superpartner masses

are determined in terms of only three parameters m̃, µ and B. After fixing the Z mass

the two independent parameters can be taken to be m̃ and tanβ, the ratio of the two

Higgs vacuum expectation values. The entire superpartner and Higgs spectrum is shown

in Table 1 for two representative values of these parameters. The mass of the lightest

Higgs boson, h, includes one-loop radiative corrections from top quarks and squarks. The

sign and large size of the relevant scalar trilinear of Eq. (9) makes these corrections large

and the resulting Higgs boson becomes relatively heavy. The squarks and sleptons from

T3 and F1,2,3 are relatively light as they reside on the boundary and do not get mass at

tree level. For example, this makes l̃ lighter than ẽ. The two lightest superpartners are

the scalar tau and the bino. Either could be the LSP, and hence collider signals involve

either stable charged particle tracks or missing transverse energy [3].

Now that the superpartner spectrum is known, the supersymmetric threshold correc-

tion for the b quark mass prediction from Yukawa unification can be calculated. Since we

are computing the correction to a dimensionless Yukawa coupling, m̃ drops out and the

result depends only on tanβ: the fractional correction to the b quark mass is −0.006 tanβ

if the µ parameter is negative. The prediction formb(MZ) is shown in Figure 14, including

the unified threshold corrections of Eq. (7). The supersymmetric threshold correction to

the QCD coupling can also be calculated, and these predictions may be written in the
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m̃ 300 400
tan β 5 10
g̃ 699 911
χ̃±

1 251 334
χ̃±

2 427 531
χ̃0

1 130 175
χ̃0

2 251 334
χ̃0

3 417 518
χ̃0

4 422 528
q̃ 701 915
ũ 675 880

d̃ 602 780

l̃ 209 277
ẽ 317 422
t̃1 425 547
t̃2 619 780

b̃1 563 727

b̃2 601 774
τ̃1 106 126
τ̃2 214 280
h 118 128
A 552 690
H0 553 690
H± 558 695

αs(MZ) {±0.003} 0.119 0.118
mb(MZ) {±0.10} 3.37 3.26

Br(µ→ eγ) 6 × 10−12 8 × 10−12

Br(µ→ 3e) 4 × 10−14 5 × 10−14

Cr(µ→ e; 48
22Ti) 4 × 10−14 5 × 10−14

Br(τ → µγ) 1 × 10−8 1 × 10−8

Table 1: Predictions for the superpartner spectrum, the Higgs spectrum, gauge and
Yukawa unification, and lepton flavor violating processes. The predictions are for two
representative values of m̃ and tan β, and all masses are given in GeV. Mass eigenvalues
are given for the gluino, g̃, the charginos, χ̃±, the neutralinos, χ̃0, the squarks and sleptons
of the third generation, t̃1,2, b̃1,2 and τ̃1,2, and the Higgs bosons, h,A,H0 and H±. For the
first two generations of squarks and sleptons the masses are shown for q̃, ũ, d̃, l̃ and ẽ and
do not include contributions from electroweak D terms.
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mb(MZ)

2.5

3.0

3.5

tan β5 10 15 20

exp

SGUT

KK

Figure 14: A comparison of the prediction of the b quark mass from Yukawa unification
with experiment. The prediction from conventional 4D unification, without supersym-
metric threshold corrections is too large. In the minimal 5D SU(5) theory, the unified
corrections of Eq. (7) bring the prediction within 1σ of the data. If supersymmetry is
broken by boundary conditions, the superpartner corrections are linear in tanβ and bring
complete agreement with data. Values of tanβ larger than about 20 are disfavored by
lepton flavor changing processes.

compact form [3]

αs(MZ) =

(
0.1182 − 0.0030 ln

m̃

400 GeV
− 0.0019 ln

Ms/Mc

200

)
± 0.003, (10)

mb(MZ) =

(
3.26 − 0.022 (tanβ − 10) − 0.026 ln

Ms/Mc

200

)
± 0.1 GeV, (11)

where we have also included the finite correction to αs(MZ) from Mc, calculated using

dimensional regularization [38].

The third generation squarks and sleptons are massless at tree level since they reside on

the boundary, while the squarks and sleptons of the first two generations of T have a tree

level mass m̃ as they propagate in the bulk. This means that the U(3)T flavor symmetry

is broken to U(2)T at tree level in the superpartner spectrum. The flavor changing effects

triggered by this flavor symmetry breaking are expected to be larger than in conventional

supersymmetric unification with gravity mediated supersymmetry breaking, where such

flavor breaking occurs only through top quark radiative corrections [33, 39, 40]. The

signals are particularly important in the lepton sector. By rotating to a mass eigenstate
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µL µR b̃

ẽRi

eR

γ

Figure 15: A Feynman diagram contributing to µ→ eγ.

basis for charged leptons, while maintaining diagonal scalar mass-squared matrices, we

can go to a basis where the lepton flavor violation appears only via a single new mixing

matrix W e in the lepton-slepton-gaugino interaction:

LLFV = −
(√

2g′eW e†ẽ†b̃+ h.c.
)
, (12)

and in Higgs interactions. Here, b̃ represents the U(1)Y gaugino and

W e = Re
23R

e
12 =


 ce12 −se

12 0
se
12 c

e
23 ce12 c

e
23 −se

23

se
12 s

e
23 ce12 s

e
23 ce23


 , (13)

where ceij ≡ cos θe
ij and se

ij ≡ sin θe
ij . Therefore, we find a remarkable result that all the

lepton flavor violating processes are completely described by two angles, θe
12 and θe

23, as

far as the charged lepton sector is concerned.

The gaugino exchange diagram for µ → eγ is shown in Figure 15. Including other

one-loop contributions, we find the branching ratio to be [3]

Br(µ→ eγ) � 3 × 10−11
(

200 GeV

m̃

)4
( |W e

τµ|
0.04

)2 ( |W e
τe|

0.01

)2 (
tanβ

5.0

)2

. (14)

Here, we have normalized elements of the new mixing matrix W e by the corresponding

values in the CKM matrix. This is well motivated because W e comes from a rotation of

the right-handed charged leptons e, and the rotation of e is expected to be similar to that

of the left-handed quarks q, which determines the CKM matrix.

The prediction given in Eq. (14) is very interesting, since it gives a number close

to the present experimental bound Br(µ → eγ) <∼ 1.2 × 10−11 [41]. While we expect

an uncertainty of a factor of a few in the estimate of Eq. (14), we can still say that the

present µ→ eγ decay experiment has already probed the theory up to about m̃ � 200 GeV

(300 GeV) for tanβ = 5 (10). Furthermore, a new experiment is under construction at

PSI which aims for a sensitivity to Br(µ → eγ) at the 10−14 level [42]. From Eq. (14),

Br(µ→ eγ) <∼ 10−14 corresponds to m̃ >∼ 1.5 TeV (2 TeV) for tanβ = 5 (10), so that this

experiment will probe essentially all the parameter region of the theory where radiative

electroweak symmetry breaking occurs naturally.
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Another important lepton flavor violating process is τ → µγ decay, which is predicted as

Br(τ → µγ) � 5 × 10−8
(

200 GeV

m̃

)4
( |W e

τµ|
0.04

)2 ( |W e
ττ |

1.0

)2 (
tanβ

5.0

)2

. (15)

The present experimental bound comes from CLEO: Br(τ → µγ) <∼ 1.1 × 10−6 [43]. The

B factories at KEK and SLAC will improve the bound to the level of 10−7. Note that the

combination of lepton flavor violation mixing angles, θe
ij , appearing in Eq. (15) is different

from that in Eq. (14). Therefore, in principle, we can determine all the lepton flavor

violation mixing angles, θe
12 and θe

23, by measuring both µ→ e and τ → µ transition rates,

if we know m̃ and tanβ from independent measurements of the superparticle spectrum.

These branching ratios, together with the branching ratio for µ → eee and the rate for

µ→ e conversion, are shown [3] in Table 1 for two representative values of m̃ and tan β.

5 Conclusions

We have proposed an alternative framework for physics at the scale of unification of the

strong and electroweak interactions. The three pillars of physics beyond the standard

model — grand unification, supersymmetry and extra dimensions — are combined in

a way that allows calculations to a new level of precision. There are two keys to this

framework: breaking of the unified gauge symmetry by local defects and the validity of

the higher dimensional theory over a large energy range. The framework is illustrated in

Figure 5. The geometrical breaking of gauge symmetry leads to a new constrained set of

theories, and a high degree of calculability follows because the effective theory is valid up

to the high energy scale of strong coupling and the spectrum of KK modes is determined.

Local gauge symmetry breaking defects could be viewed as a step backwards: the

Higgs mechanism provides a dynamical origin for symmetry breaking resulting from an

underlying theory that is completely symmetrical. Defects represent explicit local break-

ing of gauge symmetry. They arise from the assumed form for boundary conditions on the

fields in extra dimensions, which are presumably to be determined by a more fundamental

theory. However, in practice we find that the symmetry breaking boundary conditions

provide a simple and elegant description of nature, making the Higgs fields and Higgs

potentials of realistic 4D grand unified theories appear complicated and cumbersome.

The defect framework elegantly solves outstanding problems of 4D unification, and the

simplest model fits the data with extraordinary accuracy. The mass splitting of Higgs

doublets and triplets is a necessary consequence of a bulk Higgs multiplet, proton decay

from dimension five operators is forbidden by a spacetime symmetry of the bulk, and

quark-lepton mass relations occur only for the heavy generation located on a symmetrical

boundary.
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The minimal model has an SU(5) gauge symmetry in a 5D bulk, valid over the energy

interval Mc � 5 × 1014 GeV to Ms � 1017 GeV, as shown in Figure 10. The single

3-2-1 point defect leads to a revised picture of gauge coupling unification, illustrated in

Figures 6 and 11. Since the physics between Mc and Ms is known, unified threshold

corrections can be computed, yielding a successful prediction for the weak mixing angle

of extraordinary precision: sin2 θw = 0.2313 ± 0.0004. Proton decay by X gauge boson

exchange is governed by the scale Mc, and a lifetime of order 1034 years is expected for

the mode e+π0. Predictions for other modes can also be made.

Further predictions depend on how supersymmetry is broken, and we have explored

the consequences of having this breaking also follow from boundary defects in the same

extra dimension. There are two supersymmetries in 5D, but the boundaries of the fifth

dimension can support only a single supersymmetry. If there is a misalignment of the

supersymmetries at the two boundaries by a small angle α, as shown in Figures 13,

supersymmetry is broken in the low energy 4D theory by an amount m̃ = αMc. The

entire superpartner spectrum can then be predicted in terms of m̃ and tanβ, as shown

in Table 1. Furthermore, large tree-level lepton flavor violation is expected, leading to

observable rates for µ→ e and τ → µ transitions. Finally, the supersymmetric threshold

corrections to the quark-lepton mass relation mb/mτ can be computed. In the minimal

5D model this result is more successful than in the case of 4D unification, and is shown

in Figure 14.
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